Skip to main content

Dimorphic Prosthecate Bacteria: The Genera Caulobacter, Asticcacaulis, Hyphomicrobium, Pedomicrobium, Hyphomonas and Thiodendron

  • Reference work entry
The Prokaryotes

Rationale for Clustering Caulobacter, Asticcacaulis, Hyphomicrobium, Pedomicrobium, Hyphomonas and Thiodendron

The genera treated together here comprise the dimorphic prosthecate bacteria (DPB), in which reproduction regularly results in the separation of two cells that are morphologically and behaviorally different from each other (Fig. 1). One sibling is nonmotile and prosthecate, possessing at least one elongated, cylindrical appendage that is an outgrowth of the cell surface, including the outer membrane, the peptidoglycan layer, and the cell membrane, and that may also include cytoplasmic elements such as ribosomes; such an appendage is a prostheca (Staley, 1968). In natural populations, this prosthecate cell is usually also sessile by virtue of adhesive material associated with a cell pole or with the prostheca. The other sibling is flagellated, bearing (typically) one polar or subpolar flagellum, by means of which it is actively motile. This mode of reproduction is unique as a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    *Thiodendron isolates have not been reported. The organism is known only from natural samples in which it has been interpreted as a sulfur-oxidizing prosthecate bacterium, probably with a motile stage. The absence of information regarding properties of monotypic populations does not justify a discussion beyond the excellent summary by Schmidt (1981).

  2. 2.

    *Podzol: a type of relatively infertile soil found typically in forests and consisting of a thin, ash-colored layer overlying a brown, acidic humus, the organic part of soil, resulting from the partial decay of leaves and other vegetable matter.

Literature Cited

  • Agabian, N., B. Unger. 1978 Caulobacter crescentus cell envelope: effect of growth conditions on murein and outer membrane protein composition J. Bacteriol. 133 987–994

    PubMed  CAS  Google Scholar 

  • Allen, H. L. 1971 Primary productivity, chemo-organotrophy, and nutritional interactions of epiphytic algae and bacteria on macrophytes in the littoral of a lake Ecol. Monographs 41 97–127

    Article  Google Scholar 

  • Anast, N., J. Smit. 1988 Isolation and characterization of marine caulobacters and assessment of their potential for genetic experimentation Appl. Environ. Microbiol. 54 809–817

    PubMed  Google Scholar 

  • Anderson, K. L., J. S. Poindexter. 1984 Coincidence and association of caulobacters and diatoms Biol. Bull. 167 506

    Google Scholar 

  • Attwood, M. M., W. Harder. 1972 A rapid and specific enrichment procedure for Hyphomicrobium spp Antonie van Leeuwenhoek J. Microbiol. Serol. 38 369–378

    Article  CAS  Google Scholar 

  • Austin, B., D. A. Allen, A. Zachary, M. R. Belas, R. R. Colwell. 1979 Ecology and taxonomy of bacteria attaching to wood surfaces in a tropical harbor Canad. J. Microbiol. 25 447–461

    Article  CAS  Google Scholar 

  • Bauld, J., K. C. Marshall. 1971 Quantitative description of morphological changes during growth of a pleomorphic budding bacterium Antonie van Leewenhoek J. Microbiol. Serol. 37 401–407

    Article  CAS  Google Scholar 

  • Bauld, J., P. A. Tyler. 1971 Taxonomic implications of reproductive mechanisms of Hyphomicrobium-facies and Pedomicrobium-facies of a pleomorphic budding bacterium Antonie van Leewenhoek J. Microbiol. Serol. 37 417–424

    Article  CAS  Google Scholar 

  • Bauld, J., P. A. Tyler, K. C. Marshall. 1971 Pleomorphy of a budding bacterium on various carbon sources Antonie van Leewenhoek J. Microbiol. Serol. 37 409–416

    Article  CAS  Google Scholar 

  • Belyaev, S. S. 1968 Caulobacter in soils and some reservoirs of the USSR Vestn. Mosk. Univ. 6 98–105

    Google Scholar 

  • Bunt, J. S. 1961 Blue-green algae: growth Nature (London) 192 1274–1275

    Article  Google Scholar 

  • Callerio, D., R. Gagliardi, M. Chersicla, C. Callerio. 1983 Sulla presenza del genus Caulobacter nell’acqua distillata Boll. Istituto Sieroterapico Milanese 62 251–256

    CAS  Google Scholar 

  • Chatterjee, D. K., A. W. Bourquin. 1987 Metabolism of aromatic compounds by Caulobacter crescentus J. Bacteriol. 169 1993–1996

    PubMed  CAS  Google Scholar 

  • Chatterjee, D. K., P. Chatterjee. 1987 Expression of degradative genes of Pseudomonas putida in Caulobacter crescentus J. Bacteriol. 169 2962–2966

    PubMed  CAS  Google Scholar 

  • Chiaverotti, T. A., G. Parker, J. Gallant, N. Agabian. 1981 Conditions that trigger guanosine tetraphosphate accumulation in Caulobacter crescentus J. Bacteriol. 145 1463–1465

    PubMed  CAS  Google Scholar 

  • Claus, G., H. J. Kutzner. 1985 Denitrification of nitrate and nitric acid with methanol as carbon source Appl. Microbiol. Biotechnol. 22 378–381

    Article  CAS  Google Scholar 

  • Cohen-Bazire, G., W. R. Sistrom, R. Y. Stanier. 1957 Kinetic studies of pigment synthesis by non-sulfur purple bacteria J. Cell. Comp. Physiol. 49 25–68

    Article  CAS  Google Scholar 

  • Corpe, W. A. 1978 Ecology of microbial attachment and growth on solid surfaces 58–65 R. Gerhold (ed.) Proc. symp. microbiol. of power plant thermal effluents University of Iowa Ames

    Google Scholar 

  • Corpe, W. A., L. Matsuuchi, B. Armbruster. 1975 Secretion of adhesive polymers and attachment of marine bacteria to surfaces 433–442 J. M. Sharpley and A. M. Kaplan (ed.) Proc. 3rd internatl. biodegradation symp Applied Science Publishers London

    Google Scholar 

  • Dagasan, L., R. M. Weiner. 1986 Contribution of the electrophoretic pattern of cell envelope protein to the taxonomy of Hyphomonas spp Int. J. Syst. Bacteriol. 36 192–196

    Article  CAS  Google Scholar 

  • DeBont, J. A. M., J. P. Van Dijken, W. Harder. 1981 Dimethyl sulphoxide and dimethyl sulphide as a carbon, sulphur, and energy source for growth of Hyphomicrobium J. Gen. Microbiol. 127 315–323

    CAS  Google Scholar 

  • Dijkhuisen, L., W. Harder, L. DeBoer, A. Van Boven, W. Clement, S. Bron, G. Venema. 1984 Genetic manipulation of the restricted facultative methylotroph Hyphomicrobium X by the R-plasmid-mediated introduction of the Escherichia coli pdh genes Arch. Microbiol. 139 311–318

    Article  Google Scholar 

  • Doronina, N. V. 1985 The properties of a new Hyphomicrobium vulgare strain Mikrobiologiya 54 538–544

    CAS  Google Scholar 

  • Dow, C. S., R. Whittenbury, N. G. Carr. 1983 The “shut-down” or “growth precursor” cell—an adaptation for survival in a potentially hostile environment 187–247 J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny (ed.) Microbes in their natural environments Cambridge University Press U.K

    Google Scholar 

  • Driggers, L. J., J. M. Schmidt. 1970 Induction of defective and temperate bacteriophages in Caulobacter J. Gen. Virol. 6 421–427

    Article  Google Scholar 

  • Ely, B. 1979 Transfer of drug resistance factors to the dimorphic bacterium Caulobacter crescentus Genetics 91 371–380

    PubMed  CAS  Google Scholar 

  • Ely, B., A. B. C. Amarasinghe, R. A. Bender. 1978 Ammonia assimilation and glutamate formation in Caulobacter crescentus J. Bacteriol. 133 225–230

    PubMed  CAS  Google Scholar 

  • Emata, M. A., R. M. Weiner. 1983 Modulation of adenylate energy charge during the swarmer cycle of Hyphomicrobium neptunium J. Bacteriol. 153 1558–1561

    Google Scholar 

  • Famurewa, O., H. G. Sonntag, P. Hirsch. 1983 Avirulence of 27 bacteria that are budding, prosthecate, or both Int. J. Syst. Bacteriol. 35 565–572

    Article  Google Scholar 

  • Gebers, R. 1981 Enrichment, isolation, and emended description of Pedomicrobium ferrugineum Aristovskaya and Pedomicrobium manganicum Int. J. Syst. Bacteriol. 31 302–316

    Article  Google Scholar 

  • Gebers, R. 1989 Genus Pedomicrobium 1910–1914 J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (ed.) Bergey’s manual of systematic bacteriology, vol. 3 Williams & Wilkins Baltimore

    Google Scholar 

  • Gebers, R., M. Beese. 1988 Pedomicrobium americanum sp. nov. and Pedomicrobium australicum sp. nov. from aquatic habitats, Pedomicrobium gen. emend., and Pedomicrobium ferrugineum sp. emend Int. J. Syst. Bacteriol. 38 303–315

    Article  Google Scholar 

  • Gebers, R., P. Hirsch. 1978 Isolation and investigation of Pedomicrobium spp., heavy metal-depositing bacteria from soil habitats 911–922 W. E. Krumbein (ed.) Environmental geochemistry and geomicrobiology, vol. 3 Ann Arbor Sci. Publishers, Inc.

    Google Scholar 

  • Gebers, R., R. L. Moore, P. Hirsch. 1984 Physiological properties and DNA-DNA homologies of Hyphomonas polymorpha and Hyphomonas neptunium Syst. Appl. Microbiol. 5 510–517

    Article  CAS  Google Scholar 

  • Gebers, R., U. Wehmeyer, T. Roggentin, H. Schlesner, J. Kölbel-Boelke, P. Hirsch. 1985 Deoxyribonucleic acid base compositions and nucleotide distributions of 65 strains of budding bacteria Int. J. Syst. Bacteriol. 35 260–269

    Article  CAS  Google Scholar 

  • Gebers, R., B. Martens, U. Wehmeyer, P. Hirsch. 1986 Deoxyribonucleic acid homologies of Hyphomicrobium spp., Hyphomonas spp., and other hyphal, budding bacteria Int. J. Syst. Bacteriol. 36 241–245

    Article  CAS  Google Scholar 

  • Geitler, L. 1965 Ein Hyphomicrobium als Bewohner der Gallertmembran der Süsswasser-Rhodophycee Kylinella Arch. Mikro. 51 399–400

    Article  CAS  Google Scholar 

  • Ghiorse, W. C., P. Hirsch. 1979 An ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like budding bacteria Arch. Microbiol. 123 213–226

    Article  CAS  Google Scholar 

  • Ghiorse, W. C., P. Hirsch. 1982 Isolation and properties of ferromanganese-depositing budding bacteria from Baltic Sea ferromanganese concretions Appl. Environ. Microbiol. 43 1464–1472

    PubMed  CAS  Google Scholar 

  • Gliesche, C. G., N. C. Holm, M. Beese, M. Newmann, H. Völker, R. Gebers, P. Hirsch. 1988 New bacteriophages active on strains of Hyphomicrobium J. Gen. Microbiol. 134 1339–1353

    PubMed  CAS  Google Scholar 

  • González, C., C. Gutiérrez, T. Grande. 1987 Bacterial flora in bottled uncarbonated mineral drinking water Canad. J. Microbiol. 33 1120–1125

    Article  Google Scholar 

  • Gregory, E., J. T. Staley. 1982 Widespread distribution of ability to oxidize manganese among freshwater bacteria Appl. Environ. Microbiol. 44 509–511

    PubMed  CAS  Google Scholar 

  • Grimes, D. J., S. M. Morrison. 1975 Bacterial bioconcentration of chlorinated hydrocarbon insecticides from aqueous systems Microb. Ecol. 2 43–59

    Article  CAS  Google Scholar 

  • Gromov, B. V. 1964 Bacteria of the genus Caulobacter in association with algae Mikrobiologiya 33 298–305

    CAS  Google Scholar 

  • Groudev, S. N., F. N. Genchev, S. S. Gaidarjiev. 1978 Observations on the microflora in an industrial copper dump leaching operation 253–274 L. E. Murr, A. E. Torma, and J. A. Brierly (ed.) Metallurgical applications of bacterial leaching and related microbiological phenomena Academic Press New York

    Chapter  Google Scholar 

  • Haars, E. G., J. M. Schmidt. 1974 Stalk formation and its inhibition in Caulobacter crescentus J. Bacteriol. 120 1409–1416

    PubMed  CAS  Google Scholar 

  • Harder, W., M. M. Attwood. 1978 Biology, physiology and biochemistry of hyphomicrobia Adv. Microb. Physiol. 17 303–359

    Article  PubMed  CAS  Google Scholar 

  • Hartmans, S., A. Schmuelke, A. M. Cook, T. Leisinger. 1986 Methyl chloride: naturally occurring toxicant and C-1 growth substrate J. Gen. Microbiol. 132 1139–1142

    CAS  Google Scholar 

  • Havenner, J. A., B. A. McCardell, R. M. Weiner. 1979 Development of defined, minimal, and complete media for the growth of Hyphomicrobium neptunium Appl. Environ. Microbiol. 38 18–23

    PubMed  CAS  Google Scholar 

  • Henrici, A. T., D. E. Johnson. 1935 Studies on fresh water bacteria. II. Stalked bacteria, a new order of schizorayceter J. Bacteriol. 30 61–93

    PubMed  CAS  Google Scholar 

  • Hirsch, P. 1974 Budding bacteria Annu. Rev. Microbiol. 28 391–444

    Article  PubMed  CAS  Google Scholar 

  • Hirsch, P. 1989 Genus Hyphomicrobium 1895–1904 J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (ed.) Bergey’s manual of systematic bacteriology, vol. 3 Williams & Wilkins Baltimore

    Google Scholar 

  • Hirsch, P., S. F. Conti. 1964a Biology of budding bacteria I. Enrichment, isolation and morphology of Hyphomicrobium spp. Arch. Mikrobiol. 48 339–357

    CAS  Google Scholar 

  • Hirsch, P., S. F. Conti. 1964b Biology of budding bacteria II. Growth and nutrition of Hyphomicrobium spp. Arch. Mikrobiol. 48 358–367

    CAS  Google Scholar 

  • Hirsch, P., S. H. Pankratz. 1970 Study of bacterial populations in natural environments by use of submerged electron microscope grids Z. Allg. Mikrobiol. 10 589–605

    Article  PubMed  CAS  Google Scholar 

  • Jannasch, H. W., G. E. Jones. 1960 Caulobacter sp. in sea water Limnol. Oceanogr. 5 432–433

    Article  Google Scholar 

  • Jannasch, H. W., C. O. Wirsen. 1981 Morphological survey of microbial mats near deep-sea thermal vents Appl. Environ. Microbiol. 41 528–538

    PubMed  CAS  Google Scholar 

  • Johnson, R. C., B. Ely. 1977 Isolation of spontaneously derived mutants of Caulobacter crescentus Genetics 86 25–32

    PubMed  CAS  Google Scholar 

  • Jordan, T. L., J. S. Porter, J. L. Pate. 1974 Isolation and characterization of prosthecae of Asticcacaulis biprosthecum Arch. Microbiol. 96 1–16

    Article  CAS  Google Scholar 

  • Kingma Boltjes, T. Y. 1936 über Hyphomicrobium vulgare Stutzer et Hartleb Arch. Mikrobiol. 7 188–205

    Article  Google Scholar 

  • Klaveness, D. 1982 The Cryptomonas-Caulobacter consortium: facultative ectocommensalism with possible taxonomic consequences? Nordic J. Botany 2 183–188

    Google Scholar 

  • Kogure, K., U. Simidu, N. Taga. 1979 A tentative direct microscopic method for counting living marine bacteria Canad. J. Microbiol. 25 415–420

    Article  CAS  Google Scholar 

  • Köhler, J., A. C. Schwartz. 1982 Oxidation of aromatic aldehydes and aliphatic secondary alcohols by Hyphomicrobium spp Canad. J. Microbiol. 28 65–72

    Article  Google Scholar 

  • Koyasu, S., A. Fukuda, Y. Okada, J. S. Poindexter. 1983 Penicillin-binding proteins of the stalk of Caulobacter crescentus J. Gen. Microbiol. 129 2789–2799

    CAS  Google Scholar 

  • Krasil’nikov, N. A., S. S. Belyaev. 1970 Morphology and development of Caulobacter Mikrobiologiya 29 352–357

    Google Scholar 

  • Kudryavtsev, V. M. 1978 Bacterial numbers in thickets and foulings of higher water plants Biol. Zh. 14 14–20

    Google Scholar 

  • Lapteva, N. A. 1977 Species composition of heterotrophic bacteria in the water of the Rybinsk Reservoir Mikrobiologiya 46 570–577

    CAS  Google Scholar 

  • Lapteva, N. A. 1987 Ecological characteristics of Caulobacter incidence in fresh-water basins Mikrobiologiya 56 677–684

    Google Scholar 

  • Larson, R. J., J. L. Pate. 1975 Growth and morphology of Asticcacaulis biprosthecum in defined media Arch. Microbiol. 106 147–157

    Article  PubMed  CAS  Google Scholar 

  • Leifson, E. 1962 The bacterial flora of distilled and stored water Int. Bull. Bacteriol. Nomencl. Taxon. 12 155–159

    Google Scholar 

  • Li, Q. J. Lu, S. Li. 1984 Caulobacter in nitrogen-fixing blue-green algal culture: 1 Isolation and identification of Caulobacter polymorphus, new species. Acta Microbiol. Sin. 24 111–116

    CAS  Google Scholar 

  • Loeffler, F. 1890 Weitere Untersucherung über die Beizung und Färbung der Geisseln bei den Bakterien Centralbl. Bakteriol. Parasitenkd. 7 625–639

    Google Scholar 

  • Lupton, F. S., K. C. Marshall. 1981 Specific adhesion of bacteria to heterocysts of Anabaena spp. and its ecological significance Appl. Environ. Microbiol. 41 1085–1092

    Google Scholar 

  • Mansour, J. D., S. Henry, L. Shapiro. 1980 Differential membrane phospholipid synthesis during the cell cycle of Caulobacter crescentus J. Bacteriol. 141 262–269

    PubMed  CAS  Google Scholar 

  • Marshall, K. C. 1976 Interfaces in microbial ecology Harvard University Press Cambridge MA

    Google Scholar 

  • Marshall, K. C. 1980 The role of surface attachment in manganese oxidation by freshwater hyphomicrobia 333–337 P. A. Trudinger, M. R. Walter, and B. J. Ralph (ed.) Biogeochemistry of ancient and modern environments Springer-Verlag New York

    Chapter  Google Scholar 

  • Masuda, S. 1957 Studies on the Caulobacter in Japan J. Japanese Bot. 32 321–331

    Google Scholar 

  • Matzen, N., P. Hirsch. 1982a Improved growth conditions for Hyphomicrobium sp. B-522 and two additional strains Arch. Microbiol. 131 32–35

    Article  CAS  Google Scholar 

  • Matzen, N., P. Hirsch. 1982b Continuous culture and synchronization of Hyphomicrobium sp. B-522 Arch. Microbiol. 132 96–99

    Article  Google Scholar 

  • Mevius, W. Jr. 1953 Beiträge zur Kenntnis von Hyphomicrobium vulgare Stutzer et Hartleb Arch. Mikrobiol. 19 1–29

    Article  PubMed  CAS  Google Scholar 

  • Moaledj, K. 1978 Qualitative analysis of an oligocarbophilic aquatic microflora in the Plussee Arch. Hydrobiol. 82 98–113

    Google Scholar 

  • Moore, R. L. 1977 Ribosomal ribonucleic acid cistron homologies among Hyphomicrobium and various other bacteria Canad. J. Microbiol. 23 478–481

    Article  CAS  Google Scholar 

  • Moore, R. L. 1981 The biology of Hyphomicrobium and other prosthecate, budding bacteria Annu. Rev. Microbiol. 35 567–594

    Article  PubMed  CAS  Google Scholar 

  • Moore, R. L., R. R. Brubaker. 1976 Effect of cis-platinum(II) diamminodichloride on cell division of Hyphomicrobium and Caulobacter J. Bacteriol. 125 317–323

    PubMed  CAS  Google Scholar 

  • Moore, R. L., T. Duxbury. 1981 A microcultural study of the effect of mitomycin C on Hyphomicrobium vulgare FEMS Microbiol. Lett. 11 107–109

    Article  CAS  Google Scholar 

  • Moore, R. L., P. Hirsch. 1972 DNA base sequence homologies of some budding and prosthecate bacteria J. Bacteriol. 110 256–261

    PubMed  CAS  Google Scholar 

  • Moore, R. L., P. Hirsch. 1973 First generation synchrony of isolated Hyphomicrobium swarmer populations J. Bacteriol. 116 418–423

    PubMed  CAS  Google Scholar 

  • Moore, R. L., K. C. Marshall. 1981 Attachment and rosette formation by hyphomicrobia Appl. Environ. Microbiol. 42 751–757

    PubMed  CAS  Google Scholar 

  • Moore, R. L., R. W. Weiner. 1989 Genus Hyphomonas 1904–1910 J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (ed.) Bergey’s manual of systematic bacteriology, vol. 3 Williams & Wilkins Baltimore

    Google Scholar 

  • Moore, R. L., J. Schmidt, J. Poindexter, J. T. Staley. 1978 Deoxyribonucleic acid homology among the caulobacters Int. J. Syst. Bacteriol. 28 349–353

    Article  CAS  Google Scholar 

  • Moore, R. L., R. M. Weiner, R. Gebers. 1984 Genus Hyphomonas Pongratz 1957 nom. rev. emend., Hyphomonas polymorpha Pongratz 1957 nom. rev. emend., and Hyphomonas neptunium (reference is not an exact match Leifson 1964) comb. nov. emend. (Hyphomicrobium neptunium) Int. J. Syst. Bacteriol. 34 71–73

    Article  Google Scholar 

  • Morgan, P., C. S. Dow. 1985 Environmental control of cell-type expression in prosthecate bacteria 131–169 M. Fletcher and G. D. Floodgate (ed.) Bacteria in their natural environments Acad. Press London

    Google Scholar 

  • Mudarris, M., B. Austin. 1988 Quantitative and qualitative studies of the bacterial microflora of turbot, Scophthalmus maximum L., gills J. Fish Biol. 32 223–229

    Article  Google Scholar 

  • Murakami, A., T. Matsuda, N. Watanabe, S. Nagasawa. 1976 Degradation of n-paraffin mixtures by marine microorganisms in enriched seawater medium J. Oceanogr. Soc. Japan 32 242–248

    Article  CAS  Google Scholar 

  • Nemec, P., V. Bystrický. 1962 Peculiar morphology of some microorganisms accompanying diatomaceae Preliminary report. J. Gen. Appl. Microbiol. 8 121–129

    Article  Google Scholar 

  • Newton, A. 1972 Role of transcription in the temporal control of development in Caulobacter crescentus Proc. Natl. Acad. Sci. U.S.A. 69 447–451

    Article  PubMed  CAS  Google Scholar 

  • O’Neill, E. A., R. A. Bender. 1989 Cell-cycle-dependent polar morphogenesis in Caulobacter crescentus: Roles of phospholipid, DNA, and protein synthesis J. Bacteriol. 171 4814–4820

    PubMed  Google Scholar 

  • Pate, J. L., J. S. Porter, T. L. Jordan. 1973 Asticcacaulis biprosthecum sp. nov. Life cycle, morphology and cultural characteristics Antonie van Leeuwenhoek J. Microbiol. Serol. 39 569–583

    Article  CAS  Google Scholar 

  • Poindexter, J. S. 1964 Biological properties and classification of the Caulobacter group Bacteriol. Rev. 28 231–295

    PubMed  CAS  Google Scholar 

  • Poindexter, J. S. 1978 Selection for nonbuoyant morphological mutants of Caulobacter crescentus J. Bacteriol. 135 1141–1145

    PubMed  CAS  Google Scholar 

  • Poindexter, J. S. 1981a The caulobacters: Ubiquitous unusual bacteria Microbiol. Rev. 45 123–179

    PubMed  CAS  Google Scholar 

  • Poindexter, J. S. 1981b Oligotrophy. Fast and famine existence 63–89 M. Alexander (ed.) Microbial ecology, vol. 5 Plenum Publishing Corp New York

    Google Scholar 

  • Poindexter, J. S. 1984a Role of prostheca development in oligotrophic aquatic bacteria 33–40 M. J. Klug and C. A. Reddy (ed.) Current perspectives in microbial ecology Amer. Soc. Microbiol Washington, D.C

    Google Scholar 

  • Poindexter, J. S. 1984b The role of calcium in stalk development and in phosphate acquisition in Caulobacter crescentus Arch. Microbiol. 138 140–152

    Article  PubMed  CAS  Google Scholar 

  • Poindexter, J. S. 1989a Genus Caulobacter 1924–1939 J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (ed.) Bergey’s manual of systematic bacteriology, vol. 3 Williams & Wilkins Baltimore

    Google Scholar 

  • Poindexter, J. S. 1989b Genus Asticcacaulis 1939–1943 J. T. Staley, M. P. Bryant, N. Pfennig, and J. G. Holt (ed.) Bergey’s manual of systematic bacteriology, vol. 3 Williams & Wilkins Baltimore

    Google Scholar 

  • Pongratz, E. 1957 D’une bactérie pédiculée isolée d’un pus de sinus Schweiz. Z. Pathol. Bakteriol. 20 593–608

    PubMed  CAS  Google Scholar 

  • Schmider, F., J. C. G. Ottow. 1986 Charakterisierung der denitrifizierenden Mikroflora in den verschiedenen Reinigungsstufen einer biologischen Kläranlage Arch. Hydrobiol. 106 497–512

    Google Scholar 

  • Schmidt, J. M. 1966 Observations on the adsorption of caulobacter bacteriophages containing ribonucleic acid J. Gen. Microbiol. 45 347–353

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, J. M. 1981 The genus Thiodendron 488–489 M. P. Starr, H. Stolp, H. Trüper, A. Balows, and H. G. Schlegel (ed.) The prokaryotes: a handbook on habitats, isolation, and identification of bacteria Springer-Verlag Berlin

    Google Scholar 

  • Schmidt, J. M., R. Y. Stanier. 1965 Isolation and characterization of bacteriophages active against stalked bacteria J. Gen. Microbiol. 39 95–107

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, J. M., R. Y. Stanier. 1966 The development of cellular stalks in bacteria J. Cell Biol. 28 423–436

    Article  PubMed  CAS  Google Scholar 

  • Schoenlein, P. V., B. Ely. 1983 Plasmids and bacteriocins in Caulobacter species J. Bacteriol. 153 1092–1094

    PubMed  CAS  Google Scholar 

  • Shah, R. G., J. V. Bhat. 1968 Occurrence of Hyphomicrobium and Caulobacter spp. in bore-well water Curr. Sci. 37 571–573

    Google Scholar 

  • Shen, N., L. Dagasan, D. Sledjeski, R. M. Weiner. 1989 Major outer membrane proteins unique to reproductive cells of Hyphomonas jannaschiana J. Bacteriol. 171 2226–2228

    PubMed  CAS  Google Scholar 

  • Sly, L. I., M. C. Hodgkinson, V. Arunpairojana. 1988 Effect of water velocity on the early development of manganese-depositing biofilm in a drinking-water distribution system FEMS Microbiol. Ecol. 53 175–186

    Article  CAS  Google Scholar 

  • Smit, J., D. A. Grano, R. M. Glaeser, N. Agabian. 1981 Periodic surface array in Caulobacter crecentus: Fine structure and chemical analysis J. Bacteriol. 146 1135–1156

    PubMed  CAS  Google Scholar 

  • Sperl, G. T., D. S. Hoare. 1971 Denitrification with methanol: a selective enrichment for Hyphomicrobium species J. Bacteriol. 108 733–736

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., A. Fischer, T. Roggentin, U. Wehmeyer, D. Bomar, J. Smida. 1988 A phylogenetic survey of budding, and/or prosthecate, non-phototrophic eubacteria: membership of Hyphomicrobium, Hyphomonas, Pedomicrobium, Filomicrobium, Caulobacter and “Dichotomicrobium” to the alpha-subdivision of purple non-sulfur bacteria Arch. Microbiol. 149 547–556

    Article  PubMed  CAS  Google Scholar 

  • Staley, J. T. 1968 Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria J. Bacteriol. 95 1921–1942

    PubMed  CAS  Google Scholar 

  • Staley, J. T. 1971 Incidence of prosthecate bacteria in a polluted stream Appl. Microbiol. 22 496–502

    PubMed  CAS  Google Scholar 

  • Staley, J. T., K. C. Marshall, V. B. D. Skerman. 1980 Budding and prosthecate bacteria from freshwater habitats of various trophic states Microb. Ecol. 5 245–251

    Article  Google Scholar 

  • Staley, J. T., A. E. Konopka, J. P. Dalmasso. 1987 Spatial and temporal distribution of Caulobacter spp. in two mesotrophic lakes FEMS Microbiol. Ecol. 45 1–6

    Article  Google Scholar 

  • Stanley, P. M., E. J. Ordal, J. T. Staley. 1979 High numbers of prosthecate bacteria in pulp mill waste aeration lagoons Appl. Environ. Microbiol. 37 1007–1011

    PubMed  CAS  Google Scholar 

  • Steinman, H. M. 1982 Copper-zinc superoxide dismutase from Caulobacter crescentus CB15 A novel bacteriocuprein form of the enzyme. J. Biol. Chem. 257 10283–10293

    PubMed  CAS  Google Scholar 

  • Steinman, H. M., B. Ely. 1990 Copper-zinc superoxide dismutase of Caulobacter crescentus: cloning, sequencing, and mapping of the gene and periplasmic location of the enzyme J. Bacteriol. 172 2901–2910

    PubMed  CAS  Google Scholar 

  • Suylen, G. M. H., J. G. Kuenen. 1986 Chemostat enrichment and isolation of Hyphomicrobium EG Antonie van Leeuwenhoek J. Microbiol. Serol. 52 281–293

    Article  CAS  Google Scholar 

  • Swoboda, U., C. S. Dow. 1979 The study of homogeneous populations of Caulobacter stalked (mother) cells J. Gen. Microbiol. 112 235–239

    Article  Google Scholar 

  • Takii, S., T. Konda, A. Hiraishi, G. I. Matsumoto, T. Kawano, T. Torii. 1986 Vertical distribution in and isolation of bacteria from Lake Vanda: An Antarctic lake Hydrobiol. 135 15–22

    Article  Google Scholar 

  • Tufail, A. 1987 Microbial communities colonizing nutrient-enriched marine sediment Hydrobiol. 148 245–256

    Article  Google Scholar 

  • Tyler, P. A., K. C. Marshall. 1967a Microbial oxidation of mangansese in hydro-electric pipelines Antonie van Leeuwenhoek J. Microbiol. Serol. 33 171–183

    Article  CAS  Google Scholar 

  • Tyler, P. A., K. C. Marshall. 1967b Pleomorphy in stalked, budding bacteria J. Bacteriol. 93 1132–1136

    PubMed  CAS  Google Scholar 

  • Umbreit, T. H., J. L. Pate. 1978 Characterization of the holdfast region of wild-type cells and holdfast mutants of Asticcacaulis biprosthecum Arch. Microbiol. 118 157–168

    Article  Google Scholar 

  • Vedinina, I. Y., N. I. Govorukhina. 1988 Formation of a methylotrophous denitrifying cenosis in a system of sewage purification from nitrates Mikrobiologiya 57 320–328

    Google Scholar 

  • Waguri, O. 1976 Isolation of microorganisms from salt lakes in the Dry Valley, Antarctica, and their living environment Antarctic Record 57 80–96

    Google Scholar 

  • Wali, T. M., G. R. Hudson, D. A. Danald, R. M. Weiner. 1980 Timing of swarmer cell cycle morphogenesis and macromolecule synthesis in Hyphomicrobium neptunium in synchronous culture J. Bacteriol. 144 406–412

    PubMed  CAS  Google Scholar 

  • Weiner, R. M., M. A. Blackman. 1973 Inhibition of deoxyribonucleic acid synthesis and bud formation by nalidixic acid in Hyphomicrobium neptunium J. Bacteriol. 116 1398–1404

    PubMed  CAS  Google Scholar 

  • Weiner, R. M. M. Hussong, R. R. Colwell. 1980 An estuarine agar medium for enumeration of aerobic chemoheterotrophic bacteria associated with water, sediment and shellfish Cand. J. Microbiol. 26 1366–1369

    Article  CAS  Google Scholar 

  • Weiner, R. M., R. A. Devine, D. M. Powell, L. Dagasan, R. L. Moore. 1985 Hyphomonas oceanitis sp. nov., Hyphomonas hirschiana sp. nov., and Hyphomonas jannaschiana sp. nov Int. J. Syst. Bacteriol. 35 237–243

    Article  Google Scholar 

  • Wilkinson, T. G., G. Hamer. 1972 Some growth characteristics of a Hyphomicrobium sp. in batch culture J. Appl. Bacteriol. 35 577–588

    Article  Google Scholar 

  • Zavarzin, G. A. 1961 Budding bacteria Mikrobiologiya 30 774–791

    Google Scholar 

  • Zavarzina, N. B. 1961 A lytic agent in cultures of Chlorella pyrenoidosa Pringh Dokl. Akad. Nauk USSR 137 435–437

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Poindexter, J.S. (2006). Dimorphic Prosthecate Bacteria: The Genera Caulobacter, Asticcacaulis, Hyphomicrobium, Pedomicrobium, Hyphomonas and Thiodendron . In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30745-1_4

Download citation

Publish with us

Policies and ethics