Skip to main content
Log in

Genetics of methane and methanol oxidation in Gram-negative methylotrophic bacteria

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Within the past few years, considerable progress has been made in the understanding of the molecular genetics of methane and methanol oxidation. In order to summarize this progress and to illustrate the important genetic methods employed, this review will focus on several well-studied organisms. These organisms include the gramnegative faculative methylotrophsMethylobacterium extorquens, Methylobacterium organophilum andParacoccus denitrificans. In addition, the obligate methanotrophsMethylococcus capsulatus andMethylosinus trichosporium are discussed. We have chosen not to discuss the genetics of methanol oxidation in the yeasts or in gram-positive bacteria. Likewise, the genetics of related topics (for example, methylamine oxidation and carbon assimilation pathways) are not reviewed here. Broad host range conjugatable plasmids have enabled researchers to complement mutations and clone genes from gram-negative methylotrophic bacteria. More recently, ‘promoter probe’ derivative plasmids have been used to elucidate aspects of gene regulation. Also, alternative gene-cloning techniques are proving useful in circumventing problems in the genetic studies of the obligate methanotrophs, the group of bacteria that is the most refractory to traditional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Taho NM, Cornish A & Warner PJ (1990) Molecular cloning of the methanol dehydrogenase structural genes fromMethylosinus trichosporium OB3b. Curr. Microbiol. 20: 153–157

    Google Scholar 

  • Allen LN & Hanson RS (1985) Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth ofMethylobacterium organophilum XX on methanol. J. Bacteriol. 161: 955–962

    PubMed  Google Scholar 

  • Allen LN, Olstein A, Haber C & Hanson RS (1984) Genetic and biochemical studies of representative type II methylotrophic bacteria. In: Crawford RL & Hanson RS (Eds) Microbial Growth on C-1 Compounds (pp 236–243). Am. Soc. Microbiol. Press, Washington, D.C.

    Google Scholar 

  • Anderson D & Lidstrom ME (1988) ThemoxFG region encodes four polypeptides in the methanol-oxidizing bacteriumMethylobacterium sp. strain AM1. J. Bacteriol. 170: 2254–2262

    PubMed  Google Scholar 

  • Anderson DJ, Morris CJ, Nunn DN, Anthony C & Lidstrom ME (1990) Nucleotide sequence of theMethylobacterium extorquens AM1moxF andmoxJ genes involved in methanol oxidation. Gene 90: 173–176

    PubMed  Google Scholar 

  • Anderson DM & Mills D (1985) The use of transposon mutagenesis in the isolation of nutritional and virulence mutants in two pathovars ofPseudomonas syringae. Phytopathology 75: 104–108

    Google Scholar 

  • Anthony C (1982) The Biochemistry of Methylotrophs Academic Press, New York

    Google Scholar 

  • Anthony C (1986) Bacterial oxidation of methane and methanol. Adv. Microbial. Physiol. 27: 113–210

    Google Scholar 

  • Anthony C, Chan HTC, Cox JM & Richardson IW (1993) Methanol dehydrogenase and cytochrome interactions. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds (pp 221–233). Intercept, Ltd., Andover, U.K.

    Google Scholar 

  • Bastien C, Machlin S, Zhang Y, Donaldson K & Hanson RS (1989) Organization of genes required for the oxidation of methanol to formaldehyde in three type II methylotrophs. Appl. Environ. Microbiol. 55: 3124–3130

    Google Scholar 

  • Biville F, Turlin E & Gasser F (1989) Cloning and genetic analysis of six pyrroloquinoline quinone biosynthesis genes inMethylobacterium organophilum DSM 760. J. Gen. Microbiol. 135: 2917–2929

    Google Scholar 

  • Bohanon MJ, Bastien CA, Yoshida R & Hanson RS (1987) Isolation of auxotrophic mutants ofMethylophilus methylotrophus by modified-marker exchange. Appl. Environ. Microbiol. 54: 271–273

    Google Scholar 

  • Bourret RB, Borkovich KA & Simon MI (1991) Signal transduction pathways involving protein phosphorylation in prokaryotes. Ann. Rev. Biochem. 60: 401–441

    PubMed  Google Scholar 

  • Bratina BJ, Brusseau GA & Hanson RS (1992) Use of 16S rRNA analysis to investigate phylogeny of methylotrophic bacteria. Int J Syst Bacteriol 42: 645–648

    PubMed  Google Scholar 

  • Brusseau GA, Tsien H-C, Hanson RS & Wackett LP (1990) Optimization of trichloroethylene oxidation by methanotrophs and the use of a colorimetric assay to detect methane monooxygenase activity. 1: 19–29

  • Burrows KJ, Cornish A, Scott D & Higgins IG (1984) Substrate specificities of the soluble and particulate methane monooxygenases ofMethylosinus trichosporium OB3b. J. Gen. Microbiol. 130: 3327–3333

    Google Scholar 

  • Cardy DLN, Laidler V, Salmond GPC & Murrell JC (1991a) The methane monooxygenase gene cluster ofMethylosinus trichosporium: cloning and sequencing of themmoC gene. Arch Microbiol 156: 477–483

    PubMed  Google Scholar 

  • Cardy DLN, Laidler V, Salmond GPC & Murrell JC (1991b) Molecular analysis of the methane monooxygenase (MMO) gene cluster ofMethylosinus trichosporium OB3b. Molec. Microbiol. 5: 335–342

    Google Scholar 

  • Cardy DLN, Leidler V, Salmond GPC & Murrell JC (1991c) Molecular analysis of the methane monooxygenase (MMO) gene cluster ofMethylosinus trichosporium OB3b. Molec. Microbiol. 5: 335–342

    Google Scholar 

  • Chistoserdov AY, Boyd J, Mathews FS & Lidstrom ME (1992) The genetic organization of themau gene cluster of the facultative autotrophParacoccus denitrificans. Biochem. Biophys Res. Comm. 184: 1181–1189

    PubMed  Google Scholar 

  • Chistoserdov AY, Tsygankov YD & Lidstrom ME (1991) Genetic organization of methylamine utilization genes fromMethylobacterium extorquens AM1. J. Bacteriol. 173: 5901–5908

    PubMed  Google Scholar 

  • Chistoserdova LV & Lidstrom ME (1992) Cloning, mutagenesis and physiological effect of a hydroxypyruvate reductase gene fromMethylobacterium extorquens AM1. J. Bacteriol. 174: 71–77

    PubMed  Google Scholar 

  • Colby J & Dalton H (1978) Resolution of the methane monooxygenase ofMethylococcus capsulatus (Bath) into three components: purification and properties of component C, a flavoprotein. Biochem. J. 171: 461–468

    PubMed  Google Scholar 

  • Colby J, Stirling DI & Dalton H (1977) The soluble methane monooxygenase ofMethylococcus capsulatus (Bath): its ability to oxygenate n-alkanes, n-alkanes, ether, and alicyclic, aromatic and heterocyclic compounds. Biochem. J. 165: 395–402

    PubMed  Google Scholar 

  • Dalton H (1992) Methane oxidation by methanotrophs: physiological and mechanistic implications. In: Murrell JC & Dalton H (Eds) Methane and Methanol Utilizers (pp 85–114). Plenum Press, New York

    Google Scholar 

  • Koning M de & Harder W (1992) Methanol-utilizing yeasts. In: Murrell JC & Dalton H (Eds) Methane and Methanol Utilizers 5 (pp 207–244). Plenum Press, New York

    Google Scholar 

  • Vries G de (1986) Molecular biology of bacterial methanol oxidation. FEMS Microbiol. Rev. 39: 235–258

    Google Scholar 

  • Vries GE de, Harms N, Hoogendijk J & Stouthamer AH (1989) Isolation and characterization of Paracoccus denitrificans mutants with increased conjugation frequencies and pleiotropic loss of a (nGATCn) DNA-modifying property. Arch. Microbiol. 152: 52–57

    Google Scholar 

  • Vries GE de, Harms N, Maurer K, Papendrecht A & Stouthamer AH (1988) Physiological regulation ofParacoccus denitrificans methanol dehydrogenase synthesis and activity. J. Bacteriol. 170: 3731–3737

    PubMed  Google Scholar 

  • Vries GE de, Kues U & Stahl U (1990) Physiology and genetics of methylotrophic bacteria. FEMS Microbiol. Rev. 75: 57–102

    Google Scholar 

  • Deretic V, Konyecsni M, Mohr CD, Martin DW & Hibler NS (1989) Common denominators of promoter control inPseudomonas and other bacteria. Biotechnology 7 1249–1254

    Google Scholar 

  • Ditta G, Schmidhauser T, Yakobson E, Lu P, Liang X-W, Finlay DR, Guiney D & Helinski DR (1985) Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression. Plasmid 13: 149–153

    PubMed  Google Scholar 

  • Dower WJ, Miller JF & Ragsdale CW (1988) High efficiency transformation ofE. coli by high voltage electroporation. Nucleic Acids Res 16: 6127–6145

    PubMed  Google Scholar 

  • Duine J, Frank J & Jongejan J (1986) PQQ and quinoprotein enzymes in microbial oxidations. FEMS Microbiol. Rev. 32: 165–178

    Google Scholar 

  • Fiedler S & Wirth R (1988) Transformation of bacteria with plasmid DNA by electroporation. Anal. Biochem. 170: 38–44

    PubMed  Google Scholar 

  • Fogel MM, Taddeo AR & Fogel S (1986) Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture. Appl. Environ. Microbiol. 51: 720–724

    PubMed  Google Scholar 

  • Fox BG, Froland WA, Dege J & Lipscomb JD (1989) Methane Monooxygenase fromMethylosinus trichosporium OB3b. J. Biol. Chem. 264: 10023–10033

    PubMed  Google Scholar 

  • Frank J, Janvier M, Heiber-Langer I, Duine JA, Gasser F & Balny C (1993) Structural aspects of methanol oxidation in Gram-negative bacteria. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 compounds (pp 209–220). Intercept, Ltd., Andover, U.K.

    Google Scholar 

  • Fulton GL, Nunn DN & Lidstrom ME (1984) Molecular cloning of a malyl coenzyme A lyase gene fromPseudomonas sp. strain Am1, a facultative methylotroph. J. Bacteriol. 160: 718–723

    PubMed  Google Scholar 

  • Galli R & Leisinger T (1988) Plasmid analysis and cloning of the dichloromethane-utilization genes ofMethylobacterium sp. DM4. J. Gen. Microbiol. 134: 943–974

    PubMed  Google Scholar 

  • Gertenberg C, Frierich B & Schlegel HG (1982) Physical evidence for plasmids in autotrophic, especially hydrogen oxidizing bacteria. Arch. Microbiol. 133: 90–96

    Google Scholar 

  • Gicquel-Sanzey B & Cossart P (1982) Homologies between different procaryotic DNA binding regulatory proteins and between their sites of action. EMBO J. 1: 591–595

    PubMed  Google Scholar 

  • Goosen N, Horsman H, Huinen R, Groot A de & Putte P van de (1989)Acinetobacter calcoaceticus genes involved in biosynthesis of the coenzyme pyrroloquinoline-quinone: nucleotide sequence and expression inEscherichia coli K-12. J. Bacteriol. 171: 447–455

    PubMed  Google Scholar 

  • Green J & Dalton H (1989) Substrate specificity of soluble methane monooxygenase: mechanistic implications. J. Biol. Chem. 264: 17698–17703

    PubMed  Google Scholar 

  • Green PN (1992) Taxonomy of methylotrophic bacteria. In: Murreil JC & Dalton H (Eds) Methane and Methanol Utilizers 5 (pp 23–84), Plenum Press, New York

    Google Scholar 

  • —— (1993) Overview of the current state of methylotroph taxonomy. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds (pp 253–265). Intercept Ltd., Andover, U.K.

    Google Scholar 

  • Hanson RS, Bratina BJ & Brusseau GA (1993) Phylogeny and ecology of methylotrophic bacteria. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds (pp 285–302). Intercept ltd., Andover, U.K.

    Google Scholar 

  • Harms N (1993) Genetics of methanol oxidation inParacoccus denitrificans. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds (pp 285–302). Intercept ltd., Andover, U.K.

    Google Scholar 

  • Harms N, Vries GE de, Maurer K, Hoogendijk J & Stouthamer AH (1987) Isolation and nucleotide sequence of the methanol dehydrogenase structural gene fromParacoccus denitrificans. J. Bacteriol. 169: 3969–3975

    PubMed  Google Scholar 

  • Harms N, Reijnders WNM, Anazawa H, Palen CJNM van der, Spanning RJM van, Oltman LF & Stouthamer AH (1993) Identification of a two-component regulatory system controlling methanol dehydrogenase synthesis inParacoccus denitrificans. Molec. Microbiol. 8: 45–470

    Google Scholar 

  • Higgins IJ, Best DJ, Hammond RC & Scott D (1981) Methaneoxidizing microorganisms. Microbiol. Rev. 45: 556–590

    PubMed  Google Scholar 

  • Holloway B (1984) Genetics of methylotrophs. In: Hou CT (Ed) Metholotrophs: Microbiology, Biochemistry and Genetics (pp 87–106). CRC Press, Boca Raton

    Google Scholar 

  • Hom SSM, Uratsu SL & Hoang F (1984) Transposon Tn5-induced mutagenesis ofRhizobium japonicum yielding a wide variety of mutants. J. Bacteriol. 159: 335–340

    PubMed  Google Scholar 

  • Joseph-Liauzun E, Fellay R & Chandler M (1989) Transosable elements for efficient manipulation of a wide range of Gram-negative bacteria: promoter probes and vectors for foreign genes. Gene 83–89

  • Kletsova LV, Chibisova ES & Tsygankov YD (1988) Mutants of the obligate methylotrophMethylobacillus flagellatum KT. Arch. Microbiol. 149: 441–446

    Google Scholar 

  • Koh S-C, Bowman JP & Sayler GS (1993) Soluble methane monooxygenase production and rapid trichloroethylene degradation by a type I methanotroph,Methylomonas methanica 68-1. Appl. Environ. Microbiol. 59: 960–969

    Google Scholar 

  • Large PJ & Bamforth CW (1988) Methylotrophy and Biotechnology. John Wiley & Sons, New York

    Google Scholar 

  • Lehmicke L & Lidstrom ME (1985) Genetics of autotrophy and hydrogen oxidation inXanthobacter H4–14, a methanol autotroph. J. Bacteriol. 162: 1244–1249

    PubMed  Google Scholar 

  • Lidstrom ME (1992) The genetics and molecular biology of methanol-utilizing bacteria. In: Murrell JC & Dalton H (Eds) Methane and Methanol Utilizers (pp 183–206). Plenum Press, New York

    Google Scholar 

  • Lidstrom ME & Chistoserdov AY (1993) Molecular biology and genetics of methylamine dehydrogenases. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds (pp 381–400). Intercept, Ltd., Andover, U.K.

    Google Scholar 

  • Lidstrom ME & Stirling DI (1990) Methylotrophs: Genetics and commercial applications. Annu Rev. Microbiol. 44: 27–58

    PubMed  Google Scholar 

  • Lidstrom ME & Wopat AE (1984) Plasmids in methanotrophic bacteria: isolation, characterization and DNA hybridization analysis. Arch. Microbiol. 140: 27–33

    PubMed  Google Scholar 

  • Little CD, Palumbo AV, Herbes SE & Lidstrom ME (1988) Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl. Environ. Microbiol. 54: 951–956

    Google Scholar 

  • Machlin SM & Hanson RS (1988) Nucleotide sequence and transcriptional start site of theMethylobacterium organophilum XX methanol dehydrogenasestructural gene. J. Bacteriol. 170: 4739–4747

    PubMed  Google Scholar 

  • McPheat WL, Mann NH & Dalton H (1987) Isolation of mutants of the obligate methanotrophMethylomonas albus defective in growth on methane. Arch. Microbiol. 148: 40–43

    Google Scholar 

  • Metzler T, Marquardt R, Prave P & Winnaker E-L (1988) Characterization of a promoter fromMethylomonas clara. Mol. Gen. Genet. 211: 210–214

    Google Scholar 

  • Meulenberg JJM, Sellink E, Riegman NH & Postma PW (1992) Nucleotide sequence and structure of theKlebsiella pneumoniae pqq operon. Mol. Gen. Genet. 232: 284–294

    PubMed  Google Scholar 

  • Montiero MJ, Tupas MA, Moffett BF & Bainbridge BW (1982) Isolation and characterization of a high molecular weight plasmid from the obligate methanol-utilizing bacteriumMethylomonas (Methanomonas) methylovora. FEMS Microbiol. Lett. 15: 235–237

    Google Scholar 

  • Morris CJ & Lidstrom ME (1992) Cloning of a methanol-induciblemoxF promoter and its analysis inmoxB mutants ofMethylobacterium extorquens AM 1 rif. J. Bacteriol. 174: 4444–4449

    PubMed  Google Scholar 

  • Mullens IA & Dalton H (1987) Cloning of the gammasubunit methane monooxygenase fromMethylococcus capsulatus. Bio/Technology 5: 490–493

    Google Scholar 

  • Murrell JC (1992) Genetics and molecular biology of methanotrophs. FEMS Microbiol. Rev. 88: 233–248

    Google Scholar 

  • Murrell JC (1993) Molecularbiology of methane oxidation. In: Murrell JC & Kelly DP (Eds) Microbial Growth on C1 Compounds (pp 110–120). Intercept ltd., Andover, U.K.

    Google Scholar 

  • Nicolaidis AA & Sargent AW (1987) Isolation of methane monooxygenase-deficient mutants fromMethylosinus trichosporium OB3b using dichloromethane. FEMS Microbiol. Lett. 41: 47–52

    Google Scholar 

  • Nunn DN, Day D & Anthony C (1989) The second subunit of methanol dehydrogenase ofMethylobacterium extorquens AM1. Biochem. J. 260: 857–862

    PubMed  Google Scholar 

  • Nunn DN & Lidstrom ME (1986a) Isolation and complementation analysis of 10 methanol oxidation mutant classes and identification of the methanol dehydrogenase structural gene ofMethylobacterium sp. strain AM1. J. Bacteriol. 166: 581–590

    PubMed  Google Scholar 

  • —— (1986b) Phenotypic characterization of 10 methanol oxidation mutant classes inMethylobacterium sp. strain AM1. J. Bacteriol. 166: 591–597

    PubMed  Google Scholar 

  • O'Connor M (1981) Regulation and genetics in facultative methylotrophic bacteria. In: Dalton H (Ed) Microbial Growth on C1 Compounds (pp 294–300). Heyden, London

    Google Scholar 

  • O'Connor ML, Wopat A & Hanson RS (1977) Genetic transformation inMethylobacterium organophilum. J. Gen. Microbiol. 98: 265–272

    PubMed  Google Scholar 

  • Oldenhuis R, Vink RLJM, Janssen DB & Witholt B (1989) Degradation of chlorinated aliphatic hydrocarbons byMethylosinus trichosporium OB3b expressing soluble methane monooxygenase. Appl. Environ. Microbiol. 55: 2819–2826

    PubMed  Google Scholar 

  • Patel RN (1987) Methane monoxygenase: purification and properties of flavoprotein component. Arch. Biochem. Biophys. 252: 229–236

    PubMed  Google Scholar 

  • Patel RN & Savas JC (1987) Purification and properties of the hydroxylase component on methane monooxygenase. J. Bacteriol. 169: 2313–2317

    PubMed  Google Scholar 

  • Phelps PA, Agarwal SK, Speitel GEJ & Georgiou G (1992)Methylosinus trichosporium OB3b mutants having constitutive expression of soluble methane monooxygenase in the presence of high levels of copper. Appl. Environ. Microbiol. 58: 3701–3708Pilkington SJ & Dalton H (1991) Purification and characterization of the soluble methane monooxygenase from 〈FO12〉Methylosinus sporium 5 demonstrates the highly conserved nature of this enzyme in methanotrophs. FEMS Microbiol. Lett. 78: 103–108

    Google Scholar 

  • Pilkington SJ, Salmond GPC, Murrell JC & Dalton H (1990) Identification of the gene encoding the regulatory protein B of soluble methane monooxygenase. FEMS Microbiol. Lett. 72:

  • Richardson IW & Anthony C (1992) Characterization of mutant forms of the quinoprotein methanol dehydrogenase lacking an essential calcium ion. Biochem. J. 287: 709–715

    PubMed  Google Scholar 

  • Schendel FJ, Bremmon CE, Flickinger MC, Guettler M & Hanson RS (1990) L-Lysine Production at 50° C by mutants of a newly isolated and characterized methylotophicBacillus sp. Appl. Environ. Microbiol. 56: 963–970

    PubMed  Google Scholar 

  • Simon R, Priefer U & Pühler A (1983) A broad host range mobilization system forin vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Bio/Technology 1: 784–790

    Article  Google Scholar 

  • Singh M & Klingmüller W (1986) Transposon mutagenesis inAzospirillum brasilense: isolation of auxotrophic and Nif mutants and molecular cloning of the mutagenizednif DNA. Mol. Gen. Genet. 202: 136–142

    Google Scholar 

  • Stainthorpe AC, Lees V, Salmond GPC, Dalton H & Murrell JC (1990) The methane monooxygenase gene cluster ofMethylococcus capsulatus (Bath). Gene 91: 21–34

    Google Scholar 

  • Stainthorpe AC, Murrell JC, Salmond GPC, Dalton H & Lees V (1989) Molecular analysis of methane monooxygenase fromMethylococcus capsulatus (Bath). Arch. Microbiol. 152: 154–159

    PubMed  Google Scholar 

  • Stanley SH, Prior SD, Leak DJ & Dalton H (1983) Copper stress underlies the fundamental change in intracellular location of methane monoxygenase in methane-oxidizing organisms: studies in batch and continuous cultures. Biotechnol Lett. 5: 487–492

    Google Scholar 

  • Stephens RL, Haygood MG & Lidstrom ME (1988) Identification of putative methanol dehydrogenase (moxF) structural genes in methylotrophs and cloning ofmoxF genes fromMethylococcus capsulatus (Bath) andMethylomonas albus BG8. J. Bacteriol. 170: 2063–2069

    PubMed  Google Scholar 

  • Stock JB, Ninfa AJ & Stock AM (1989) Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev. 53: 450–490

    PubMed  Google Scholar 

  • Tabor S & Richardson CC (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc. Natl. Acad. Sci. USA 82: 1074–1078

    PubMed  Google Scholar 

  • Toukdarian AE & Lidstrom ME (1984) Molecular construction of nif mutants of the obligate methanotroph, Methylosinus sp. strain 6. J. Bacteriol. 157: 979–983

    PubMed  Google Scholar 

  • Tsien H-C, Brusseau GA, Hanson RS & Wackett LP (1989) Biodegradation of trichloroethylene byMethylosinus trichosporium OB3b. Appl. Environ. Microbiol. 55: 3155–3161

    PubMed  Google Scholar 

  • Tsuji K, Tsien RS, Hanson RS, DePalma SR, Scholtz R & LaRoche S (1990) 16S ribosomal RNA sequence analysis for determination of phylogenetic relationships among methylotrophs. J. Gen. Microbiol. 136: 1–10

    PubMed  Google Scholar 

  • Tsygankov YD & Kazakova SM (1987) Development of gene transfer systems in Methylobacillus flagellatum KT: isolation of auxotrophic mutants. Arch. Microbiol. 149: 112–119

    Google Scholar 

  • Ueda S, Kitamota N, Tamura Y, Sakakibara Y & Shimizu S (1987) Isolation and characterization of a plasmid in a methylotrophic bacterium. J. Ferment Technol. 65: 589–591

    Google Scholar 

  • Ueda S, Matsumoto S, Shimizu S & Yamane T (1991a) Transformation of a methylotrophic bacterium,Methylobacterium extorquens, with a broad-host-range plasmid by electroporation. Appl. Environ. Microbiol. 57: 924–926

    Google Scholar 

  • —— (1991b) Transformation of a methylotropic bacterium,Methylobacterium extorquens, with a broad-host-range plasmid by electroporation. Annals NY Acad Sci 646: 99–105

    Google Scholar 

  • Spanning RJM van, Wansell CW, Boer T de, Hazelaar MJ, Anazawa H, Harms N, Oltmann LF & Stouthamer AH (1991) Isolation and characterization of themoxJ, moxG, moxI, andmoxR genes ofParacoccus denitrificans: Inactivation of themoxJ, moxG, andmoxR genes and the resultant effect on methylotrophic growth. J. Bacteriol. 173: 6948–6961

    PubMed  Google Scholar 

  • Waechter-Brulla D, DiSpirito AA, Chistoserdova LV & Lidstrom ME (1993) Methanoloxidation genes in the marine methanotrophMethylomonas sp. strain A4. J. Bacteriol. 175: 3767–3775

    PubMed  Google Scholar 

  • Warner P, Higgins I & Drozd J (1977) Examination of obligate and facultative methylotrophs for plasmid DNA. FEMS Microbiol. Lett. 1: 339–342

    Google Scholar 

  • West CA, Salmond GPC, Dalton H & Murrell JC (1992) Functional expression inEscherichia coli of proteins B and C from soluble methane monooxygenase ofMethylococcus capsulatus (Bath). J. Gen. Microbiol. 138: 1301–1307

    PubMed  Google Scholar 

  • Whitta S, Sinclair M & Holloway B (1985) Transposon mutagenesis in Methylobacterium AM1 (Pseudomonas AM1). J. Gen. Microbiol. 131: 1547–1551

    Google Scholar 

  • Whittenburg R & Dalton H (1981) The methylotrophic bacteria. In: Starr MP, Stolp H, Truper HG, Balows A & Schlegel HG (Eds) The Procaryotes, a Handbook of Habitats, Isolation, and Identification of Bacteria (pp 894–902). Springer-Verlag, Berlin

    Google Scholar 

  • Williams E & Bainbridge BW (1971) Genetic transformation inMethylococcus capsulatus. J. Appl. Bacteriol. 34: 685–689

    Google Scholar 

  • Williams E & Shimmin MA (1978) Radiation-induced filamentation in obligate methylotrophs. FEMS Microbiol. Lett. 4: 137–141

    Google Scholar 

  • Xu HH (1993) Regulation of methanol dehydrogenase gene expression inMethylobacterium organophilum strain XX. Ph.D. dissertation, University of Minnesota

  • Xu HH, Viebahn M & Hanson RS (1993) Identification of methanol-regulated promoter sequences from the facultative methylotrophic bacteriumMethylobacterium organophilum XX. J. Gen. Microbiol. 139: 743–752

    PubMed  Google Scholar 

  • Zatman L (1981) A search for patterns in methylotrophic pathways. In: Dalton H (Ed) Microbial Growth on C1 Compounds (pp 42–54) Heyden, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barta, T.M., Hanson, R.S. Genetics of methane and methanol oxidation in Gram-negative methylotrophic bacteria. Antonie van Leeuwenhoek 64, 109–120 (1993). https://doi.org/10.1007/BF00873021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00873021

Key words

Navigation