Skip to main content

Human Cytochrome P450 Enzymes

  • Chapter
Cytochrome P450

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Distlerath, L.M. and F.P. Guengerich (1987). Enzymology of human liver cytochromes P-450. In F.P. Guengerich (ed.) Mammalian Cytochromes P-450, Vol. 1. CRC Press, Boca Raton, FL, pp. 133–198.

    Google Scholar 

  2. Beaune, P., P. Dansette, J.P. Flinois, S. Columelli, D. Mansuy, and J.P. Leroux (1979). Partial purification of human liver cytochrome P-450. Biochem. Biophys. Res. Commun. 88, 826–832.

    Article  PubMed  CAS  Google Scholar 

  3. Wang, P., P.S. Mason, and F.P. Guengerich (1980). Purification of human liver cytochrome P-450 and comparison to the enzyme isolated from rat liver. Arch. Biochem. Biophys. 199, 206–219.

    Article  PubMed  CAS  Google Scholar 

  4. Wang, P.P., P. Beaune, L.S. Kaminsky, G.A. Dannan, F.F. Kadlubar, D. Larrey et al. (1983). Purification and characterization of six cytochrome P-450 isozymes from human liver microsomes. Biochemistry 22, 5375–5383.

    Article  PubMed  CAS  Google Scholar 

  5. Mahgoub, A., J.R. Idle, L.G. Dring, R. Lancaster, and R.L. Smith (1977). Polymorphic hydroxylation of debrisoquine in man. Lancet ii, 584–586.

    Article  Google Scholar 

  6. Shimada, T., C.-H. Yun, H. Yamazaki, J.-C. Gautier, P.H. Beaune, and F.P. Guengerich (1992). Characterization of human lung microsomal cytochrome P-450 1A1 and its role in the oxidation of chemical carcinogens. Mol. Pharmacol. 41, 856–864.

    PubMed  CAS  Google Scholar 

  7. Distlerath, L.M., P.E.B. Reilly, M.V. Martin, G.G. Davis, G.R. Wilkinson, and F.P. Guengerich (1985). Purification and characterization of the human liver cytochromes P-450 involved in debrisoquine 4-hydroxylation and phenacetin O-deethylation, two prototypes for genetic polymorphism in oxidative drug metabolism. J. Biol. Chem. 260, 9057–9067.

    PubMed  CAS  Google Scholar 

  8. Yun, C.-H., T. Shimada, and F.P. Guengerich (1991). Purification and characterization of human liver microsomal cytochrome P-450 2A6. Mol. Pharmacol. 40, 679–685.

    PubMed  CAS  Google Scholar 

  9. Shimada, T., K.S. Misono, and F.P. Guengerich (1986). Human liver microsomal cytochrome P-450 mephenytoin 4-hydroxylase, a prototype of genetic polymorphism in oxidative drug metabolism. Purification and characterization of two similar forms involved in the reaction. J. Biol. Chem. 261, 909–921.

    PubMed  CAS  Google Scholar 

  10. Gut, J., T. Catin, P. Dayer, T. Kronbach, U. Zanger, and U.A. Meyer (1986). Debrisoquine/sparteinetype polymorphism of drug oxidation: Purification and characterization of two functionally different human liver cytochrome P-450 isozymes involved in impaired hydroxylation of the prototype substrate bufuralol. J. Biol. Chem. 261, 11734–11743.

    PubMed  CAS  Google Scholar 

  11. Birgersson, C., E.T. Morgan, H. Jörnvall, and C. von Bahr (1986). Purification of a desmethylimipramine and debrisoquine hydroxylating cytochrome P-450 from human liver. Biochem. Pharmacol. 35, 3165–3166.

    Article  PubMed  CAS  Google Scholar 

  12. Guengerich, F.P., M.V. Martin, P.H. Beaune, P. Kremers, T. Wolff, and D.J. Waxman (1986). Characterization of rat and human liver microsomal cytochrome P-450 forms involved in nifedipine oxidation, a prototype for genetic polymorphism in oxidative drug metabolism. J. Biol. Chem. 261, 5051–5060.

    PubMed  CAS  Google Scholar 

  13. Watkins, P.B., S.A. Wrighton, P. Maurel, E.G. Schuetz, G. Mendez-Picon, G.A. Parker et al. (1985). Identification of an inducible form of cytochrome P-450 in human liver. Proc. Natl. Acad. Sci. USA 82, 6310–6314.

    Article  PubMed  CAS  Google Scholar 

  14. Wrighton, S.A., C. Campanile, P.E. Thomas, S.L. Maines, P.B. Watkins, G. Parker et al. (1986). Identification of a human liver cytochrome P-450 homologous to the major isosafrole-inducible cytochrome P-450 in the rat. Mol. Pharmacol. 29, 405–410.

    PubMed  CAS  Google Scholar 

  15. Wrighton, S.A., P.E. Thomas, P. Willis, S.L. Maines, P.B. Watkins, W. Levin et al. (1987). Purification of a human liver cytochrome P-450 immunochemically related to several cytochromes P-450 purified from untreated rats. J. Clin. Invest. 80, 1017–1022.

    PubMed  CAS  Google Scholar 

  16. Gonzalez, F.J. (1989). The molecular biology of cytochrome P450s. Pharmacol. Rev. 40, 243–288.

    Google Scholar 

  17. Larson, J.R., M.J. Coon, and T.D. Porter (1991). Alcohol-inducible cytochrome P-450IIE1 lacking the hydrophobic NH2-terminal segment retains catalytic activity and is membrane-bound when expressed in Escherichia coli. J. Biol. Chem. 266, 7321–7324.

    PubMed  CAS  Google Scholar 

  18. Li, Y.C. and J.Y.L. Chiang (1991). The expression of a catalytically active cholesterol 7α-hydroxylase cytochrome P-450 in Escherichia coli. J. Biol. Chem. 266, 19186–19191.

    PubMed  CAS  Google Scholar 

  19. Barnes, H.J., M.P. Arlotto, and M.R. Waterman (1991). Expression and enzymatic activity of recombinant cytochrome P450 17α-hydroxylase in Escherichia coli. Proc. Natl. Acad. Sci. USA 88, 5597–5601.

    Article  PubMed  CAS  Google Scholar 

  20. Guengerich, F.P., E.M.J. Gillam, and T. Shimada (1996). New applications of bacterial systems to problems in toxicology. Crit. Rev. Toxicol. 26, 551–583.

    PubMed  CAS  Google Scholar 

  21. Nebert, D.W., M. Adesnik, M.J. Coon, R.W. Estabrook, F.J. Gonzalez, F.P. Guengerich et al. (1987). The P450 gene superfamily: Recommended nomenclature. DNA 6, 1–11.

    PubMed  CAS  Google Scholar 

  22. Nelson, D.R., T. Kamataki, D.J. Waxman, F.P. Guengerich, R.W. Estabrook, R. Feyereisen et al. (1993). The P450 superfamily: Update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 12, 1–51.

    PubMed  CAS  Google Scholar 

  23. Guengerich, F.P. (1995). Human cytochrome P450 enzymes. In P.R. Ortiz de Montellano (ed.), Cytochrome P450. Plenum Press, New York, pp. 473–535.

    Google Scholar 

  24. Niranjan, B.G., N.M. Wilson, C.R. Jefcoate, and N.G. Avadhani (1984). Hepatic mitochondrial cytochrome P-450 system: Distinctive features of cytochrome P-450 involved in the activation of aflatoxin B1 and benzo(a)pyrene. J. Biol. Chem. 259, 12495–12501.

    PubMed  CAS  Google Scholar 

  25. Addya, S., H.K. Anandatheerthavarada, G. Biswas, S.V. Bhagwat, J. Mullick, and N.G. Avadhani (1997). Targeting of NH2-terminal-processed microsomal protein to mitochondria: A novel pathway for the biogensis of hepatic mitochondrial P450MT2. J. Cell Biol. 139, 589–599.

    Article  PubMed  CAS  Google Scholar 

  26. Robin, M.A., H.K. Anandatheerthavarada, G. Biswas, N.B. Sepuri, D.M. Gordon, D. Pain et al. (2002). Bimodal targeting of microsomal CYP2E1 to mitochondria through activation of an N-terminal chimeric signal by cAMP-mediated phosphorylation. J. Biol. Chem. 277, 40583–40593.

    Article  PubMed  CAS  Google Scholar 

  27. Tateishi, T., Y. Krivoruk, Y.-F. Ueng, A.J.J. Wood, F.P. Guengerich, and M. Wood (1996). Identification of human liver cytochrome P450 3A4 as the enzyme responsible for fentanyl and sulfentanyl N-dealkylation. Anesth. Analg. 82, 167–172.

    Article  PubMed  CAS  Google Scholar 

  28. Shimada, T., H. Yamazaki, 4. Mimura, Y. Inui, and F.P. Guengerich (1994). Interindividual variations in human liver cytochrome P450 enzymes involved in the oxidation of drugs, carcinogens, and toxic chemicals: Studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther. 270, 414–423.

    PubMed  CAS  Google Scholar 

  29. Nebert, D.W. and D.W. Russell (2002). Clinical importance of the cytochromes P450. Lancet 360, 1155–1162.

    Article  PubMed  CAS  Google Scholar 

  30. Brodie, A.M.H. (1985). Aromatase inhibition and its pharmacologic implications. Biochem. Pharmacol. 34, 3213–3219.

    Article  PubMed  CAS  Google Scholar 

  31. Gonzalez, F.J. and S. Kimura (2003). Study of P450 function using gene knockout and transgenic mice. Arch. Biochem. Biophys. 409, 153–158.

    Article  PubMed  CAS  Google Scholar 

  32. Rendic, S. (2002). Summary of information on human CYP enzymes: Human P450 metabolism data. Drug Metab. Rev. 34, 83–448.

    Article  PubMed  CAS  Google Scholar 

  33. Evans, W.E. and M.V. Relling (1999). Pharmacogenomics: Translating function genomics into rational therapeutics. Science 286, 487–491.

    Article  PubMed  CAS  Google Scholar 

  34. Guengerich, F.P. and T. Shimada (1991). Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem. Res. Toxicol. 4, 391–407.

    Article  PubMed  CAS  Google Scholar 

  35. Breimer, D.D. and J.H. Schellens (1990). A “cocktail” strategy to assess in vivo oxidative drug metabolism in humans. Trends Pharmacol. Sci. 11, 223–225.

    Article  PubMed  CAS  Google Scholar 

  36. Breimer, D.D. (1994). Genetic polymorphisms in drug metabolism; clinical implications and consequences in ADME studies. In S. Walker, C. Lumley, and N. McAuslane (eds), The Relevance of Ethnic Factors in the Clinical Evaluation of Medicines. Kluwer Academic Publishers, Dordrecht/Boston/London, pp. 13–26.

    Google Scholar 

  37. Guengerich, F.P. and D.C. Liebler (1985). Enzymatic activation of chemicals to toxic metabolites. Crit. Rev. Toxicol. 14, 259–307.

    PubMed  CAS  Google Scholar 

  38. Motulsky, A.G. (1957). Drug reactions, enzymes and biochemical genetics. J. Am. Med. Assoc. 165, 835–837.

    PubMed  CAS  Google Scholar 

  39. Kalow, W. (1962). Pharmacogenetics. W.B. Saunders, Philadelphia, PA.

    Google Scholar 

  40. Remmer, H. (1957). The acceleration of evipan oxidation and the demethylation of methylaminopyrine by barbiturates. Naunyn-Schmiedeberg’s Arch. Exp. Pathol. Pharmakol. 237, 296–307.

    Google Scholar 

  41. Keeney, D.S. and M.R. Waterman (1993). Regulation of steroid hydroxylase gene expression: Importance to physiology and disease. Pharmacol. Ther. 58, 301–317.

    Article  PubMed  CAS  Google Scholar 

  42. Conney, A.H., E.C. Miller, and J.A. Miller (1956). The metabolism of methylated aminoazo dyes. V. Evidence for induction of enzyme synthesis in the rat by 3-methylcholanthrene. Cancer Res. 16, 450–459.

    PubMed  CAS  Google Scholar 

  43. Eichelbaum, M., N. Spannbrucker, B. Steincke, and H.J. Dengler (1979). Defective N-oxidation of sparteine in man: A new pharmacogenetic defect. Eur. J. Clin. Pharmacol. 16, 183–187.

    Article  PubMed  CAS  Google Scholar 

  44. Woolhouse, N.M., B. Andoh, A. Mahgoub, T.P. Sloan, J.R. Idle, and R.L. Smith (1979). Debrisoquin hydroxylation polymorphism among Ghanaians and Caucasians. Clin. Pharmacol. Ther. 26, 584–591.

    PubMed  CAS  Google Scholar 

  45. Johansson, I., E. Lundqvist, L. Bertilsson, M.L. Dahl, F. Sjoqvist, and M. Ingelman Sundberg (1993). Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc. Natl. Acad. Sci. USA 90, 11825–11829.

    Article  PubMed  CAS  Google Scholar 

  46. Smith, R.L., J.R. Idle, A.A. Mahgoub, T.P. Sloan, and R. Lancaster (1978). Genetically determined defects of oxidation at carbon centres of drugs. Lancet i, 943–944.

    Article  Google Scholar 

  47. Gonzalez, F.J., R.C. Skoda, S. Kimura, M. Umeno, U.M. Zanger, D.W. Nebert et al. (1988). Characterization of the common genetic defect in humans deficient in debrisoquine metabolism. Nature 331, 442–446.

    Article  PubMed  CAS  Google Scholar 

  48. Nakamura, K., F. Goto, W.A. Ray, C.B. McAllister, E. Jacqz, G.R. Wilkinson et al. (1985). Interethnic differences in genetic polymorphism of debrisoquin and mephenytoin hydroxylation between Japanese and Caucasian populations. Clin. Pharmacol. Ther. 38, 402–408.

    PubMed  CAS  Google Scholar 

  49. Daly, A.K. (2003). Pharmacogenetics of the major polymorphic metabolizing enzymes. Fundam. Clin. Pharmacol. 17, 27–41.

    Article  PubMed  CAS  Google Scholar 

  50. Nagata, K. and Y. Yamazoe (2002). Genetic polymorphism of human cytochrome P450 involved in drug metabolism. Drug Metab. Pharmacokinet. 17, 167–189.

    Article  PubMed  CAS  Google Scholar 

  51. Daly, A.K., J. Brockmöller, F. Broly, M. Eichelbaum, W.E. Evans, F.J. Gonzalez et al. (1996). Nomenclature for human CYP2D6 alleles. Pharmacogenetics 6, 193–201.

    Article  PubMed  CAS  Google Scholar 

  52. Gaedigk, A., M. Blum, R. Gaedigk, M. Eichelbaum, and U.A. Meyer (1991). Deletion of the entire cytochrome P450 CYP2D6 gene as a cause of impaired drug metabolism in poor metabolizers of the debrisoquine/sparteine polymorphism. Am. J. Hum. Genet. 48, 943–950.

    PubMed  CAS  Google Scholar 

  53. Corchero, J., C.P. Granvil, T.E. Akiyama, G.P. Hayhurst, S. Pimprale, L. Feigenbaum et al. (2001). The CYP2D6 humanized mouse: Effect of the human CYP2D6 transgene and HNF4α on the disposition of debrisoquine in the mouse. Mol. Pharmacol. 60, 1260–1267.

    PubMed  CAS  Google Scholar 

  54. Schuetz, E.G., D.R. Umbenhauer, K. Yasuda, C. Brimer, L. Nguyen, M.V. Relling et al. (2000). Altered expression of hepatic cytochromes P-450 in mice deficient in one or more mdr 1 genes. Mol. Pharmacol. 57, 188–197.

    PubMed  CAS  Google Scholar 

  55. Cummins, C.L., C.Y. Wu, and L.Z. Benet (2002). Sex-related differences in the clearance of cytochrome P450 3A4 substrates may be caused by P-glycoprotein. Clin. Pharmacol. Ther. 72, 474–489.

    Article  PubMed  CAS  Google Scholar 

  56. Renton, K.W. and L.C. Knickle (1990). Regulation of hepatic cytochrome P-450 during infectious disease. Can. J. Physiol. Pharmacol. 68, 777–781.

    PubMed  CAS  Google Scholar 

  57. Kato, R. and Y. Yamazoe (1992). Sex-specific cytochrome P450 as a cause of sex-and species-related differences in drug toxicity. Toxicol. Lett. 64/65, 661–667.

    Article  Google Scholar 

  58. Komori, M., K. Nishio, M. Kitada, K. Shiramatsu, K. Muroya, M. Soma et al. (1990). Fetus-specific expression of a form of cytochrome P-450 in human livers. Biochemistry 29, 4430–4433.

    Article  PubMed  CAS  Google Scholar 

  59. Lacroix, D., M. Sonnier, A. Moncion, G. Cheron, and T. Cresteil (1997). Expression of CYP3A in the human liver: Evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur. J. Biochem. 247, 625–634.

    Article  PubMed  CAS  Google Scholar 

  60. Loi, C.M. and R.E. Vestal (1988). Drug metabolism in the elderly. Pharmacol. Ther. 36, 131–149.

    Article  PubMed  CAS  Google Scholar 

  61. Durnas, C., C.M. Loi, and B.J. Cusack (1990). Hepatic drug metabolism and aging. Clin. Pharmacokinet. 19, 359–389.

    PubMed  CAS  Google Scholar 

  62. George, J., K. Byth, and G.C. Farrell (1995). Age but not gender selectively affects expression of individual cytochrome P450 proteins in human liver. Biochem. Pharmacol. 50, 727–730.

    Article  PubMed  CAS  Google Scholar 

  63. Lu, A.Y.H., R.W. Wang, and J.H. Lin (2003). Cytochrome P450 in vitro reaction phenotyping: A re-evaluation of approaches used for P450 isoform identification. Drug Metab. Dispos. 31, 345–350.

    Article  PubMed  CAS  Google Scholar 

  64. Correia, M.A. and P.R. Ortiz de Montellano (2004, in press). Inhibition and degradation of cytochrome P450 enzymes. In P. R. Ortiz de Montellano (ed.), Cytochrome P450: Structure, Mechanism, and Biochemistry. Plenum Press, New York (Chap. 7 of this monograph).

    Google Scholar 

  65. Correia, M.A. (2004, in press). Isoform functional markers, isoform substrate specificities, and fluorescent substrate assays. In P.R. Ortiz de Montellano (ed.), Cytochrome P450: Structure, Mechanism, and Biochemistry. Plenum Press, New York (Appendix of this monograph).

    Google Scholar 

  66. Harris, J.W., A. Rahman, B.-R. Kim, F.P. Guengerich, and J.M. Collins (1994). Metabolism of taxol by human hepatic microsomes and liver slices: Participation of cytochrome P450 3A4 and of an unknown P450 enzyme. Cancer Res. 54, 4026–4035.

    PubMed  CAS  Google Scholar 

  67. Tran, T.H., L.L. von Moltke, K. Venkatakrishnan, B.W. Granda, M.A. Gibbs, R.S. Obach et al. (2002). Microsomal protein concentration modifies the apparent inhibitory potency of CYP3A inhibitors. Drug Metab. Dispos. 30, 1441–1445.

    Article  PubMed  CAS  Google Scholar 

  68. Austin, R.P., P. Barton, S.L. Cockroft, M.C. Wenlock, and R.J. Riley (2002). The influence of nonspecific microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical properties. Drug Metab. Dispos. 30, 1497–1503.

    Article  PubMed  CAS  Google Scholar 

  69. Yoo, J.S.H., R.J. Cheung, C.J. Patten, D. Wade, and C.S. Yang (1987). Nature of N-nitrosodimethylamine demethylase and its inhibitors. Cancer Res. 47, 3378–3383.

    PubMed  CAS  Google Scholar 

  70. Chauret, N., A. Gauthier, and D.A. Nicoll-Griffith (1998). Effect of common organic solvents on in vitro cytochrome P450-mediated metabolic activities in human liver microsomes. Drug Metab. Dispos. 26, 1–4.

    PubMed  CAS  Google Scholar 

  71. Yuan, R., S. Madani, X.X. Wei, K. Reynolds, and S.M. Huang (2002). Evaluation of cytochrome P450 probe substrates commonly used by the pharmaceutical industry to study in vitro drug interactions. Drug Metab. Dispos. 30, 1311–1319.

    Article  PubMed  CAS  Google Scholar 

  72. Guengerich, F.P. (1988). Oxidation of 17α-ethynylestradiol by human liver cytochrome P-450. Mol. Pharmacol. 33, 500–508.

    PubMed  CAS  Google Scholar 

  73. Butler, M.A., M. Iwasaki, F.P. Guengerich, and F.F. Kadlubar (1989). Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc. Natl. Acad. Sci. USA 86, 7696–7700.

    Article  PubMed  CAS  Google Scholar 

  74. Distlerath, L.M. and F.P. Guengerich (1984). Characterization of a human liver cytochrome P-450 involved in the oxidation of debrisoquine and other drugs using antibodies raised to the analogous rat enzyme. Proc. Natl. Acad. Sci. USA 81, 7348–7352.

    Article  PubMed  CAS  Google Scholar 

  75. Soucek, P., M.V. Martin, Y.-F. Ueng, and F.P. Guengerich (1995). Identification of a common epitope near the conserved heme-binding region with polyclonal antibodies raised against cytochrome P450 family 2 proteins. Biochemistry 34, 16013–16021.

    Article  PubMed  CAS  Google Scholar 

  76. Thomas, P.E., D. Koreniowski, D. Ryan, and W. Levin (1979). Preparation of monospecific antibodies against two forms of rat liver cytochrome P-450 and quantitation of these antigens in microsomes. Arch. Biochem. Biophys. 192, 524–532.

    Article  PubMed  CAS  Google Scholar 

  77. Venkatakrishnan, K., L.L. von Moltke, M.H. Court, J.S. Harmatz, C.L. Crespi, and D.J. Greenblatt (2000). Comparison between cytochrome P450 (CYP) content and relative activity approaches to scaling from cDNA-expressed CYPs to human liver microsomes: Ratios of accessory proteins as sources of discrepancies between the approaches. Drug Metab. Dispos. 28, 1493–1504.

    PubMed  CAS  Google Scholar 

  78. Venkatakrishnan, K., L.L. von Moltke, and D.J. Greenblatt (2001). Application of the relative activity factor approach in scaling from heterologously expressed cytochromes P450 to human liver microsomes: Studies on amitriptyline as a model substrate. J. Pharmacol. Exp. Ther. 297, 326–337.

    PubMed  CAS  Google Scholar 

  79. Venkatakrishnan, K., L.L. von Moltke, and D.J. Greenblatt (2001). Human drug metabolism and the cytochromes P450: Application and relevance of in vitro models. J. Clin. Pharmacol. 41, 1149–1179.

    Article  PubMed  CAS  Google Scholar 

  80. Soars, M.G., H.V. Gelboin, K.W. Krausz, and R.J. Riley (2003). A comparison of relative abundance, activity factor and inhibitory monoclonal antibody approaches in the characterization of human CYP enzymology. Br. J. Clin. Pharmacol. 55, 175–181.

    Article  PubMed  CAS  Google Scholar 

  81. Schwab, M., M. Eichelbaum, and M.F. Fromm (2003). Genetic polymorphisms of the human mdr1 drug transporter. Annu. Rev. Pharmacol. Toxicol. 43, 285–307.

    Article  PubMed  CAS  Google Scholar 

  82. Butler, M.A., N.P. Lang, J.F. Young, N.E. Caporaso, P. Vineis, R.B. Hayes et al. (1992). Determination of CYP1A2 and NAT2 phenotypes in human populations by analysis of caffeine urinary metabolites. Pharmacogenetics 2, 116–127.

    Article  PubMed  CAS  Google Scholar 

  83. Ahsan, C.H., A.G. Renwick, B. Macklin, V.F. Challenor, D.G. Waller, and C.F. George (1991). Ethnic differences in the pharmacokinetics of oral nifedipine. Br. J. Clin. Pharmacol. 31, 399–403.

    PubMed  CAS  Google Scholar 

  84. Kim, R.B., H. Yamazaki, M. Mimura, T. Shimada, F.P. Guengerich, K. Chiba et al. (1996). Chlorzoxazone 6-hydroxylation in Japanese and Caucasians. In vitro and in vivo differences. J. Pharmacol. Exp. Ther. 279, 4–11.

    PubMed  CAS  Google Scholar 

  85. Conney, A.H. (1982). Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: G. H. A. Clowes Memorial Lecture. Cancer Res. 42, 4875–4917.

    PubMed  CAS  Google Scholar 

  86. Sutter, T.R., K. Guzman, K.M. Dold, and W.F. Greenlee (1991). Targets for dioxin: Genes for plasminogen activator inhibitor-2 and interleukin-1β. Science 254, 415–418.

    Article  PubMed  CAS  Google Scholar 

  87. Rivera, S.P., S.T. Saarikoski, and O. Hankinson (2002). Identification of a novel dioxin-inducible cytochrome P450. Mol. Pharmacol. 61, 255–259.

    Article  PubMed  CAS  Google Scholar 

  88. Shah, R.R., N.S. Oates, J.R. Idle, R.L. Smith, and J.D.F. Lockhart (1982). Impaired oxidation of debrisoquine in patients with perhexiline neuropathy. Br. Med. J. 284, 295–299.

    CAS  Google Scholar 

  89. Steward, D.J., R.L. Haining, K.R. Henne, G. Davis, T.H. Rushmore, W.F. Trager et al. (1997). Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 7, 361–367.

    Article  PubMed  CAS  Google Scholar 

  90. Aithal, G.P., C.P. Day, P.J. Kesteven, and A.K. Daly (1999). Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 353, 717–719.

    Article  PubMed  CAS  Google Scholar 

  91. Daly, A.K., C.P. Day, and G.P. Aithal (2002). CYP2C9 polymorphism and warfarin dose requirements. Brit. J. Clin. Pharmacol. 53, 408–409.

    Article  Google Scholar 

  92. Chiba, K., K. Kobayashi, K. Manabe, M. Tani, T. Kamataki, and T. Ishizaki (1993). Oxidative metabolism of omeprazole in human liver microsomes: cosegregation with S-mephenytoin 4′-hydroxylation J. Pharmacol. Exp. Ther. 266, 52–59.

    PubMed  CAS  Google Scholar 

  93. Karam, W.G., J.A. Goldstein, J.M. Lasker, and B.I. Ghanayem (1996). Human CYP2C19 is a major omeprazole 5-hydroxylase, as demonstrated with recombinant cytochrome P450 enzymes. Drug Metab. Dispos. 24, 1081–1087.

    PubMed  CAS  Google Scholar 

  94. Bolt, H.M., M. Bolt, and H. Kappus (1977). Interaction of rifampicin treatment with pharmacokinetics and metabolism of ethinyloestradiol in man. Acta Endocrinol. 85, 189–197.

    PubMed  CAS  Google Scholar 

  95. Schwarz, U.I., B. Buschel, and W. Kirch (2003). Unwanted pregnancy on self-medication with St. John’s wort despite hormonal contraception. Br. J. Clin. Pharmacol. 55, 112–113.

    Article  PubMed  Google Scholar 

  96. Guengerich, F.P. (1999). Inhibition of drug metabolizing enzymes: Molecular and biochemical aspects. In T. F. Woolf (ed.), Handbook of Drug Metabolism. Marcel Dekker, New York, pp. 203–227.

    Google Scholar 

  97. Bailey, D.G., J.D. Spence, B. Edgar, C.D. Bayliff, and J.M.O. Arnold (1990). Ethanol enhances the hemodynamic effects of felodipine. Clin. Invest. Med. 12, 357–362.

    Google Scholar 

  98. Edgar, B., D.G. Bailey, R. Bergstrand, G. Johnsson, and L. Lurje (1990). Formulation dependent interaction between felodipine and grapefruit juice. Clin. Pharmacol. Ther. 47, 181.

    Google Scholar 

  99. He, K., R. Iyer, R.N. Hayes, M.W. Sinz, T.F. Woolf, and P.F. Hollenberg (1998). Inactivation of cytochrome P450 3A4 by bergamottin, a component of grapefruit juice. Chem. Res. Toxicol. 11, 252–259.

    Article  PubMed  CAS  Google Scholar 

  100. Schmiedlin-Ren, P., D.J. Edwards, M.E. Fitzsimmons, K. He, K.S. Lown, P.M. Woster et al. (1997). Mechanisms of enhanced oral availability of CYP3A4 substrates by grapefruit constituents. Drug Metab. Dispos. 25, 1228–1233.

    PubMed  CAS  Google Scholar 

  101. Reimers, D. and A. Jezek (1971). Rifampicin und andere antituberkulotika bei gleichzeitiger oraler kontrzeption. Przx. Pneumolonology 25, 255–262.

    CAS  Google Scholar 

  102. Nocke-Finck, L. H. Brewer, and D. Reimers (1973). Wirkung van rifampicin auf den menstrationszylkus und die östrogenausscheidung bei einnahme oraler kontrazeptive. Deutsch. Med. Wochenschrifften 98, 1521–1523.

    CAS  Google Scholar 

  103. Kivistö, K.T., P.J. Neuvonen, and U. Klotz (1994). Inhibition of terfenadine metabolism: Pharmacokinetic and pharmacodynamic consequences. Clin. Pharmacokinet. 27, 1–5.

    PubMed  Google Scholar 

  104. Thompson, D. and G. Oster (1996). Use of terfenadine and contraindicated drugs. J. Am. Med. Assoc. 275, 1339–1341.

    Article  CAS  Google Scholar 

  105. Fischbach, T. and W. Lenk (1985). Additional routes in the metabolism of phenacetin. Xenobiotica 15, 149–164.

    PubMed  CAS  Google Scholar 

  106. Guengerich, F.P., D. Müller-Enoch, and I.A. Blair (1986). Oxidation of quinidine by human liver cytochrome P-450. Mol. Pharmacol. 30, 287–295.

    PubMed  CAS  Google Scholar 

  107. Halpert, J.R. and F.P. Guengerich (1997). Enzyme inhibition and stimulation. In F. P. Guengerich (ed.), Biotransformation, Vol. 3, Comprehensive Toxicology. Elsevier Science Ltd., Oxford, pp. 21–35.

    Google Scholar 

  108. Witherow, L.E. and J.B. Houston (1999). Sigmoidal kinetics of CYP3A substrates: An approach for scaling dextromethorphan metabolism in hepatic microsomes and isolated hepatocytes to predict in vivo clearance in rat. J. Pharmacol. Exp. Ther. 290, 58–65.

    PubMed  CAS  Google Scholar 

  109. Lasker, J.M., M.-T. Huang, and A.H. Conney (1982). In vivo activation of zoxazolamine metabolism by flavone. Science 216, 1419–1421.

    Article  PubMed  CAS  Google Scholar 

  110. Lee, C.A., J.H. Lillibridge, S.D. Nelson, and J.T. Slattery (1996). Effects of caffeine and theophylline on acetaminophen pharmacokinetics: P450 inhibition and activation. J. Pharmacol. Exp. Ther. 277, 287–291.

    PubMed  CAS  Google Scholar 

  111. Ngui, J.S., W. Tang, R.A. Stearns, M.G. Shou, R.R. Miller, Y. Zhang et al. (2000). Cytochrome P450 3A4-mediated interaction of diclofenac and quinidine. Drug Metab. Dispos. 28, 1043–1050.

    PubMed  CAS  Google Scholar 

  112. Shapiro, A.B., K. Fox, P. Lam, and V. Ling (1999). Stimulation of P-glycoprotein-mediated drug transport by prazosin and progesterone. Eur. J. Biochem. 259, 841–850.

    Article  PubMed  CAS  Google Scholar 

  113. Mueller, G.C. and J.A. Miller (1948). The metabolism of 4-dimethylaminoazobenzene by rat liver homogenates. J. Biol. Chem. 176, 535–544.

    CAS  Google Scholar 

  114. Jollow, D.J., J.R. Mitchell, W.Z. Potter, D.C. Davis, J.R. Gillette, and B.B. Brodie (1973). Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J. Pharmacol. Exp. Ther. 187, 195–202.

    PubMed  CAS  Google Scholar 

  115. Neal, R.A. and J. Halpert (1982). Toxicology of thiono-sulfur compounds. Annu. Rev. Pharmacol. Toxicol. 22, 321–339.

    Article  PubMed  CAS  Google Scholar 

  116. Wing, K.D., A.H. Glickman, and J.E. Casida (1983). Oxidative bioactivation of S-alkyl phosphorothiolate pesticides: Stereospecificity of profenofos insecticide activation. Science 219, 63–65.

    Article  PubMed  CAS  Google Scholar 

  117. Nebert, D.W. (1989). The Ah locus: Genetic differences in toxicity, cancer, mutation, and birth defects Crit. Rev. Toxicol. 20, 153–174.

    PubMed  CAS  Google Scholar 

  118. Lee, S.S.T., J.T.M. Buters, T. Pineau, P. Fernandez-Salguero, and F.J. Gonzalez (1996). Role of CYP2E1 in the hepatotoxicity of acetaminophen. J. Biol. Chem. 271, 12063–12067.

    Article  PubMed  CAS  Google Scholar 

  119. Buters, J.T.M., S. Sakai, T. Richter, T. Pineau, D.L. Alexander, Ü. Savas et al. (1999). Cytochrome P450 CYP1B1 determines susceptibility to 7,12-dimethylbenz[a]anthracene-induced lymphomas. Proc. Natl. Acad. Sci. USA 96, 1977–1982.

    Article  PubMed  CAS  Google Scholar 

  120. Nebert, D.W. and H.V. Gelboin (1968). Substrate-inducible microsomal arylhydroxylase in mammalian cell culture: Assay and properties of induced enzyme. J. Biol. Chem. 243, 6242–6249.

    PubMed  CAS  Google Scholar 

  121. Kellerman, G., M. Luyten-Kellerman, and C.R. Shaw (1973). Genetic variation of aryl hydrocarbon hydroxylase in human lymphocytes. Am. J. Hum. Genet. 25, 327–331.

    Google Scholar 

  122. Kellerman, G., C.R. Shaw, and M. Luyten-Kellerman (1973). Aryl hydrocarbon hydroxylase inducibility and bronchogenic carcinoma. N. Engl. J. Med. 298, 934–937.

    Google Scholar 

  123. Paigen, B., E. Ward, A. Reilly, L. Houten, H.L. Gurtoo, J. Minowada et al. (1981). Seasonal variation of aryl hydrocarbon hydroxylase activity in human lymphocytes. Cancer Res. 41, 2757–2761.

    PubMed  CAS  Google Scholar 

  124. Kouri, R.E., C.E. McKinney, D.J. Slomiany, D.R. Snodgrass, N.P. Wray, and T.L. McLemore (1982). Positive correlation between high aryl hydrocarbon hydroxylase activity and primary lung cancer as analyzed in cryopreserved lymphocytes. Cancer Res. 42, 5030–5037.

    PubMed  CAS  Google Scholar 

  125. Chang, C., D.R. Smith, V.S. Prasad, C.L. Sidman, D.W. Nebert, and A. Puga (1993). Ten nucleotide differences, five of which cause amino acid changes, are associated with the Ah receptor locus polymorphism of C57BL/6 and DBA/2 mice. Pharmacogenetics 3, 312–321.

    Article  PubMed  CAS  Google Scholar 

  126. Dolwick, K.M., J.V. Schmidt, L.A. Carver, H.I. Swanson, and C.A. Bradfield (1993). Cloning and expression of a human Ah receptor cDNA. Mol. Pharmacol. 44, 911–917.

    PubMed  CAS  Google Scholar 

  127. Fujii-Kuriyama, Y., M. Ema, J. Mimura, N. Matsushita, and K. Sogawa (1995). Polymporphic forms of the Ah receptor and induction of the CYP1A1 gene. Pharmacogenetics 5, S149–S153.

    Article  PubMed  CAS  Google Scholar 

  128. Kawajiri, K., J. Watanabe, H. Eguchi, K. Nakachi, C. Kiyohara, and S. Hayashi (1995). Polymorphisms of human Ah receptor gene are not involved in lung cancer. Pharmacogenetics 5, 151–158.

    Article  PubMed  CAS  Google Scholar 

  129. Hayashi, S., J. Watanabe, K. Nakachi, and K. Kawajiri (1991). Genetic linkage of lung cancer-associated MspI polymorphisms with amino acid replacement in the heme binding region of the human cytochrome P450IA1 gene. J. Biochem. (Tokyo) 110, 407–411.

    CAS  Google Scholar 

  130. Tefre, T., D. Ryberg, A. Haugen, D.W. Nebert, V. Skaug, A. Brogger et al. (1991). Human CYP1A1 (cytochrome P1450) gene: Lack of association between the Msp I restriction fragment length polymorphism and incidence of lung cancer in a Norwegian population. Pharmacogenetics 1, 20–25.

    Article  PubMed  CAS  Google Scholar 

  131. Hirvonen, A., K. Husgafvel-Pursiainen, A. Karjalainen, S. Anttila, and H. Vainio (1992). Point-mutational Msp1 and Ile-Val polymorphisms closely linked in the CYP1A1 gene: Lack of association with susceptibility to lung cancer in a Finnish study population. Cancer Epidemiol. Biomarkers Prev. 1, 485–489.

    PubMed  CAS  Google Scholar 

  132. Wedlund, P.J., S. Kimura, F.J. Gonzalez, and D.W. Nebert (1994). I462V mutation in the human CYP1A1 gene: Lack of correlation with either the Msp I 1.9kb (M2) allele or CYP1A1 inducibility in a three-generation family of East Mediterranean descent. Pharmacogenetics 4, 21–26.

    Article  PubMed  CAS  Google Scholar 

  133. Zhang, Z.-Y., M.J. Fasco, L. Huang, F.P. Guengerich, and L.S. Kaminsky (1996). Characterization of purified recombinant human CYP 1A1-Ile462 and Val462: Assessment of a role for the rare allele in carcinogenesis. Cancer Res. 56, 3926–3933.

    PubMed  CAS  Google Scholar 

  134. Persson, I., I. Johansson, and M. Ingelman-Sundberg (1997). In vitro kinetics of two human CYP1A1 variant enzymes suggested to be associated with interindividual differences in cancer susceptibility. Biochem. Biophys. Res. Commun. 231, 227–230.

    Article  PubMed  CAS  Google Scholar 

  135. Toide, K., H. Yamazaki, R. Nagashima, K. Itoh, S. Iwano, Y. Takahashi et al. (2003). Aryl hydrocarbon hydroxylase represents CYP1B1, and not CYP1A1, in human freshly isolated white cells: Trimodal distribution of Japaneses population according to induction of CYP1B1 mRNA by environmental dioxins. Cancer Epidemiol. Biomarkers Prev. 12, 219–222.

    PubMed  CAS  Google Scholar 

  136. Guengerich, F.P. (1998). The environmental genome project: Functional analysis of polymorphisms. Environ. Health Perspect. 106, 365–368.

    PubMed  CAS  Google Scholar 

  137. Ayesh, R., J.R. Idle, J.C. Ritchie, M.J. Crothers, and M.R. Hetzel (1984). Metabolic oxidation phenotypes as markers for susceptibility to lung cancer. Nature 312, 169–170.

    Article  PubMed  CAS  Google Scholar 

  138. d’Errico, A., E. Taioli, X. Chen, and P. Vineis (1996). Genetic metabolic polymorphisms and the risk of cancer: A review of the literature. BioMarkers 1, 149–173.

    CAS  Google Scholar 

  139. Shimada, T. and F.P. Guengerich (1991). Activation of amino-α-carboline, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, and a copper phthalo-cyanine cellulose extract of cigarette smoke condensate by cytochrome P-450 enzymes in rat and human liver microsomes. Cancer Res. 51, 5284–5291.

    PubMed  CAS  Google Scholar 

  140. Vineis, P. (2002). The relationship between polymorphisms of xenobiotic metabolizing enzymes and susceptibility to cancer. Toxicology 181, 457–462.

    Article  PubMed  Google Scholar 

  141. Stoilov, I., A.N. Akarsu, I. Alozie, A. Child, M. Barsoum-Homsy, M.E. Turacli et al. (1998). Sequence analysis and homology modeling suggest that primary congenital glaucoma on 2p21 results from mutations disrupting either the hinge region or the conserved core structures of cytochrome P4501B1. Am. J. Hum. Genet. 62, 573–584.

    Article  PubMed  CAS  Google Scholar 

  142. Shimada, T., J. Watanabe, F.P. Guengerich, K. Inoue, and E.M.J. Gillam (2001). Specificity of 17β-oestradiol and benzo[a]pyrene oxidation by polymorphic human cytochrome P450 1B1 variants substituted at residues 48, 119, and 432. Xenobiotica 31, 163–176.

    Article  PubMed  CAS  Google Scholar 

  143. Watanabe, J., T. Shimada, E.M.J. Gillam, T. Ikuta, K. Suemasu, Y. Higashi et al. (2000). Association of CYP1B1 genetic polymorphism with incidence to breast and lung cancer. Pharmacogenetics 10, 25–33.

    Article  PubMed  CAS  Google Scholar 

  144. Zheng, W., DW. Xie, F. Jin, J.R. Cheng, Q. Dai, W.Q. Wen et al. (2000). Genetic polymorphism of cytochrome P450-1B1 and risk of breast cancer. Cancer Epidemiol. Biomarkers Prev. 9, 147–150.

    PubMed  CAS  Google Scholar 

  145. Lang, N.P., M.A. Butler, J. Massengill, M. Lawson, R.C. Stotts, M. Maurer-Jensen et al. (1994). Rapid metabolic phenotypes for acetyltransferase and cytochrome P4501A2 and putative exposure to food-borne heterocyclic amines increase the risk for colorectal cancer or polyps Cancer Epidemiol. Biomarkers Prev. 3, 675–682.

    PubMed  CAS  Google Scholar 

  146. Shimada, T., M. Iwasaki, M.V. Martin, and F.P. Guengerich (1989). Human liver microsomal cytochrome P-450 enzymes involved in the bioactivation of procarcinogens detected by umu gene response in Salmonella typhimurium TA1535/pSK1002. Cancer Res. 49, 3218–3228.

    PubMed  CAS  Google Scholar 

  147. Ariyoshi, N., M. Miyamoto, Y. Umetsu, H. Kunitoh, H. Dosaka-Akita, Y. Sawamura et al. (2002). Genetic polymorphism of CYP2A6 gene and tobacco-induced lung cancer risk in male smokers. Cancer Epidemiol. Biomarkers Prev. 11, 890–894.

    PubMed  CAS  Google Scholar 

  148. Pianezza, M.L., E.M. Sellers, and R.F. Tyndale (1998). Nicotine metabolism defect reduces smoking. Nature 393, 750.

    Article  PubMed  CAS  Google Scholar 

  149. Kim, R.B., D. O’Shea, and G.R. Wilkinson (1994). Relationship in healthy subjects between CYP2E1 genetic polymorphism and the 6-hydroxylation of chlorozoxazone: A putative measure of CYP2E1 activity. Pharmacogenetics 4, 162–165.

    Article  PubMed  CAS  Google Scholar 

  150. Ioannides, C. and D.V. Parke (1993). Induction of cytochrome P4501 as an indicator of potential chemical carcinogenesis. Drug Metab. Rev. 25, 485–501.

    PubMed  CAS  Google Scholar 

  151. Rice, J.M., B.A. Diwan, J.M. Ward, R.W. Nims, and R.A. Lubet (1992). Phenobarbital and related compounds: Approaches to interspecies extrapolation. In Relevance of Animal Studies to the Evaluation of Human Cancer Risk. Wiley-Liss, Inc., pp. 231–249.

    Google Scholar 

  152. Olsen, J.H., J.D. Boice Jr., J.P.A. Jensen and J.F. Fraumeni Jr. (1989). Cancer among epileptic patients exposed to anticonvulsant drugs. J. Natl. Cancer Inst. 81, 803–808.

    Article  PubMed  CAS  Google Scholar 

  153. Kluwe, W.M. (1994). The relevance of hepatic peroxisome proliferation in rats to assessment of human carcinogenic risk for pharmaceuticals. Regul. Toxicol. Pharmacol. 20, 170–186.

    Article  PubMed  CAS  Google Scholar 

  154. Thomas, R.S., D.R. Rank, S.G. Penn, G.M. Zastrow, K.R. Hayes, K. Pande et al. (2001). Identification of toxicologically predictive gene sets using cDNA microarrays. Mol. Pharmacol. 60, 1189–1194.

    PubMed  CAS  Google Scholar 

  155. Omiecinski, C.J., C.A. Redlich, and P. Costa (1990). Induction and developmental expression of cytochrome P450IA1 messenger RNA in rat and human tissues: Detection by the polymerase chain reaction. Cancer Res. 50, 4315–4321.

    PubMed  CAS  Google Scholar 

  156. Kitada, M., M. Taneda, K. Itahashi, and T. Kamataki (1991). Four forms of cytochrome P-450 in human fetal liver: Purification and their capacity to activate promutagens. Jpn. J. Cancer Res. 82, 426–432.

    PubMed  CAS  Google Scholar 

  157. Kitada, M. and T. Kamataki (1994). Cytochrome P450 in human fetal liver: Significance and fetal-specific expression. Drug Metab. Rev. 26, 305–323.

    PubMed  CAS  Google Scholar 

  158. Liu, N., Q.Y. Zhang, D. Vakharia, D. Dunbar, and L.S. Kaminsky (2001). Induction of CYP1A by benzo[k]fluoranthene in human hepatocytes: CYP1A1 or CYP1A2?. Arch. Biochem. Biophys. 389, 130–134.

    Article  PubMed  CAS  Google Scholar 

  159. Fagan, J.B., J.V. Pastewka, S.R. Chalberg, E. Gozukara, F.P. Guengerich, and H.V. Gelboin (1986). Noncoordinate regulation of the mRNAs encoding cytochromes P-450BNF/MC-B and p-450ISF/BNF-G. Arch. Biochem. Biophys. 244, 261–272.

    Article  PubMed  CAS  Google Scholar 

  160. Kim, J.H., M.E. Sherman, F.C. Curreiro, F.P. Guengerich, P.T. Strickland, and T.R. Sutter (2004, in press). Expression of cytochromes P450 1A1 and 1B1 in human lung from smokers, non-smokers, and ex-smokers. Toxicol. Appl. Pharmacol.

    Google Scholar 

  161. Prough, R.A., Z. Sipal, and S.W. Jakobsson (1977). Metabolism of benzo(a)pyrene by human lung microsomal fractions. Life Sci. 21, 1629–1636.

    Article  PubMed  CAS  Google Scholar 

  162. Fujino, T., K. Gottlieb, D.K. Manchester, S.S. Park, D. West, H.L. Gurtoo et al. (1984). Monoclonal antibody phenotyping of interindividual differences in cytochrome P-450-dependent reactions of single and twin human placenta. Cancer Res. 44, 3916–3923.

    PubMed  CAS  Google Scholar 

  163. Robie-Suh, K., R. Robinson, H.V. Gelboin, and F.P. Guengerich (1980). Aryl hydrocarbon hydroxylase is inhibited by antibody to rat liver cytochrome P-450. Science 208, 1031–1033.

    Article  PubMed  CAS  Google Scholar 

  164. Shimada, T., H. Yamazaki, M. Mimura, N. Wakamiya, F.P. Guengerich, and Y. Inui (1996). Characterization of microsomal cytochrome P450 enzymes involved in the oxidation of xenobiotic chemicals in human fetal livers and adult lungs. Drug Metab. Dispos. 24, 515–522.

    PubMed  CAS  Google Scholar 

  165. McLemore, T.L., S. Adelberg, M.C. Liu, N.A. McMahon, S.J. Yu, W.C. Hubbard et al. (1990). Expression of CYP1A1 gene in patients with lung cancer: Evidence for cigarette smoke-induced gene expression in normal lung tissue and for altered gene regulation in primary pulmonary carcinomas. J. Natl. Cancer Inst. 82, 1333–1339.

    Article  PubMed  CAS  Google Scholar 

  166. Anttila, S., X.D. Lei, E. Elovaara, A. Karjalainen, W.M. Sun, H. Vainio et al. (2000). An uncommon phenotype of poor inducibility of CYP1A1 in human lung is not ascribable to polymorphisms in the AHR, ARNT, or CYP1A1 genes. Pharmacogenetics 10, 741–751.

    Article  PubMed  CAS  Google Scholar 

  167. Anttila, S., P. Tuominen, A. Hirvonen, M. Nurminen, A. Karjalainen, O. Hankinson et al. (2001). CYP1A1 levels in lung tissue of tobacco smokers and polymorphisms of CYP1A1 and aromatic hydrocarbon receptor. Pharmacogenetics 11, 501–509.

    Article  PubMed  CAS  Google Scholar 

  168. Bradfield, C.A. (2004, in press). Induction of P450 enzymes: Receptors. In P.R. Ortiz De Montellano (ed.), Cytochrome P450: Structure, Mechanism, and Biochemistry, Plenum, New York (Chap. 8 of this monograph).

    Google Scholar 

  169. Lucier, G.W., K.G. Nelson, R.B. Everson, T.K. Wong, R.M. Philpot, T. Tiernan et al. (1987). Placental markers of human exposure to polycholrinated biphenyls and polychlorinated dibenzofurans. Environ. Health Perspect. 76, 79–87.

    PubMed  CAS  Google Scholar 

  170. Diaz, D., I. Fabre, M. Daujat, B. Saintaubert, P. Bories, H. Michel et al. (1990). Omeprazole is an aryl hydrocarbon-like inducer of human hepatic cytochrome-P450. Gastroenterology 99, 737–747.

    PubMed  CAS  Google Scholar 

  171. Yun, C.-H., T. Shimada, and F.P. Guengerich (1992). Roles of human liver cytochrome P-4502C and 3A enzymes in the 3-hydroxylation of benzo[a]pyrene. Cancer Res. 52, 1868–1874.

    PubMed  CAS  Google Scholar 

  172. Prough, R.A., M.D. Burke, and R.T. Mayer (1978). Direct fluorometric methods for measuring mixed-function oxidase activity. Meth. Enzymol. 52, 372–377.

    PubMed  CAS  Google Scholar 

  173. Guo, Z., E.M.J. Gillam, S. Ohmori, R.H. Tukey, and F.P. Guengerich (1994). Expression of modified human cytochrome P450 1A1 in Escherichia coli: Effects of 5′ substitution, stabilization, purification, spectral characterization, and catalytic properties. Arch. Biochem. Biophys. 312, 436–446.

    Article  PubMed  CAS  Google Scholar 

  174. Shou, M., K.R. Korzekwa, C.L. Crespi, F.J. Gonzalez, and H.V. Gelboin (1994). The role of 12 cDNA-expressed human, rodent, and rabbit cytochromes P450 in the metabolism of benzo[a]pyrene and benzo[a]pyrene rans-7,8-dihydrodiol. Mol. Carcinogen. 10, 159–168.

    CAS  Google Scholar 

  175. Bauer, E., Z. Guo, Y.-F. Ueng, L.C. Bell, and F.P. Guengerich (1995). Oxidation of benzo[a]pyrene by recombinant human cytochrome P450 enzymes. Chem. Res. Toxicol. 8, 136–142.

    Article  PubMed  CAS  Google Scholar 

  176. Shou, M., K.W. Krausz, F.J. Gonzalez, and H.V. Gelboin (1996). Metabolic activation of the potent carcinogen dibenzo[a,h]anthracene by cDNA-expressed human cytochromes P450. Arch. Biochem. Biophys. 328, 201–207.

    Article  PubMed  CAS  Google Scholar 

  177. Shou, M., K.W. Krausz, F.J. Gonzalez, and H.V. Gelboin (1996). Metabolic activation of the potent carcinogen dibenzo[a,l]pyrene by human recombinant cytochromes P450, lung and liver microsomes. Carcinogenesis 17, 2429–2433.

    Article  PubMed  CAS  Google Scholar 

  178. Shimada, T., C.L. Hayes, H. Yamazaki, S. Amin, S.S. Hecht, F.P. Guengerich et al. (1996). Activation of chemically diverse procarcinogens by human cytochrome P450 1B1. Cancer Res. 56, 2979–2984.

    PubMed  CAS  Google Scholar 

  179. Balani, S.K., H.J.C. Yeh, D.E. Ryan, P.E. Thomas, W. Levin, and D.M. Jerina (1985). Absolute configuration of the 5,6-oxide formed from 7,12-dimethylbenz[a]anthracene by cytochrome P450c. Biochem. Biophys. Res. Commun. 130, 610–616.

    Article  PubMed  CAS  Google Scholar 

  180. Lewis, D.F.V., B.G. Lake, S.G. George, M. Dickins, P.J. Eddershaw, M.H. Tarbit et al. (1999). Molecular modeling of CYP family enzymes CYP1A1, CYP1A2, CYP1A6, and CYP1B1 based on sequence homology with CYP102. Toxicology 139, 53–79.

    Article  PubMed  CAS  Google Scholar 

  181. Shimada, T., H. Yamazaki, M. Foroozesch, N.E. Hopkins, W.L. Alworth, and F.P. Guengerich (1998). Selectivity of polycyclic inhibitors for human cytochromes P450 1A1, 1A2, and 1B1. Chem. Res. Toxicol. 11, 1048–1056.

    Article  PubMed  CAS  Google Scholar 

  182. McManus, M.E., W.M. Burgess, M.E. Veronese, A. Huggett, L.C. Quattrochi, and R.H. Tukey (1990). Metabolism of 2-acetylaminofluorene and benzo[a]pyrene and activation of food-derived heterocyclic amine mutagens by human cytochromes P-450. Cancer Res. 50, 3367–3376.

    PubMed  CAS  Google Scholar 

  183. Mercurio, M.G., S.J. Shiff, R.A. Galbraith, and S. Sassa (1995). Expression of cytochrome P450 mRNAs in the colon and the rectum in normal human subjects. Biochem. Biophys. Res. Commun. 210, 350–355.

    Article  PubMed  CAS  Google Scholar 

  184. Pantuck, E.J., K.-C. Hsiao, A. Maggio, K. Nakamura, R. Kuntzman, and A.H. Conney (1974). Effect of cigarette smoking on phenacetin metabolism. Clin. Pharmacol. Ther. 15, 9–17.

    PubMed  CAS  Google Scholar 

  185. Vesell, E.S. and J.G. Page (1968). Genetic control of drug levels in man: Antipyrine. Science 161, 72–73.

    Article  PubMed  CAS  Google Scholar 

  186. Rasmussen, B.B., T.H. Brix, K.O. Kyvik, and K. Brøsen (2002). The interindividual differences in the 3-demethylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors. Pharmacogenetics 12, 473–478.

    Article  PubMed  CAS  Google Scholar 

  187. Zhou, H., P.D. Josephy, D. Kim, and F.P. Guengerich (2004). Functional characterization of four allelic variants of human cytochrome P450 1A2. Arch. Bioch. Biophys. 422, 23–30.

    Article  CAS  Google Scholar 

  188. Kalow, W. and B.K. Tang (1993). The use of caffeine for enzyme assays: A critical appraisal. Clin. Pharmacol. Ther. 53, 503–514.

    PubMed  CAS  Google Scholar 

  189. Quattrochi, L.C., T. Vu, and R.H. Tukey (1994). The human CYP1A2 gene and induction by 3-methylcholanthrene: A region of DNA that supports Ah-receptor binding and promoter-specific induction. J. Biol. Chem. 269, 6949–6954.

    PubMed  CAS  Google Scholar 

  190. Kondraganti, S.R., W.W. Jiang, and B. Moorthy (2002). Differential regulation of expression of hepatic and pulmonary cytochrome P4501A enzymes by 3-methylcholanthrene in mice lacking the CYP1A2 gene. J. Pharmacol. Exp. Ther. 303, 945–951.

    Article  PubMed  CAS  Google Scholar 

  191. Fisher, G.J., H. Fukushima, and J.L. Gaylor (1981). Isolation, purification, and properties of a unique form of cytochrome P-450 in microsomes of isosafrole-treated rats. J. Biol. Chem. 256, 4388–4394.

    PubMed  CAS  Google Scholar 

  192. Vistisen, K., H.E. Poulsen, and S. Loft (1992). Foreign compound metabolism capacity in man measured from metabolites of dietary caffeine. Carcinogenesis 13, 1561–1568.

    Article  PubMed  CAS  Google Scholar 

  193. Rost, K.L., H. Brösicke, J. Brockmöller, M. Scheffler, H. Helg, and I. Roots (1992). Increase of cytochrome P450IA2 activity by omeprazole: Evidence by the 13C-[N-3-methyl]-caffeine breath test in poor and extensive metabolizers of S-mephenytoin. Clin. Pharmacol. Ther. 52, 170–180.

    PubMed  CAS  Google Scholar 

  194. Fisher, C.W., D.L. Caudle, C. Martin-Wixtrom, L.C. Quattrochi, R.H. Tukey, M.R. Waterman et al. (1992). High-level expression of functional cytochrome P450 1A2 in Escherichia coli, FASEB J. 6, 759–764.

    PubMed  CAS  Google Scholar 

  195. Sandhu, P., Z. Guo, T. Baba, M.V. Martin, R.H. Tukey, and F.P. Guengerich (1994). Expression of modified human cytochrome P450 1A2 in Escherichia coli: Stabilization, purification, spectral characterization, and catalytic activities of the enzyme. Arch. Biochem. Biophys. 309, 168–177.

    Article  PubMed  CAS  Google Scholar 

  196. Patten, C.J., P.E. Thomas, R.L. Guy, M. Lee, F.J. Gonzalez, F.P. Guengerich et al. (1993). Cytochrome P450 enzymes involved in acetaminophen activation by rat and human liver microsomes and their kinetics. Chem. Res. Toxicol. 6, 511–518.

    Article  PubMed  CAS  Google Scholar 

  197. Engel, G., U. Hofmann, H. Heidemann, J. Cosme, and M. Eichelbaum (1996). Antipyrine as a probe for human oxidative drug metabolism: Identification of the cytochrome P450 enzymes catalyzing 4-hydroxyantipyrine, 3-hydroxymethylantipyrine, and norantipyrine formation. Clin. Pharmacol. Ther. 59, 613–623.

    Article  PubMed  CAS  Google Scholar 

  198. Yamazaki, H., Z. Guo, M. Persmark, M. Mimura, F.J. Gonzalez, C. Sugahara et al. (1994). Bufuralol hydroxylation by cytochrome P450 2D6 and 1A2 enzymes in human liver microsomes. Mol. Pharmacol. 46, 568–577.

    PubMed  CAS  Google Scholar 

  199. Berthou, F., V. Carriere, D. Ratanasavanh, T. Goasduff, F. Morel, J.C. Gautier et al. (1993). On the specificity of chlorozoxazone as drug probe of cytochrome P4502E1. In Abstracts, 5th European ISSX Meeting, Vol. 3. p. 116, 26–29 September, Tours, France.

    Google Scholar 

  200. Woolf, T.F., W.F. Pool, M. Kukan, S. Bezek, K. Kunze, and W.F. Trager (1993). Characterization of tacrine metabolism and bioactivation using heterologous expression systems and inhibition studies: Evidence for CYP1A2 involvement. In Abstracts, 5th North American ISSX Meeting, Vol. 4, p. 139, 17–21 October, Tucson, AZ.

    Google Scholar 

  201. Benoit, G.G., C.F. Naud, M.A. Simard, and A.L. Astier (1997). Noninterference of cytochrome P4501A2 in the cytotoxicity of tacrine using genetically engineered V79 Chinese hamster cells for stable expression of the human or rat isoform and two human hepatocyte cell lines. Biochem. Pharmacol. 53, 423–427.

    Article  PubMed  CAS  Google Scholar 

  202. Zhang, Z.Y. and L.S. Kaminsky (1995). Characterization of human cytochromes P450 involved in theophylline 8-hydroxylation. Biochem. Pharmacol. 50, 205–211.

    Article  PubMed  CAS  Google Scholar 

  203. Yamazaki, H., Y. Oda, Y. Funae, S. Imaoka, Y. Inui, F.P. Guengerich et al. (1992). Participation of rat liver cytochrome P450 2E1 in the activation of N-nitrosodimethylamine and N-diethylnitrosamine to products genotoxic in Salmonella typhimurium NM2009. Carcinogenesis 13, 979–985.

    Article  PubMed  CAS  Google Scholar 

  204. Yamazaki, H., P.M. Shaw, F.P. Guengerich, and T. Shimada (1998). Roles of cytochromes P450 1A2 and 3A4 in the oxidation of estradiol and estrone in human liver microsomes. Chem. Res. Toxicol. 11, 659–665.

    Article  PubMed  CAS  Google Scholar 

  205. Michnovicz, J.J., R.J. Hershcopr, H. Naganuma, H.L. Bradlow, and J. Fishman (1986). Increased 2-hydroxylation of estradiol as a possible mechanism for the anti-estrogenic effect of cigarette smoking. New Engl. J. Med. 315, 1305–1309.

    PubMed  CAS  Google Scholar 

  206. Bradlow, H.L., R.J. Hershcopf, C.P. Martucci, and J. Fishman (1985). Estradiol 16α-hydroxylation in the mouse correlates with mammary tumor incidence and presence of murine mammary tumor virus: A possible model for the hormonal etiology of breast cancer in humans. Proc. Natl. Acad. Sci. USA 82, 6295–6299.

    Article  PubMed  CAS  Google Scholar 

  207. Hiroya, K., M. Ishigooka, T. Shimizu, and M. Hatano (1992). Role of Glu318 and Thr319 in the catalytic function of cytochrome P450d (P4501A2): Effects of mutations on the methanol hydroxylation. FASEB J. 6, 749–751.

    PubMed  CAS  Google Scholar 

  208. Ishigooka, M., T. Shimizu, K. Hiroya, and M. Hatano (1992). Role of Glu318 at the putative distal site in the catalytic function of cytochrome P450d. Biochemistry 31, 1528–1531.

    Article  PubMed  CAS  Google Scholar 

  209. Shimizu, T., A.J.M. Sadeque, G.N. Sadeque, M. Hatano, and Y. Fujii-Kuriyama (1991). Ligand binding studies of engineered cytochrome P-450d wild type, peroximal mutants, and distal mutants. Biochemistry 30, 1490–1496.

    Article  PubMed  CAS  Google Scholar 

  210. Fuhr, U., G. Strobl, F. Manaut, E.M. Anders, F. Sörgel, E. Lopez-de-Brinas et al. (1993). Quinolone antibacterial agents: Relationship between structure and in vitro inhibition of the human cytochrome P450 isoform CYP1A2. Mol. Pharmacol. 43, 191–199.

    PubMed  CAS  Google Scholar 

  211. Lozano, J.J., E. López-de-Briñas, N.B. Centeno, F. Sanz, and R. Guigo (1997). Three-dimensional modelling of human cytochrome P450 1A2 and its interaction with caffeine and MeIQ. J. Comput. Aided Mol. Des. 11, 395–408.

    Article  PubMed  CAS  Google Scholar 

  212. Parikh, A., P.D. Josephy, and F.P. Guengerich (1999). Selection and characterization of human cytochrome P450 1A2 mutants with altered catalytic properties. Biochemistry 38, 5283–5289.

    Article  PubMed  CAS  Google Scholar 

  213. Yun, C.-H., G.P. Miller, and F.P. Guengerich (2000). Rate-determining steps in phenacetin oxidation by human cytochrome P450 1A2 and selected mutants. Biochemistry 39, 11319–11329.

    Article  PubMed  CAS  Google Scholar 

  214. Yun, C.-H., G.P. Miller, and F.P. Guengerich (2001). Oxidations of p-alkoxyacylanilides by human cytochrome P450 1A2: Structure-activity relationships and simulation of rate constants of individual steps in catalysis. Biochemistry 40, 4521–4530.

    Article  PubMed  CAS  Google Scholar 

  215. Miller, G.P. and F.P. Guengerich (2001). Binding and oxidation of alkyl 4-nitrophenyl ethers by rabbit cytochrome P450 1A2: Evidence for two binding sites. Biochemistry 40, 7262–7272.

    PubMed  CAS  Google Scholar 

  216. Racha, J.K., A.E. Rettie, and K.L. Kunze (1998). Mechanism-based inactivation of human cytochrome P450 1A2 by furafylline: Detection of a 1:1 adduct to protein and evidence for the formation of a novel imidazomethide intermediate. Biochemistry 37, 7407–7419.

    Article  PubMed  CAS  Google Scholar 

  217. Voorman, R. and S.D. Aust (1987). Specific binding of polyhalogenated aromatic hydrocarbon inducers of cytochrome P-450d to the cytochrome and inhibition of its estradiol 2-hydroxylase activity. Toxicol. Appl. Pharmacol. 90, 69–78.

    Article  PubMed  CAS  Google Scholar 

  218. Sesardic, D., A. Boobis, B. Murray, S. Murray, J. Segura, R. De La Torre et al. (1990). Furafylline is a potent and selective inhibitor of cytochrome P450 1A2 in man. Br. J. Clin. Pharmacol. 29, 651–663.

    PubMed  CAS  Google Scholar 

  219. Kappas, A., A.P. Alvares, K.E. Anderson, E.J. Pantuck, C.B. Pantuck, R. Chang et al. (1978). Effect of charcoal-broiled beef on antipyrine and theophylline metabolism. Clin. Pharmacol. Ther. 23, 445–450.

    PubMed  CAS  Google Scholar 

  220. Feldman, C.H., V.E. Hutchinson, C.E. Pippenger, T.A. Blemenfeld, B.R. Feldman, and W.J. Davis (1980). Effect of dietary protein and carbohydrate on theophylline metabolism in children. Pediatrics 66, 956–962.

    PubMed  CAS  Google Scholar 

  221. Otto, S., C. Marcus, C. Pidgeon, and C. Jefcoate (1991). A novel adrenocorticotropin-inducible cytochrome P450 from rat adrenal microsomes catalyzes polycyclic aromatic hydrocarbon metabolism. Endocrinology 129, 970–982.

    PubMed  CAS  Google Scholar 

  222. Murray, B.P. and M.A. Correia (2001). Ubiquitin-dependent 26S proteasomal pathway: A role in the degradation of native human liver CYP3A4 expressed in Saccharomyces cerevisiae? Arch. Biochem. Biophys. 393, 106–116.

    Article  PubMed  CAS  Google Scholar 

  223. Murray, G.I., M.C. Taylor, M.C. McFadyen, J.A. McKay, W.F. Greenlee, M.D. Burke et al. (1997). Tumor-specific expression of cytochrome P450 CYP1B1. Cancer Res. 57, 3026–3031.

    PubMed  CAS  Google Scholar 

  224. Chang, T.K.H., J. Chen, V. Pillay, J.-Y. Ho, and S.M. Bandiera (2003). Real-time polymerase chain reaction analysis of CYP1B1 gene expression in human liver. Toxicol. Sci. 71, 11–19.

    Article  PubMed  CAS  Google Scholar 

  225. Stoilov, I., A.N. Akarsu, and M. Sarfarazi (1997). Identification of three different truncating mutations in cytochrome P4501B1 (CYP1B1) as the principal cause of primary congenital glaucoma (Buphthalmos) in families linked to the GLC3A locus on chromosome 2p21. Hum. Mol. Genet. 6, 641–647.

    Article  PubMed  CAS  Google Scholar 

  226. Shimada, T., E.M.J. Gillam, T.R. Sutter, P.T. Strickland, F.P. Guengerich, and H. Yamazaki (1997). Roles of recombinant human cytochrome P450 1B1 in the oxidation of xenobiotic chemicals. Drug Metab. Dispos. 25, 617–622.

    PubMed  CAS  Google Scholar 

  227. Shimada, T., Y. Oda, E.M.J. Gillam, F.P. Guengerich, and K. Inoue (2001). Metabolic activation of polycyclic aromatic hydrocarbons and their dihydrodiol derivatives and other procarcinogens by cytochrome P450 1A1 and 1B1 allelic variants and other human cytochrome P450 enzymes in Salmonella typhimurium NM2009. Drug Metab. Dispos. 29, 1176–1182.

    PubMed  CAS  Google Scholar 

  228. Yamazaki, H., N. Hatanaka, R. Kizu, K. Hayakawa, N. Shimada, F.P. Guengerich et al. (2000). Bioactivation of diesel exhaust particle extracts and their major nitrated polycyclic aromatic hydrocarbon components, 1-nitropyrene and dinitropyrenes, by human cytochrome P450s 1A1, 1A2, and 1B1. Chem. Res. Toxicol. 472, 129–138.

    CAS  Google Scholar 

  229. Hayes, C.L., D.C. Spink, B.C. Spink, J.Q. Cao, N.J. Walker, and T.R. Sutter (1996). 17β-Estradiol hydroxylation catalyzed by human cytochrome P450 1B1. Proc. Natl. Acad. Sci. USA 93, 9776–9781.

    Article  PubMed  CAS  Google Scholar 

  230. Shimada, T., J. Watanabe, K. Kawajiri, T.R. Sutter, F.P. Guengerich, E.M.J. Gillam et al. (1999). Catalytic properties of polymorphic human cytochrome P450 1B1 variants. Carcinogenesis 20, 1607–1614.

    Article  PubMed  CAS  Google Scholar 

  231. Shimada, T., E.M.J. Gillam, Y. Oda, F. Tsumura, T.R. Sutter, F.P. Guengerich et al. (1999). Metabolism of benzo[a]pyrene to trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene by recombinant human cytochrome P450 1B1 and purified liver epoxide hydrolase. Chem. Res. Toxicol. 12, 623–629.

    Article  PubMed  CAS  Google Scholar 

  232. Savas, Ü., C.P. Carstens, and C.R. Jefcoate (1997). Recombinant mouse CYP1B1 expressed in Escherichia coli exhibits selective binding by polycyclic hydrocarbons and metabolism which parallels C3H10T1/2 cell microsomes, but differs from human recombinant CYP1B1. Arch. Biochem. Biophys. 347, 181–192.

    Article  PubMed  CAS  Google Scholar 

  233. Hanna, I.H., S. Dawling, N. Roodi, F.P. Guengerich, and F. Parl (2000). Cytochrome P450 1B1 (CYP1B1) pharmacogenetics: Association of polymorphisms with functional differences in estrogen hydroxylation activity. Cancer Res. 60, 3440–3444.

    PubMed  CAS  Google Scholar 

  234. Shou, M., K.R. Korzekwa, E.N. Brooks, K.W. Krausz, F.J. Gonzalez, and H.V. Gelboin (1997). Role of human hepatic cytochrome P450 1A2 and 3A4 in the metabolic activation of estrone. Carcinogenesis 18, 207–214.

    Article  PubMed  CAS  Google Scholar 

  235. Bolton, J.L., E. Pisha, F. Zhang, and S. Qiu (1998). Role of quinoids in estrogen carcinogenesis. Chem. Res. Toxicol. 11, 1113–1127.

    Article  PubMed  CAS  Google Scholar 

  236. Liehr, J.G., M.J. Ricci, C.R. Jefcoate, E.V. Hannigan, J.A. Hokanson, and B.T. Zhu (1995). 4-Hydroxylation of estradiol by human uterine myometrium and myoma microsomes: Implications for the mechanism of uterine tumorigenesis. Proc. Natl. Acad. Sci. USA 92, 9220–9224.

    Article  PubMed  CAS  Google Scholar 

  237. Lewis, D.F.V., M. Dickins, P.J. Eddershaw, M.H. Tarbit, and P.S. Goldfarb (1999). Cytochrome P450 substrate specificities, substrate structural templates and enzyme active site geometries. Drug Metabol. Drug Interact. 15, 1–49.

    PubMed  CAS  Google Scholar 

  238. Jang, M., L. Cai, G.O. Udeani, K.V. Slowing, C.F. Thomas, C.W.W. Beecher et al. (1997). Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275, 218–220.

    Article  PubMed  CAS  Google Scholar 

  239. Chun, Y.-J., M.-F. Kim, and F.P. Guengerich (1999). Resveratrol is a selective human cytochrome P450 1A1 inhibitor. Biochem. Biophys. Res. Commun. 262, 20–24.

    Article  PubMed  CAS  Google Scholar 

  240. Potter, G.A., L.H. Patterson, E. Wanogho, P.J. Perry, P.C. Butler, T. Ijaz et al. (2002). The cancer preventative agent resveratrol is converted to the anticancer agent piceatannol by the cytochrome P450 enzyme CYP1B1. Br. J. Cancer 86, 774–778.

    Article  PubMed  CAS  Google Scholar 

  241. Chun, Y.-J., S. Kim, D. Kim, S.-K. Lee, and F.P. Guengerich (2001). A new selective and potent inhibitor of human cytochrome P450 1B1 and its application to antimutagenesis. Cancer Res. 61, 8164–8170.

    PubMed  CAS  Google Scholar 

  242. Shen, L., S. Qiu, R.B. van Breemen, F. Zhang, Y. Chen, and J.L. Bolton (1997). Reaction of the premarin metabolite 4-hydroxyequilenin semiquinone radical with 2′-deoxyguanosine: Formation of unusual cyclic adducts. J. Am. Chem. Soc. 119, 11126–11127.

    Article  CAS  Google Scholar 

  243. Yamano, S., J. Tatsuno, and F.J. Gonzalez (1990). The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes. Biochemistry 29, 1322–1329.

    Article  PubMed  CAS  Google Scholar 

  244. Hakkola, J., M. Pasanen, J. Hukkanen, O. Pelkonen, J. Mäenpää, R.J. Edwards et al. (1996). Expression of xenobiotic-metabolizing cytochrome P450 forms in human full-term placenta. Biochem. Pharmacol. 51, 403–411.

    Article  PubMed  CAS  Google Scholar 

  245. Ding, X. and L.S. Kaminsky (2003). Human extrahepatic cytochromes P450: Function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu. Rev. Pharmacol. Toxicol. 43, 149–173.

    Article  PubMed  CAS  Google Scholar 

  246. Godoy, W., R.M. Albano, E.G. Moraes, P.R. Pinho, R.A. Nunes, E.H. Saito et al. (2002). CYP2A6/2A7 and CYP2E1 expression in human oesophageal mucosa: Regional and inter-individual variation in expression and relevance to nitrosamine metabolism. Carcinogenesis 23, 611–616.

    Article  PubMed  CAS  Google Scholar 

  247. Raunio, H., R. Juvonen, M. Pasanen, O. Pelkonen, P. Paakko, and Y. Soini (1998). Cytochrome P4502A6 (CYP2A6) expression in human hepatocellular carcinoma. Hepatology 27, 427–432.

    Article  PubMed  CAS  Google Scholar 

  248. Rae, J.M., M.D. Johnson, M.E. Lippman, and D.A. Flockhart (2001). Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: Studies with cDNA and oligonucleotide expression arrays. J. Pharmacol. Exp. Ther. 299, 849–857.

    PubMed  CAS  Google Scholar 

  249. Donato, M.T., P. Viitala, C. Rodriguez-Antona, A. Lindfors, J.V. Castell, H. Raunio et al. (2000). CYP2A5/CYP2A6 expression in mouse and human hepatocytes treated with various in vivo inducers. Drug Metab. Dispos. 28, 1321–1326.

    PubMed  CAS  Google Scholar 

  250. Jover, R., R. Bort, M.J. Gomez-Lechon, and J.V. Castell (2001). Cytochrome P450 regulation by hepatocyte nuclear factor 4 in human hepatocytes: A study using adenovirus-mediated antisense targeting. Hepatology 33, 668–675.

    Article  PubMed  CAS  Google Scholar 

  251. Ding, S., B.G. Lake, T. Friedberg, and C.R. Wolf (1995). Expression and alternative splicing of the cytochrome P-450 CYP2A7. Biochem. J. 306, 161–166.

    PubMed  CAS  Google Scholar 

  252. Oscarson, M., R.A. McLellan, V. Asp, M. Ledesma, M.L. Ruiz, B. Sinues et al. (2002). Characterization of a novel CYP2A7/CYP2A6 hybrid allel (CYP2A6*12) that causes reduced CYP2A6 activity. Hum. Mutat. 20, 275–283.

    Article  PubMed  CAS  Google Scholar 

  253. Hadidi, H., K. Zahlsen, J.R. Idle, and S. Cholerton (1997). A single amino acid substitution (Leu60His) in cytochrome P450 CYP2A6 causes switching from 7-hydroxylation to 3-hydroxylation of coumarin. Food Chem. Toxicol. 35, 903–907.

    Article  PubMed  CAS  Google Scholar 

  254. Nakajima, M., J.-T. Kwon, N. Tanaka, T. Zenta, Y. Yamamoto, H. Yamamoto et al. (2001). Relationship between interindividual differences in nicotine metabolism and CYP2A6 genetic polymorphism in humans. Clin. Pharmacol. Ther. 69, 72–78.

    Article  PubMed  CAS  Google Scholar 

  255. Tyndale, R.F. and E.M. Sellers (2001). Variable CYP2A6-mediated nicotine metabolism alters smoking behavior and risk. Drug Metab. Dispos. 29, 548–552.

    PubMed  CAS  Google Scholar 

  256. Yoshida, R., M. Nakajima, Y. Watanabe, J.T. Kwon, and T. Yokoi (2002). Genetic polymorphisms in human CYP2A6 gene causing impaired nicotine metabolism. Br. J. Clin. Pharmacol. 54, 511–517.

    Article  PubMed  CAS  Google Scholar 

  257. Gu, D.F., L.J. Hinks, N.E. Morton, and I.N. Day (2000). The use of long PCR to confirm three common alleles at the CYP2A6 locus and the relationship between genotype and smoking habit. Ann. Hum. Genet. 64, 383–390.

    Article  PubMed  CAS  Google Scholar 

  258. Rao, Y., E. Hoffmann, M. Zia, L. Bodin, M. Zeman, E.M. Sellers et al. (2000). Duplications and defects in the CYP2A6 gene: Identification, genotyping, and in vivo effects on smoking. Mol. Pharmacol. 58, 747–755.

    PubMed  CAS  Google Scholar 

  259. Xu, C., S. Goodz, E.M. Sellers, and R.F. Tyndale (2002). CYP2A6 genetic variation and potential consequences. Adv. Drug Deliv. Rev. 54, 1245–1256.

    Article  PubMed  CAS  Google Scholar 

  260. Tyndale, R.F. and E.M. Sellers (2002). Genetic variation in CYP2A6-mediated nicotine metabolism alters smoking behavior. Ther. Drug Monit. 24, 163–171.

    Article  PubMed  CAS  Google Scholar 

  261. Kamataki, T., K. Nunoya, Y. Sakai, H. Kushida, and K. Fujita (1999). Genetic polymorphism of CYP2A6 in relation to cancer. Mutat. Res. 428, 125–130.

    PubMed  CAS  Google Scholar 

  262. Miyamoto, M., Y. Umetsu, H. Dosaka-Akita, Y. Sawamura, J. Yokota, H. Kunitoh et al. (1999). CYP2A6 gene deletion reduces susceptibility to lung cancer. Biochem. Biophys. Res. Commun. 261, 658–660.

    Article  PubMed  CAS  Google Scholar 

  263. London, S.J., J.R. Idle, A.K. Daly, and G.A. Coetzee (1999). Genetic variation of CYP2A6, smoking, and risk of cancer. Lancet 353, 898–899.

    Article  PubMed  CAS  Google Scholar 

  264. Schulz, T.G., P. Ruhnau, and E. Hallier (2001). Lack of correlation between CYP2A6 genotype and smoking habits. Adv. Exp. Med. Biol. 500, 213–215.

    PubMed  CAS  Google Scholar 

  265. Raunio, H., A. Rautio, H. Gullsten, and O. Pelkonen (2001). Polymorphisms of CYP2A6 and its practical consequences. Br. J. Clin. Pharmacol. 52, 357–363.

    Article  PubMed  CAS  Google Scholar 

  266. Tricker, A.R. (2003). Nicotine metabolism, human drug metabolism polymorphisms, and smoking behaviour. Toxicology 183, 151–173.

    Article  PubMed  CAS  Google Scholar 

  267. Loriot, M.A., S. Rebuissou, M. Oscarson, S. Cenee, M. Miyamoto, N. Ariyoshi et al. (2001). Genetic polymorphisms of cytochrome P450 2A6 in a casecontrol study on lung cancer in a French population. Pharmacogenetics 11, 39–44.

    Article  PubMed  CAS  Google Scholar 

  268. Zhang, X., K. Amemo, S. Ameno, K. Iwahashi, H. Kinoshita, T. Kubota et al. (2001). Lack of association between smoking and CYP2A6 gene polymorphisms in a Japanese population. Nihon Arukoru Yakubutsu Igakkai Zasshi 36, 486–490.

    PubMed  CAS  Google Scholar 

  269. Oscarson, M. (2001). Genetic polymorphisms in the cytochrome P450 2A6 (CYP2A6) gene: Implications for interindividual differences in nicotine metabolism. Drug Metab. Dispos. 29, 91–95.

    PubMed  CAS  Google Scholar 

  270. Nakajima, M., Y. Kuroiwa, and T. Yokoi (2002). Interindividual differences in nicotine metabolism and genetic polymorphisms of human CYP2A6. Drug Metab. Rev. 34, 865–877.

    Article  PubMed  CAS  Google Scholar 

  271. Daly, A.K., S. Cholerton, W. Gregory, and J.R. Idle (1993). Metabolic polymorphisms. Pharmacol. Ther. 57, 129–160.

    Article  PubMed  CAS  Google Scholar 

  272. Cholerton, S., M.E. Idle, A. Vas, F.J. Gonzalez, and J.R. Idle (1992). Comparison of a novel thin-layer chromatographic-fluorescence detection method with a spectrofluorometric method for the determination of 7-hydroxycoumarin in human urine. J. Chromatogr. 575, 325–330.

    PubMed  CAS  Google Scholar 

  273. Rautio, A., H. Kraul, A. Kojo, E. Salmela, and O. Pelkonen (1992). Interindividual variability of coumarin 7-hydroxylation in healthy volunteers. Pharmacogenetics 2, 227–233.

    Article  PubMed  CAS  Google Scholar 

  274. Soucek, P. (1999). Expression of cytochrome P450 2A6 in Escherichia coli: Purification, spectral and catalytic characterization, and preparation of polyclonal antibodies. Arch. Biochem. Biophys. 370, 190–200.

    Article  PubMed  CAS  Google Scholar 

  275. Nowell, S., C. Sweeney, G. Hammons, F.F. Kadlubar, and N.P. Lang (2002). CYP2A6 activity determined by caffeine phenotyping: Association with colorectal cancer risk. Cancer Epidemiol. Biomarkers Prev. 11, 377–383.

    PubMed  CAS  Google Scholar 

  276. Le Gal, A., Y. Dreano, P.G. Gervasi, and F. Berthou (2001). Human cytochrome P450 2A6 is the major enzyme involved in the metabolism of three alkoxyethers used as oxyfuels. Toxicol. Lett. 124, 47–58.

    Article  PubMed  Google Scholar 

  277. Duescher, R.J. and A.A. Elfarra (1994). Human liver microsomes are efficient catalysts of 1,3-butadiene oxidation: Evidence for major roles by cytochrome P450 2A6 and 2E1. Arch. Biochem. Biophys. 311, 342–349.

    Article  PubMed  CAS  Google Scholar 

  278. Nunoya, K., T. Yokoi, K. Kimura, K. Inoue, T. Kodama, M. Funayama et al. (1998). A new deleted allele in the human cytochrome P450 2A6 (CYP2A6) gene found in individuals showing poor metabolic capacity to coumarin and (+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride (SM-12502). Pharmacogenetics 8, 239–249.

    Article  PubMed  CAS  Google Scholar 

  279. Nunoya, K., T. Yokoi, K. Kimura, T. Kainuma, K. Satoh, M. Kinoshita et al. (1999). A new CYP2A6 gene deletion responsible for the in vivo polymorphic metabolism of (+)-cis-3,5-dimethyl-2-(3-pyridyl)thiazolidin-4-one hydrochloride in humans. J. Pharmacol. Exp. Ther. 289, 437–442.

    PubMed  CAS  Google Scholar 

  280. Komatsu, T., H. Yamazaki, N. Shimada, M. Nakajima, and T. Yokoi (2000). Roles of cytochromes P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes. Drug Metab. Dispos. 28, 1457–1463.

    PubMed  CAS  Google Scholar 

  281. Ikeda, K., K. Yoshisue, E. Matsushima, S. Nagayama, K. Kobayashi, C.A. Tyson et al. (2000). Bioactivation of tegafur to 5-fluorouracil is catalyzed by cytochrome P-450 2A6 in human liver microsomes in vitro, Clin. Cancer Res. 6, 4409–4415.

    PubMed  CAS  Google Scholar 

  282. Minoda, Y. and E.D. Kharasch (2001). Halothane-dependent lipid peroxidation in human liver microsomes is catalyzed by cytochrome P4502A6 (CYP2A6). Anesthesiology 95, 509–514.

    Article  PubMed  CAS  Google Scholar 

  283. Crespi, C.L., B.W. Penman, J.A. Leakey, M.P. Arlotto, A. Stark, A. Parkinson et al. (1990). Human cytochrome P450IIA3:cDNA sequence, role of the enzyme in the metabolic activation of promutagens, comparison to nitrosamine activation by human cytochrome P450IIE1. Carcinogenesis 11, 1293–1300.

    Article  PubMed  CAS  Google Scholar 

  284. Yamazaki, H., Y. Inui, C.-H. Yun, M. Mimura, F.P. Guengerich, and T. Shimada (1992). Cytochrome P450 2E1 and 2A6 enzymes as major catalysts for metabolic activation of N-nitrosodialkylamines and tobacco-related nitrosamines in human liver microsomes. Carcinogenesis 13, 1789–1794.

    Article  PubMed  CAS  Google Scholar 

  285. Smith, T.J., Z. Guo, F.J. Gonzalez, F.P. Guengerich, G.D. Stoner, and C.S. Yang (1992). Metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in human lung and liver microsomes and cytochromes P-450 expressed in hepatoma cells. Cancer Res. 52, 1757–1763.

    PubMed  CAS  Google Scholar 

  286. Crespi, C.L., B.W. Penman, H.V. Gelboin, and F.J. Gonzalez (1991). A tobacco smoke-derived nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, is activated by multiple human cytochrome P450s including the polymorphic human cytochrome P4502D6. Carcinogenesis 12, 1197–1201.

    Article  PubMed  CAS  Google Scholar 

  287. Tiano, H.F., R.L. Wang, M. Hosokawa, C. Crespi, K.R. Tindall, and R. Langenbach (1994). Human CYP2A6 activation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK): Mutational specificity in the gpt gene of AS52 cells. Carcinogenesis 15, 2859–2866.

    Article  PubMed  CAS  Google Scholar 

  288. von Weymarn, L.B., N.D. Felicia, X. Ding, and S.E. Murphy (1999). N-Nitrosobenzylmethylamine hydroxylation and coumarin 7-hydroxylation: Catalysis by rat esophageal microsomes and cytochrome P450 2A3 and 2A6 enzymes. Chem. Res. Toxicol. 12, 1254–1261.

    Article  CAS  Google Scholar 

  289. Kushida, H., K. Fujita, A. Suzuki, M. Yamada, T. Endo, T. Nohmi et al. (2000). Metabolic activation of N-alkylnitrosamines in genetically engineered Salmonella typhimurium expressing CYP2E1 or CYP2A6 together with human NADPH-cytochrome P450 reductase. Carcinogenesis 21, 1227–1232.

    Article  PubMed  CAS  Google Scholar 

  290. Fujita, K. and T. Kamataki (2001). Predicting the mutagenicity of tobacco-related N-nitrosamines in humans using 11 strains of Salmonella typhimurium YG7108, each coexpressing a form of human cytochrome P450 along with NADPH-cytochrome P450 reductase. Environ. Mol. Mutagen. 38, 339–346.

    Article  PubMed  CAS  Google Scholar 

  291. Nakajima, M., T. Yamamoto, K. Nunoya, T. Yokoi, K. Nagashima, K. Inoue et al. (1996). Role of human cytochrome P4502A6 in C-oxidation of nicotine. Drug Metab. Dispos. 24, 1212–1217.

    PubMed  CAS  Google Scholar 

  292. Messina, E.S., R.F. Tyndale, and E.M. Sellers (1997). A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes. J. Pharmacol. Exp. Ther. 282, 1608–1614.

    PubMed  CAS  Google Scholar 

  293. Yamazaki, H., K. Inoue, M. Hashimoto, and T. Shimada (1999). Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch. Toxicol. 73, 65–70.

    Article  PubMed  CAS  Google Scholar 

  294. Nakajima, M., T. Yamamoto, K. Nunoya, T. Yokoi, K. Nagashima, K. Inoue et al. (1996). Characterization of CYP2A6 involved in 3′-hydroxylation of cotinine in human liver microsomes. J. Pharmacol. Exp. Ther. 277, 1010–1015.

    PubMed  CAS  Google Scholar 

  295. Hecht, S.S., J.B. Hochalter, P.W. Villata, and S.E. Murphy (2000). 2′-Hydroxylation of nicotine by cytochrome P450 2A6 and human liver microsomes: Formation of a lung carcinogen precursor. Proc. Natl. Acad. Sci. USA 97, 12493–12497.

    Article  PubMed  CAS  Google Scholar 

  296. Su, T., Z.P. Bao, Q.Y. Zhang, T.J. Smith, J.Y. Hong, and X.X. Ding (2000). Human cytochrome P450 CYP2A13: Predominant expression in the respiratory tract and its high efficiency metabolic activation of a tobacco-specific carcinogen, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. Cancer Res. 60, 5074–5079.

    PubMed  CAS  Google Scholar 

  297. Gillam, E.M.J., L.M. Notley, H. Cai, J.J. DeVoss, and F.P. Guengerich (2000). Oxidation of indole by cytochrome P450 enzymes. Biochemistry 39, 13817–13824.

    Article  PubMed  CAS  Google Scholar 

  298. Nakamura, K., I.H. Hanna, H. Cai, Y. Nishimura, K.M. Williams, and F.P. Guengerich (2001). Coumarin substrates for cytochrome P450 2D6 fluorescence assays. Anal. Biochem. 292, 280–286.

    Article  PubMed  CAS  Google Scholar 

  299. Lindberg, R.L.P. and M. Negishi (1989). Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature 339, 632–634.

    Article  PubMed  CAS  Google Scholar 

  300. Kitagawa, K., N. Kunugita, M. Kitagawa, and T. Kawamoto (2001). CYP2A6*6, a novel polymorphism in cytochrome P450 2A6, has a single amino acid substitution (R128Q) that inactivates enzymatic activity. J. Biol. Chem. 276, 17830–17835.

    Article  PubMed  CAS  Google Scholar 

  301. Lewis, D.F.V., M. Dickins, B.G. Lake, P.J. Eddershaw, M.H. Tarbit, and P.S. Goldfarb (1999). Molecular modeling of the human cytochrome P450 isoform CYP2A6 and investigations of CYP2A substrate selectivity. Toxicology 133, 1–33.

    Article  PubMed  CAS  Google Scholar 

  302. Lewis, D.F. (2002). Molecular modeling of human cytochrome P450-substrate interactions. Drug Metab. Rev. 34, 55–67.

    Article  PubMed  CAS  Google Scholar 

  303. Lewis, D.F. (2002). Homology modelling of human CYP2 family enzymes based on the CYP2C5 crystal structure. Xenobiotica 32, 305–323.

    Article  PubMed  CAS  Google Scholar 

  304. Lewis, D.F. and J.W. Gorrod (2002). Molecular orbital calculations and nicotine metabolism: A rationale for experimentally observed metabolite ratios. Drug Metabol. Drug Interact. 19, 29–39.

    PubMed  CAS  Google Scholar 

  305. Guengerich, F.P., D.-H. Kim, and M. Iwasaki (1991). Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem. Res. Toxicol. 4, 168–179.

    Article  PubMed  CAS  Google Scholar 

  306. Kharasch, E.D., D.C. Hankins, P.J. Baxter, and K.E. Thummel (1998). Single-dose disulfiram does not inhibit CYP2A6 activity. Clin. Pharmacol. Ther. 64, 39–45.

    Article  PubMed  CAS  Google Scholar 

  307. Murphy, S.E., L.M. Johnson, L.M. Losey, S.G. Carmella, and S.S. Hecht (2001). Consumption of watercress fails to alter coumarin metabolism in humans. Drug Metab. Dispos. 29, 786–788.

    PubMed  CAS  Google Scholar 

  308. Draper, A.J., A. Madan, and A. Parkinson (1997). Inhibition of coumarin 7-hydroxylase activity in human liver microsomes. Arch. Biochem. Biophys. 341, 47–61.

    Article  PubMed  CAS  Google Scholar 

  309. Zhang, W.J., T. Kilicarslan, R.F. Tyndale, and E.M. Sellers (2001). Evaluation of methoxsalen, tranylcypromine, and tryptamine as specific and selective CYP2A6 inhibitors in vitro. Drug Metab. Dispos. 26, 897–902.

    Google Scholar 

  310. Taavitsainen, P., R. Juvonen, and O. Pelkonen (2001). In vitro inhibition of cytochrome P450 enzymes in human liver microsomes by a potent CYP2A6 inhibitor. trans-2-phenylcyclopropylamine (tranylcypromine), and its nonamine analog, cyclopropylbenzene. Drug Metab. Dispos. 29, 217–222.

    PubMed  CAS  Google Scholar 

  311. Koenigs, L.L., R.M. Peter, S.J. Thompson, A.E. Rettie, and W.F. Trager (1997). Mechanism-based inactivation of human liver cytochrome P450 2A6 by 8-methoxypsoralen. Drug Metab. Dispos. 25, 1407–1415.

    PubMed  CAS  Google Scholar 

  312. Sellers, E.M., H.L. Kaplan, and R.F. Tyndale (2000). Inhibition of cytochrome P450 2A6 increases nicotine’s oral bioavailability and decreases smoking. Clin. Pharmacol. Ther. 68, 35–43.

    Article  PubMed  CAS  Google Scholar 

  313. Koenigs, L.L. and W.F. Trager (1998). Mechanism-based inactivation of P450 2A6 by furanocoumarins. Biochemistry 37, 10047–10061.

    Article  PubMed  CAS  Google Scholar 

  314. Khojasteh-Bakht, S.C., L.L. Koenigs, R.M. Peter, W.F. Trager, and S.D. Nelson (1998). (R)-(+)-Menthofuran is a potent, mechanism-based inactivator of human liver cytochrome P450 2A6. Drug Metab. Dispos. 26, 701–704.

    PubMed  CAS  Google Scholar 

  315. Wen, X., J.S. Wang, P.J. Neuvonen, and J.T. Backman (2002). Isoniazid is a mechanism-based inhibitor of cytochrome P450 1A2, 2A6, 2C19 and 3A4 isoforms in human liver microsomes. Eur. J. Clin. Pharmacol. 57, 799–804.

    Article  PubMed  Google Scholar 

  316. Howard, L.A., E.M. Sellers, and R.F. Tyndale (2002). The role of pharmacogenetically-variable cytochrome P450 enzymes in drug abuse and dependence. Pharmacogenomics 3, 185–199.

    Article  PubMed  CAS  Google Scholar 

  317. Tan, W., G.F. Chen, D.Y. Xing, C.Y. Song, F.F. Kadlubar, and D.X. Lin (2001). Frequency of CYP2A6 gene deletion and its relation to risk of lung and esophageal cancer in the Chinese population. Int. J. Cancer 95, 96–101.

    Article  PubMed  CAS  Google Scholar 

  318. Satarug, S., M.A. Lang, P. Yongvanit, P. Sithithaworn, E. Mairiang, P. Mairiang et al. (1996). Induction of cytochrome P450 2A6 expression in humans by the carcinogenic parasite infection, opisthorchiasis viverrini. Cancer Epidemiol. Biomarkers Prev. 5, 795–800.

    PubMed  CAS  Google Scholar 

  319. Pasanen, M., Z. Rannala, A. Tooming, E.A. Sotaniemi, O. Pelkonen, and A. Rautio (1997). Hepatitis A impairs the function of human hepatic CYP2A6 in vivo. Toxicology 123, 177–184.

    Article  PubMed  CAS  Google Scholar 

  320. Koskela, S., J. Hakkola, J. Hukkanen, O. Pelkonen, M. Sorri, A. Saranen et al. (1999). Expression of CYP2A genes in human liver and extrahepatic tissues. Biochem. Pharmacol. 57, 1407–1413.

    Article  PubMed  CAS  Google Scholar 

  321. Oscarson, M., R.A. McLellan, H. Gullsten, J.A.G. Agundez, J. Benitez, A. Rautio et al. (1999). Identification and characterisation of novel polymorphisms in the CYP2A locus: Implications for nicotine metabolism. FEBS Lett. 460, 321–327.

    Article  PubMed  CAS  Google Scholar 

  322. Fernandez-Salguero, P., S.M.G. Hoffman, S. Cholerton, H. Mohrenweiser, H. Raunio, A. Rautio et al. (1995). A genetic polymorphism in coumarin 7-hydroxylation. Sequence of the human CYP2A genes and identification of variant CYP2A6 alleles. Am. J. Hum. Genet. 57, 651–660.

    PubMed  CAS  Google Scholar 

  323. Koskela, S., J. Hakkola, J. Hukkanen, O. Pelkonen, M. Sorri, A. Saranen et al. (1999). Expression of CYP2A genes in human liver and extrahepatic tissues. Biochem. Pharmacol. 57, 1407–1413.

    Article  PubMed  CAS  Google Scholar 

  324. Zhang, X., T. Su, Q.Y. Zhang, J. Gu, M. Caggana, H. Li et al. (2002). Genetic polymorphisms of the human CYP2A13 gene: Identification of single-nucleotide polymorphisms and functional characterization of an Arg257Cys variant. J. Pharmacol. Exp. Ther. 302, 416–423.

    Article  PubMed  CAS  Google Scholar 

  325. Von Weymarn, L.B. and S.E. Murphy (2003). CYP2A13-catalysed coumarin metabolism: Comparison with CYP2A5 and CYP2A6. Xenobiotica 33, 73–81.

    Article  CAS  Google Scholar 

  326. Mimura, M., T. Baba, Y. Yamazaki, S. Ohmori, Y. Inui, F.J. Gonzalez et al. (1993). Characterization of cytochrome P450 2B6 in human liver microsomes. Drug Metab. Dispos. 21, 1048–1056.

    PubMed  CAS  Google Scholar 

  327. Hukkanen, J., A. Pelkonen, J. Hakkola, and H. Raunio (2002). Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit. Rev. Toxicol. 32, 391–411.

    Article  PubMed  CAS  Google Scholar 

  328. van der Hoeven, T.A., D.A. Haugen, and M.J. Coon (1974). Cytochrome P-450 purified to apparent homogeneity from phenobarbital-induced rabbit liver microsomes: Catalytic activity and other properties. Biochem. Biophys. Res. Commun. 60, 569–575.

    Article  PubMed  Google Scholar 

  329. Imai, Y. and R. Sato (1974). A gel-electrophoretically homogeneous preparation of cytochrome P-450 from liver microsomes of phenobarbital-pretreated rabbits. Biochem. Biophys. Res. Commun. 60, 8–14.

    Article  PubMed  CAS  Google Scholar 

  330. Phillips, I.R., E.A. Shephard, A. Ashworth, and B.R. Rabin (1985). Isolation and sequence of a human cytochrome P-450 cDNA clone. Proc. Natl. Acad. Sci. USA 82, 983–987.

    Article  PubMed  CAS  Google Scholar 

  331. Stresser, D.M. and D. Kupfer (1999). Monospecific antipeptide antibody to cytochrome P-450 2B6. Drug Metab. Dispos. 27, 517–525.

    PubMed  CAS  Google Scholar 

  332. Code, E.L., C.L. Crespi, B.W. Penman, F.J. Gonzalez, T.K.H. Chang, and D.J. Waxman (1997). Human cytochrome P4502B6. Interindividual hepatic expression, substrate specificity, and role in procarcinogen activation. Drug Metab. Dispos. 25, 985–993.

    PubMed  CAS  Google Scholar 

  333. Ekins, S., M. VandenBranden, B.J. Ring, J.S. Gillespie, T.J. Yang, H.V. Gelboin et al. (1998). Further characterization of the expression in liver and catalytic activity of CYP2B6. J. Pharmacol. Exp. Ther. 286, 1253–1259.

    PubMed  CAS  Google Scholar 

  334. Imaoka, S., T. Yamada, T. Hiroi, K. Hayashi, T. Sakaki, Y. Yabusaki et al. (1996). Multiple forms of human P450 expressed in Saccharomyces cerevisiae: Systematic characterization and comparison with those of the rat. Biochem. Pharmacol. 51, 1041–1050.

    Article  PubMed  CAS  Google Scholar 

  335. Roy, P., L.J. Yu, C.L. Crespi, and D.J. Waxman (1999). Development of a substrate-activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles. Drug Metab. Dispos. 27, 655–666.

    PubMed  CAS  Google Scholar 

  336. Gervot, L., B. Rochat, J.C. Gautier, F. Bohnenstengel, H. Kroemer, V. de Berardinis et al. (1999). Human CYP2B6: Expression, inducibility and catalytic activities. Pharmacogenetics 9, 295–306.

    Article  PubMed  CAS  Google Scholar 

  337. Hanna, I.H., J.R. Reed, F.P. Guengerich, and P.F. Hollenberg (2000). Expression of human cytochrome P450 2B6 in Escherichia coli: Characterization of catalytic activity and expression levels in human liver. Arch. Biochem. Biophys. 376, 206–216.

    Article  PubMed  CAS  Google Scholar 

  338. Sueyoshi, T., T. Kawamoto, I. Zelko, P. Honkakoski, and M. Neigishi (1999). The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene. J. Biol. Chem. 274, 6043–6046.

    Article  PubMed  CAS  Google Scholar 

  339. Jover, R., R. Bort, M.J. Gomezlechon, and J.V. Castell (1998). Re-expression of C/EBPα induces CYP2B6, CYP2C9 and CYP2D6 genes in HepG2 cells. FEBS Lett. 431, 227–230.

    Article  PubMed  CAS  Google Scholar 

  340. Goodwin, B., L.B. Moore, C.M. Stoltz, D.D. McKee, and S.A. Kliewer (2001). Regulation of the human CYP2B6 gene by the nuclear pregnane X receptor. Mol. Pharmacol. 60, 427–431.

    PubMed  CAS  Google Scholar 

  341. Willson, T.M. and S.A. Kliewer (2002). PXR, CAR and drug metabolism. Nat. Rev. Drug Discov. 1, 259–266.

    Article  PubMed  CAS  Google Scholar 

  342. Makinen, J., C. Frank, J. Jyrkkarinne, J. Gynther, C. Carlberg, and P. Honkakoski (2002). Modulation of mouse and human phenobarbital-responsive enhancer module by nuclear receptors. Mol. Pharmacol. 62, 366–378.

    Article  PubMed  CAS  Google Scholar 

  343. Drocourt, L., J.C. Ourlin, J.M. Pascussi, P. Maurel, and M.J. Vilarem (2002). Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary human hepatocytes. J. Biol. Chem. 277, 25125–25132.

    Article  PubMed  CAS  Google Scholar 

  344. Chang, T.K., S.M. Bandiera, and J. Chen (2003). Constitutive androstane receptor and pregnane X receptor gene expression in human liver: Interindividual variability and correlation with CYP2B6 mRNA levels. Drug Metab. Dispos. 31, 7–10.

    Article  PubMed  CAS  Google Scholar 

  345. Maglich, J.M., D.J. Parks, L.B. Moore, J.L. Collins, B. Goodwin, A.N. Billin et al. (2003). Identification of a novel human CAR agonist and its use in the identification of CAR target genes. J. Biol. Chem. 278, 17277–17283.

    Article  PubMed  CAS  Google Scholar 

  346. Wang, H., S. Faucette, T. Sueyoshi, R. Moore, S. Ferguson, M. Negishi et al. (2003). A novel distal enhancer module regulated by PXR/CAR is essential for the maximal induction of CYP2B6 gene expression. J. Biol. Chem. 278, 14146–14152.

    Article  PubMed  CAS  Google Scholar 

  347. Miles, J.S., A.W. McLaren, F.J. Gonzalez, and C.R. Wolf (1990). Alternative splicing in the human cytochrome P450IIB6 gene: Use of a cryptic exon within intron 3 and splice acceptor site within exon 4. Nucleic Acids Res. 18, 189.

    Article  PubMed  CAS  Google Scholar 

  348. Zanger, U.M., J. Fischer, K. Klein, and T. Lang (2002). Detection of single nucleotide polymorphisms in CYP2B6 gene. Meth. Enzymol. 357, 45–53.

    PubMed  CAS  Google Scholar 

  349. Lang, T., K. Klein, J. Fischer, A.K. Nussler, P. Neuhaus, U. Hofmann et al. (2001). Extensive genetic polymorphism in the human CYP2B6 gene with impact on expression and function in human liver. Pharmacogenetics 11, 399–415.

    Article  PubMed  CAS  Google Scholar 

  350. Ariyoshi, N., M. Miyazaki, K. Toide, Y. Sawamura, and T. Kamataki (2001). A single nucleotide polymorphism of CYP2B6 found in Japanese enhances catalytic activity by autoactivation. Biochem. Biophys. Res. Commun. 281, 1256–1260.

    Article  PubMed  CAS  Google Scholar 

  351. Haugen, D.A. and M.J. Coon (1976). Properties of electrophoretically homogenous phenobarbitalinducible and β-naphthoflavone-inducible forms of liver microsomal cytochrome P-450. J. Biol. Chem. 251, 7929–7939.

    PubMed  CAS  Google Scholar 

  352. Coon, M.J. (1981). The 1980 Bernard B. Brodie Award lecture. Drug metabolism by cytochrome P-450: Progress and perspectives. Drug Metab. Dispos. 9, 1–4.

    PubMed  CAS  Google Scholar 

  353. Guengerich, F.P. (1977). Separation and purification of multiple forms of microsomal cytochrome P-450. Activities of different forms of cytochrome P-450 towards several compounds of environmental interest. J. Biol. Chem. 252, 3970–3979.

    PubMed  CAS  Google Scholar 

  354. Lu, A.Y.H. and S.B. West (1978). Reconstituted mammalian mixed-function oxidases: Requirements, specificities and other properties. Pharmacol. Ther. 2, 337–338.

    CAS  Google Scholar 

  355. Ekins, S. and S.A. Wrighton (1999). The role of CYP2B6 in human xenobiotic metabolism. Drug Metab. Rev. 31, 719–754.

    Article  PubMed  CAS  Google Scholar 

  356. Chang, T.K.H., G.F. Weber, C.L. Crespi, and D.J. Waxman (1993). Differential activation of cyclophosphamide and ifosphamide by cytochromes P-450 2B and 3A in human liver microsomes. Cancer Res. 53, 5629–5637.

    PubMed  CAS  Google Scholar 

  357. Xie, H.J., U. Yasar, S. Lundgren, L. Griskevicius, Y. Terelius, M. Hassan et al. (2003). Role of polymorphic human CYP2B6 in cyclophosphamide bioactivation. Pharmacogenomics J. 3, 53–61.

    Article  PubMed  CAS  Google Scholar 

  358. Yanagihara, Y., S. Kariya, M. Ohtani, K. Uchino, T. Aoyama, Y. Yamamura et al. (2001). Involvement of CYP2B6 in N-demethylation of ketamine in human liver microsomes. Drug Metab. Dispos. 29, 887–890.

    PubMed  CAS  Google Scholar 

  359. Court, M.H., S.X. Duan, L.M. Hesse, K. Venkatakrishnan, and D.J. Greenblatt (2001). Cytochrome P-450 2B6 is responsible for interindividual variability of propofol hydroxylation by human liver microsomes. Anesthesiology 94, 110–119.

    Article  PubMed  CAS  Google Scholar 

  360. Heyn, H., R.B. White, and J.C. Stevens (1996). Catalytic role of cytochrome P4502B6 in the N-demethylation of S-mephenytoin. Drug Metab. Dispos. 24, 948–954.

    PubMed  CAS  Google Scholar 

  361. Ko, J.W., Z. Desta, and D.A. Flockhart (1998). Human N-demethylation of (S)-mephenytoin by cytochrome P450s 2C9 and 2B6. Drug Metab. Dispos. 26, 775–778.

    PubMed  CAS  Google Scholar 

  362. Ekins, S., M. VandenBranden, B.J. Ring, and S.A. Wrighton (1997). Examination of purported probes of human CYP2B6. Pharmacogenetics 7, 165–179.

    Article  PubMed  CAS  Google Scholar 

  363. Ariyoshi, N., K. Oguri, N. Koga, H. Yoshimura, and Y. Funae (1995). Metabolism of highly persistent PCB congener, 2, 4,5, 2′,4′,5′-hexachlorobiphenyl, by human CYP2B6. Biochem. Biophys. Res. Commun. 212, 455–460.

    Article  PubMed  CAS  Google Scholar 

  364. Lewis, D.F.V., B.G. Lake, M. Dickins, P.J. Eddershaw, M.H. Tarbit, and P.S. Goldfarb (1999). Molecular modelling of CYP2B6, the human CYP2B isoform, by homology with the substrate-bound CYP102 crystal structure: Evaluation of CYP2B6 substrate characteristics, the cytochrome b 5 binding site and comparisons with CYP2B1 and CYP2B4. Xenobiotica 29, 361–393.

    Article  PubMed  CAS  Google Scholar 

  365. Lewis, D.F., S. Modi, and M. Dickins (2001). Quantitative structure-activity relationships (QSARs) within substrates of human cytochromes P450 involved in drug metabolism. Drug Metabol. Drug Interact. 18, 221–242.

    PubMed  CAS  Google Scholar 

  366. Bathelt, C., R.D. Schmid, and J. Pleiss (2002). Regioselectivity of CYP2B6: Homology modeling, molecular dynamics simulation, docking. J. Mol. Model. (Online) 8, 327–335.

    Article  PubMed  CAS  Google Scholar 

  367. Domanski, T.L., K.M. Schultz, F. Roussel, J.C. Stevens, and J.R. Halpert (1999). Structure-function analysis of human cytochrome P-450 2B6 using a novel substrate, site-directed mutagenesis, and molecular modeling. J. Pharmacol. Exp. Ther. 290, 1141–1147.

    PubMed  CAS  Google Scholar 

  368. Scott, E.E., Y.A. He, M.A. Wester, C.C. Clin, J.R. Halpert, E.F. Johnson, and C.D. Stout (2003). An open conformation of mammalian cytochrome P450 2B4 at 1.6-Å resolution. Proc. Natl. Acad. Sci. U.S.A. 100, 13121–13122.

    Article  CAS  Google Scholar 

  369. Guo, Z., S. Raeissi, R.B. White, and J.C. Stevens (1997). Orphenadrine and methimazole inhibit multiple cytochrome P450 enzymes in human liver microsomes. Drug Metab. Dispos. 25, 390–393.

    PubMed  Google Scholar 

  370. Stiborova, M., L. Borek-Dohalska, P. Hodek, J. Mraz, and E. Frei (2002). New selective inhibitors of cytochromes P450 2B and their application to antimutagenesis of tamoxifen. Arch. Biochem. Biophys. 403, 41–49.

    Article  PubMed  CAS  Google Scholar 

  371. Rae, J.M., N.V. Soukhova, D.A. Flockhart, and Z. Desta (2002). Triethylenethiophosphoramide is a specific inhibitor of cytochrome P4502B6: Implications for cyclophosphamide metabolism. Drug Metab. Dispos. 30, 525–530.

    Article  PubMed  CAS  Google Scholar 

  372. Kent, U.M., D.E. Mills, R.V. Rajnarayanan, W.L. Alworth, and P.F. Hollenberg (2002). Effect of 17α-ethynylestradiol on activities of cytochrome P450 2B (P450 2B) enzymes: Characterization of inactivation of P450s 2B1 and 2B6 and identification of metabolites. J. Pharmacol. Exp. Ther. 300, 549–558.

    Article  PubMed  CAS  Google Scholar 

  373. Küpfer, A. and R. Preisig (1984). Pharmacogenetics of mephenytoin: A new drug hydroxylation polymorphism in man. Eur. J. Clin. Pharmacol. 26, 753–759.

    Article  PubMed  Google Scholar 

  374. Wedlund, P.J., W.S. Aslanian, C.B. McAllister, G.R. Wilkinson, and R.A. Branch (1984). Mephenytoin hydroxylation deficiency in Caucasians: Frequency of a new oxidative drug metabolism polymorphism. Clin. Pharmacol. Ther. 36, 773–780.

    PubMed  CAS  Google Scholar 

  375. Knodell, R.G., S.D. Hall, G.R. Wilkinson, and F.P. Guengerich (1987). Hepatic metabolism of tolbutamide: Characterization of the form of cytochrome P-450 involved in methyl hydroxylation and relationship to in vivo disposition. J. Pharmacol. Exp. Ther. 241, 1112–1119.

    PubMed  CAS  Google Scholar 

  376. Brian, W.R., P.K. Srivastava, D.R. Umbenhauer, R.S. Lloyd, and F.P. Guengerich (1989). Expression of a human liver cytochrome P-450 protein with tolbutamide hydroxylase activity in Saccharomyces cerevisiae. Biochemistry 28, 4993–4999.

    Article  PubMed  CAS  Google Scholar 

  377. Ged, C., D.R. Umbenhauer, T.M. Bellew, R.W. Bork, P.K. Srivastava, N. Shinriki et al. (1988). Characterization of cDNAs, mRNAs, and proteins related to human liver microsomal cytochrome P-450 (S)-mephenytoin 4′-hydroxylase. Biochemistry 27, 6929–6940.

    Article  PubMed  CAS  Google Scholar 

  378. Romkes, M., M.B. Faletto, J.A. Blaisdell, J.L. Raucy, and J.A. Goldstein (1991). Cloning and expression of complementary DNAs for multiple members of the human cytochrome P450IIC subfamily. Biochemistry 30, 3247–3255.

    Article  PubMed  CAS  Google Scholar 

  379. Wrighton, S.A., J.C. Stevens, G.W. Becker, and M. VandenBranden (1993). Isolation and characterization of human liver cytochrome P450 2C19: Correlation between 2C19 and S-mephenytoin 4′-hydroxylation. Arch. Biochem. Biophys. 306, 240–245.

    Article  PubMed  CAS  Google Scholar 

  380. Goldstein, J.A., M.B. Faletto, M. Romkes-Sparks, T. Sullivan, S. Kitareewan, J.L. Raucy et al. (1994). Evidence that CYP2C19 is the major (S)-mephenytoin 4′-hydroxylase in humans. Biochemistry 33, 1743–1752.

    Article  PubMed  CAS  Google Scholar 

  381. Nelson, D.R., L. Koymans, T. Kamataki, J.J. Stegeman, R. Feyereisen, D.J. Waxman et al. (1996). P450 superfamily: Update on new sequences, gene mapping, accession numbers, and nomenclature. Pharmacogenetics 6, 1–42.

    Article  PubMed  CAS  Google Scholar 

  382. Dai, D., D.C. Zeldin, J.A. Blaisdell, B. Chanas, S.J. Coulter, B.I. Ghanayem et al. (2001). Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 11, 597–607.

    Article  PubMed  CAS  Google Scholar 

  383. Klose, T.S., J.A. Blaisdell, and J.A. Goldstein (1999). Gene structure of CYP2C8 and extrahepatic distribution of the human CYP2Cs. J. Biochem. Mol. Toxicol. 13, 289–295.

    Article  PubMed  CAS  Google Scholar 

  384. Bahadur, N., J.B. Leathart, E. Mutch, D. Steimel-Crespi, S.A. Dunn, R. Gilissen et al. (2002). CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6α-hydroxylase activity in human liver microsomes. Biochem. Pharmacol. 64, 1579–1589.

    Article  PubMed  CAS  Google Scholar 

  385. Gerbal-Chaloin, S., J.M. Pascussi, L. Pichard-Garcia, M. Daujat, F. Waechter, J.M. Fabre et al. (2001). Induction of CYP2C genes in human hepatocytes in primary culture. Drug Metab. Dispos. 29, 242–251.

    PubMed  CAS  Google Scholar 

  386. Soyama, A., Y. Saito, N. Hanioka, N. Murayama, O. Nakajima, N. Katori et al. (2001). Nonsynonymous single nucleotide alterations found in the CYP2C8 gene result in reduced in vitro paclitaxel metabolism. Biol. Pharm. Bull. 24, 1427–1430.

    Article  PubMed  CAS  Google Scholar 

  387. Rahman, A., K.R. Korzekwa, J. Grogan, F.J. Gonzalez, and J.W. Harris (1994). Selective biotransformation of taxol to 6α-hydroxytaxol by human cytochrome P450 2C8. Cancer Res. 54, 5543–5546.

    PubMed  CAS  Google Scholar 

  388. Leo, M.A., J.M. Lasker, J.L. Raucy, C.I. Kim, M. Black, and C.S. Lieber (1989). Metabolism of retinol and retinoic acid by human liver cytochrome P450IIC8. Arch. Biochem. Biophys. 269, 305–312.

    Article  PubMed  CAS  Google Scholar 

  389. Yamazaki, H., A. Shibata, M. Suzuki, M. Nakajima, N. Shimada, F.P. Guengerich et al. (1999). Oxidation of troglitazone to a quinone-type metabolite catalyzed by cytochrome P450 2C8 and 3A4 in human liver microsomes. Drug Metab. Dispos. 27, 1260–1266.

    PubMed  CAS  Google Scholar 

  390. Marques-Soares, C., S. Dijols, A.-C. Macherey, M.R. Wester, E.F. Johnson, P.M. Dansette et al. (2003). Sulfaphenazole derivatives as tools for comparing cytochrome P450 2C5 and human cytochrome P450 2Cs: Identification of a new high affinity substrate common to those CYP 2C enzymes. Biochemistry 42, 6363–6369.

    Article  PubMed  CAS  Google Scholar 

  391. Wester, M.R., E.F. Johnson, C. Marques-Soares, P. Dansette, D. Mansuy, and C.D. Stout (2003). The structure of a substrate complex of mammalian cytochrome P450 2C5 at 2.3 Å resolution: Evidence for multiple substrate binding modes. Biochemistry 42, 9335–9345.

    Article  PubMed  CAS  Google Scholar 

  392. Schoch, G.A., J.K. Yano, M.R. Wester, K.J. Griffin, C.D. Stout, and E.F. Johnson (2004). Structure of human microsomal cytochrome P450 2C8. Evidence for a peripheral fatty acid binding site. J. Biol. Chem. 279, 9497–9503.

    Article  PubMed  CAS  Google Scholar 

  393. Ha-Duong, N.T., S. Dijols, C. Marques-Soares, C. Minoletti, P.M. Dansette, and D. Mansuy (2001). Synthesis of sulfaphenazole derivatives and their use as inhibitors and tools for comparing the active sites of human liver cytochromes P450 of the 2C subfamily. J. Med. Chem. 44, 3622–3631.

    Article  PubMed  CAS  Google Scholar 

  394. Ha-Duong, N.T., C. Marques-Soares, S. Dijols, M.A. Sari, P.M. Dansette, and D. Mansuy (2001). Interaction of new sulfaphenazole derivatives with human liver cytochrome P4502Cs: Structural determinants required for selective recognition by CYP2C9 and for inhibition of human CYP2Cs. Arch. Biochem. Biophys. 394, 189–200.

    Article  PubMed  CAS  Google Scholar 

  395. Zilly, W., D.D. Breimer, and E. Richter (1975). Induction of drug metabolism in man after rifampicin treatment measured by increased hexobarbital and tolbutamide clearance. Eur. J. Clin. Pharmacol. 9, 219–227.

    Article  PubMed  CAS  Google Scholar 

  396. Umbenhauer, D.R., M.V. Martin, R.S. Lloyd, and F.P. Guengerich (1987). Cloning and sequence determination of a complementary DNA related to human liver microsomal cytochrome P-450 S-mephenytoin 4-hydroxylase. Biochemistry 26, 1094–1099.

    Article  PubMed  CAS  Google Scholar 

  397. Knodell, R.G., R.K. Dubey, G.R. Wilkinson, and F.P. Guengerich (1988). Oxidative metabolism of hexobarbital in human liver: Relationship to polymorphic S-mephenytoin 4-hydroxylation. J. Pharmacol. Exp. Ther. 245, 845–849.

    PubMed  CAS  Google Scholar 

  398. Yasumori, T., N. Murayama, Y. Yamazoe, A. Abe, Y. Nogi, T. Fukasawa et al. (1989). Expression of a human P-450IIC gene in yeast cells using galactose-inducible expression system. Mol. Pharmacol. 35, 443–449.

    PubMed  CAS  Google Scholar 

  399. Srivastava, P.K., C.-H. Yun, P.H. Beaune, C. Ged, and F.P. Guengerich (1991). Separation of human liver tolbutamine hydroxylase and (S)-mephenytoin 4′-hydroxylase cytochrome P-450 enzymes. Mol. Pharmacol. 40, 69–79.

    PubMed  CAS  Google Scholar 

  400. Treluyer, J.M., G. Gueret, G. Cheron, M. Sonnier, and T. Cresteil (1997). Developmental expression of CYP2C and CYP2C-dependent activities in the human liver: in-vivo/in-vitro correlation and inducibility. Pharmacogenetics 7, 441–452.

    Article  PubMed  CAS  Google Scholar 

  401. Brenner, S.S., C. Herrlinger, K. Dilger, T.E. Murdter, U. Hofmann, C. Marx et al. (2003). Influence of age and cytochrome P450 2C9 genotype on the steady-state disposition of diclofenac and celecoxib. Clin. Pharmacokinet. 42, 283–292.

    Article  PubMed  CAS  Google Scholar 

  402. Obach, R.S., Q.Y. Zhang, D. Dunbar, and L.S. Kaminsky (2001). Metabolic characterization of the major human small intestinal cytochrome P450s. Drug Metab. Dispos. 29, 347–352.

    PubMed  CAS  Google Scholar 

  403. Morel, F., P.H. Beaune, D. Ratanasavanh, J.-P. Flinois, C.-S. Yang, F.P. Guengerich et al. (1990). Expression of cytochrome P-450 enzymes in cultured human hepatocytes. Eur. J. Biochem. 191, 437–444.

    Article  PubMed  CAS  Google Scholar 

  404. Raucy, J.L., L. Mueller, K. Duan, S.W. Allen, S. Strom, and J.M. Lasker (2002). Expression and induction of CYP2C P450 enzymes in primary cultures of human hepatocytes. J. Pharmacol. Exp. Ther. 302, 475–482.

    Article  PubMed  CAS  Google Scholar 

  405. Gerbal-Chaloin, S., M. Daujat, J.M. Pascussi, L. Pichard-Garcia, M.J. Vilarem, and P. Maurel (2002). Transcriptional regulation of CYP2C9 gene. Role of glucocorticoid receptor and constitutive androstane receptor. J. Biol. Chem. 277, 209–217.

    Article  PubMed  CAS  Google Scholar 

  406. Ferguson, S.S., E.L. LeCluyse, M. Negishi, and J.A. Goldstein (2002). Regulation of human CYP2C9 by the constitutive androstane receptor: Discovery of a new distal binding site. Mol. Pharmacol. 62, 737–746.

    Article  PubMed  CAS  Google Scholar 

  407. Pascussi, J.M., S. Gerbal-Chaloin, L. Drocourt, P. Maurel, and M.J. Vilarem (2003). The expression of CYP2B6, CYP2C9 and CYP3A4 genes: A tangle of networks of nuclear and steroid receptors. Biochim. Biophys. Acta 1619, 243–253.

    PubMed  CAS  Google Scholar 

  408. Ibeanu, G.C. and J.A. Goldstein (1995). Transcriptional regulation of human CYP2C genes: Functional comparison of CYP2C9 and CYP2C18 promoter regions. Biochemistry 34, 8028–8036.

    Article  PubMed  CAS  Google Scholar 

  409. Scott, J. and P.L. Poffenbarger (1978). Pharmacogenetics of tolbutamide metabolism in humans. Diabetes 28, 41–51.

    Google Scholar 

  410. Ohgiya, S., M. Komori, H. Ohi, K. Shiramatsu, N. Shinriki, and T. Kamataki (1992). Six-base deletion occurring in messages of human cytochrome P-450 in the CYP2C subfamily results in reduction of tolbutamide hydroxylase activity. Biochem. Int. 27, 1073–1081.

    PubMed  CAS  Google Scholar 

  411. Goldstein, J.A. and S.M.F. Demorais (1994). Biochemistry and molecular biology of the human CYP2C subfamily. Pharmacogenetics 4, 285–299.

    Article  PubMed  CAS  Google Scholar 

  412. Inoue, K., H. Yamazaki, K. Imiya, S. Akasaka, F.P. Guengerich, and T. Shimada (1997). Relationship between CYP2C9 and CYP2C19 genotypes and tolbutamide methyl hydroxylation and S-mephenytoin 4′-hydroxylation in livers of Japanese and Caucasian populations. Pharmacogenetics 7, 103–113.

    Article  PubMed  CAS  Google Scholar 

  413. Lee, C.R., J.A. Goldstein, and J.A. Pieper (2002). Cytochrome P450 2C9 polymorphisms: A comprehensive review of the in-vitro and human data. Pharmacogenetics 12, 251–263.

    Article  PubMed  CAS  Google Scholar 

  414. Xie, H.G., H.C. Prasad, R.B. Kim, and C.M. Stein (2002). CYP2C9 allelic variants: Ethnic distribution and functional significance. Adv. Drug Deliv. Rev. 54, 1257–1270.

    Article  PubMed  CAS  Google Scholar 

  415. Dickmann, L.J., A.E. Rettie, M.B. Kneller, R.B. Kim, A.J. Wood, C.M. Stein et al. (2001). Identification and functional characterization of a new CYP2C9 variant (CYP2C9*5) expressed among African Americans. Mol. Pharmacol. 60, 382–387.

    PubMed  CAS  Google Scholar 

  416. Shintani, M., I. Ieiri, K. Inoue, K. Mamiya, H. Ninomiya, N. Tashiro et al. (2001). Genetic polymorphisms and functional characterization of the 5′-flanking region of the human CYP2C9 gene: In vitro and in vivo studies. Clin. Pharmacol. Ther. 70, 175–182.

    Article  PubMed  CAS  Google Scholar 

  417. Warner, S.C., C. Finta, and P.G. Zaphiropoulos (2001). Intergenic transcripts containing a novel human cytochrome P450 2C exon 1 spliced to sequences from the CYP2C9 gene. Mol. Biol. Evol. 18, 1841–1848.

    PubMed  CAS  Google Scholar 

  418. Yasar, U., S. Lundgren, E. Eliasson, A. Bennet, B. Wiman, U. de Faire et al. (2002). Linkage between the CYP2C8 and CYP2C9 genetic polymorphisms. Biochem. Biophys. Res. Commun. 299, 25–28.

    Article  PubMed  CAS  Google Scholar 

  419. Miners, J.O. and D.J. Birkett (1998). Cytochrome P4502C9: An enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. 45, 525–538.

    Article  PubMed  CAS  Google Scholar 

  420. Giancarlo, G.M., K. Venkatakrishnan, B.W. Granda, L.L. von Moltke, and D.J. Greenblatt (2001). Relative contributions of CYP2C9 and 2C19 to phenytoin 4-hydroxylation in vitro: Inhibition by sulfaphenazole, omeprazole, and ticlopidine. Eur. J. Clin. Pharmacol. 57, 31–36.

    Article  PubMed  CAS  Google Scholar 

  421. Draper, A.J. and B.D. Hammock (2000). Identification of CYP2C9 as a human liver microsomal linoleic acid epoxygenase. Arch. Biochem. Biophys. 376, 199–205.

    Article  PubMed  CAS  Google Scholar 

  422. McSorley, L.C. and A.K. Daly (2000). Identification of human cytochrome P450 isoforms that contribute to all-trans-retinoic acid 4-hydroxylation. Biochem. Pharmacol. 60, 517–526.

    Article  PubMed  CAS  Google Scholar 

  423. Lee, C.R., J.A. Pieper, R.F. Frye, A.L. Hinderliter, J.A. Blaisdell, and J.A. Goldstein (2003). Tolbutamide, flurbiprofen, and losartan as probes of CYP2C9 activity in humans. J. Clin. Pharmacol. 43, 84–91.

    Article  PubMed  CAS  Google Scholar 

  424. Sandberg, M., U. Yasar, P. Stromberg, J.O. Hoog, and E. Eliasson (2002). Oxidation of celecoxib by polymorphic cytochrome P450 2C9 and alcohol dehydrogenase. Br. J. Clin. Pharmacol. 54, 423–429.

    Article  PubMed  CAS  Google Scholar 

  425. Tang, C., M. Shou, T.H. Rushmore, Q. Mei, P. Sandhu, E.J. Woolf et al. (2001). In-vitro metabolism of celecoxib, a cyclooxygenase-2 inhibitor, by allelic variant forms of human liver microsomal cytochrome P450 2C9: Correlation with CYP2C9 genotype and in-vivo pharmacokinetics. Pharmacogenetics 11, 223–235.

    Article  PubMed  CAS  Google Scholar 

  426. Tang, C.Y., M.G. Shou, and A.D. Rodrigues (2000). Substrate-dependent effect of acetonitrile on human liver microsomal cytochrome P4502C9 (CYP2C9) activity. Drug Metab. Dispos. 28, 567–572.

    PubMed  CAS  Google Scholar 

  427. Yamazaki, H., E.M.J. Gillam, M.-S. Dong, W.W. Johnson, F.P. Guengerich, and T. Shimada (1997). Reconstitution of recombinant human cytochrome P450 2C9 and comparison with cytochrome P450 and other forms: Effects of cytochrome P450:P450 and cytochrome P450:b 5 interactions. Arch. Biochem. Biophys. 342, 329–337.

    Article  PubMed  CAS  Google Scholar 

  428. Yamazaki, H., T. Komatsu, K. Ohyama, M. Nakamura, S. Asahi, N. Shimada et al. (2002). Roles of NADPH-P450 reductase and apo-and holo-cytochrome b 5 on xenobiotic oxidations catalyzed by 12 recombinant human cytochrome P450s expressed in membranes of Escherichia coli. Protein Expr. Purif. 24, 329–337.

    Article  PubMed  CAS  Google Scholar 

  429. Backes, W.L., C.J. Batie, and G.F. Cawley (1998). Interactions among P450 enzymes when combined in reconstituted systems: Formation of a 2B4-1A2 complex with a high affinity for NADPH cytochrome P450 reductase. Biochemistry 37, 12852–12859.

    Article  PubMed  CAS  Google Scholar 

  430. Hutzler, J.M., D. Kolwankar, M.A. Hummel, and T.S. Tracy (2002). Activation of CYP2C9-mediated metabolism by a series of dapsone analogs: Kinetics and structural requirements. Drug Metab. Dispos. 30, 1194–1200.

    Article  PubMed  CAS  Google Scholar 

  431. Hutzler, J.M., L.C. Wienkers, J.L. Wahlstrom, T.J. Carlson, and T.S. Tracy (2003). Activation of cytochrome P450 2C9-mediated metabolism: Mechanistic evidence in support of kinetic observations. Arch. Biochem. Biophys. 410, 16–24.

    Article  PubMed  Google Scholar 

  432. Ueng, Y.-F., T. Kuwabara, Y.-J. Chun, and F.P. Guengerich (1997). Cooperativity in oxidations catalyzed by cytochrome P450 3A4. Biochemistry 36, 370–381.

    Article  PubMed  CAS  Google Scholar 

  433. Takanashi, K., H. Tainaka, K. Kobayashi, T. Yasumori, M. Hosakawa, and K. Chiba (2000). CYP2C9 Ile359 and Leu359 variants: Enzyme kinetic study with seven substrates. Pharmacogenetics 10, 95–104.

    Article  PubMed  CAS  Google Scholar 

  434. Yasar, U., E. Eliasson, C. Forslund-Bergengren, G. Tybring, M. Gadd, F. Sjoqvist et al. (2001). The role of CYP2C9 genotype in the metabolism of diclofenac in vivo and in vitro. Eur. J. Clin. Pharmacol. 57, 729–735.

    Article  PubMed  CAS  Google Scholar 

  435. Ridderstrom, M., C. Masimirembwa, S. Trump-Kallmeyer, M. Ahlefelt, C. Otter, and T.B. Andersson (2000). Arginines 97 and 108 in CYP2C9 are important determinants of the catalytic function. Biochem. Biophys. Res. Commun. 270, 983–987.

    Article  PubMed  CAS  Google Scholar 

  436. Flanagan, J.U., L.A. McLaughlin, M.J. Paine, M.J. Sutcliffe, G.C. Roberts, and C.R. Wolf (2003). Role of conserved Asp293 of cytochrome P450 2C9 in substrate recognition and catalytic activity. Biochem. J. 370, 921–926.

    Article  PubMed  CAS  Google Scholar 

  437. He, M., K.R. Korzekwa, J.P. Jones, A.E. Rettie, and W.F. Trager (1999). Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9. Arch. Biochem. Biophys. 372, 16–28.

    Article  PubMed  CAS  Google Scholar 

  438. Mancy, A., S. Dijols, S. Poli, F.P. Guengerich, and D. Mansuy (1997). Interaction of sulfaphenazole derivatives with human liver cytochromes P450 2C: Molecular origin of the specific inhibitory effects of sulfaphenazole on CYP 2C9 and consequences for the sub-strate binding topology. Biochemistry 35, 16205–16212.

    Article  Google Scholar 

  439. Mancy, A., P. Broto, S. Dijols, P.M. Dansette, and D. Mansuy (1995). The substrate binding site of human liver cytochrome P450 2C9: An approach using designed tienilic acid derivatives and molecular modeling. Biochemistry 34, 10365–10375.

    Article  PubMed  CAS  Google Scholar 

  440. Tsao, C.C., M.R. Wester, B. Ghanayem, S.J. Coulter, B. Chanas, E.F. Johnson et al. (2001). Identification of human CYP2C19 residues that confer S-mephenytoin 4′-hydroxylation activity to CYP2C9. Biochemistry 40, 1937–1944.

    Article  PubMed  CAS  Google Scholar 

  441. Jung, F., K.J. Griffin, T.H. Richardson, M. Yang, and E.F. Johnson (1998). Identification of amino acid substitutions that confer a high affinity for sulphaphenazole binding and a high catalytic efficiency for warfarin metabolism to P450 2C19. Biochemistry 37, 16270–16279.

    Article  PubMed  CAS  Google Scholar 

  442. Niwa, T., A. Kageyama, K. Kishimoto, Y. Yabusaki, F. Ishibashi, and M. Katagiri (2002). Amino acid residues affecting the activities of human cytochrome P450 2C9 and 2C19. Drug Metab. Dispos. 30, 931–936.

    Article  PubMed  CAS  Google Scholar 

  443. Melet, A., N. Assrir, P. Jean, M. Pilar Lopez-Garcia, C. Marques-Soares, M. Jaouen et al. (2003). Substrate selectivity of human cytochrome P450 2C9: Importance of residues 476, 365, and 114 in recognition of diclofenac and sulfaphenazole and in mechanism-based inactivation by tienilic acid. Arch. Biochem. Biophys. 409, 80–91.

    Article  PubMed  CAS  Google Scholar 

  444. Guengerich, F.P., I.H. Hanna, M.V. Martin, and E.M.J. Gillam (2003). Role of glutamic acid 216 in cytochrome P450 2D6 substrate binding and catalysis. Biochemistry 42, 1245–1253.

    Article  PubMed  CAS  Google Scholar 

  445. Lewis, D.F.V., M. Dickins, R.J. Weaver, P.J. Eddershaw, P.S. Goldfarb, and M.H. Tarbit (1998). Molecular modelling of human CYP2C subfamily enzymes CYP2C9 and CYP2C19: Rationalization of substrate specificity and site-directed mutagensis experiments in the CYP2C subfamily. Xenobiotica 28, 235–268.

    Article  PubMed  CAS  Google Scholar 

  446. Afzelius, L., I. Zamora, M. Ridderstrom, T.B. Andersson, A. Karlen, and C.M. Masimirembwa (2001). Competitive CYP2C9 inhibitors: Enzyme inhibition studies, protein homology modeling, and three-dimensional quantitative structure-activity relationship analysis. Mol. Pharmacol. 59, 909–919.

    PubMed  CAS  Google Scholar 

  447. Ridderström, M., I. Zamora, O. Fjellström, and T.B. Andersson (2001). Analysis of selective regions in the active sites of human cytochromes P450, 2C8, 2C9, 2C18, and 2C19 homology models using GRID/CPCA. J. Med. Chem. 44, 4072–4081.

    Article  PubMed  CAS  Google Scholar 

  448. de Groot, M.J., A.A. Alex, and B.C. Jones (2002). Development of a combined protein and pharmacophore model for cytochrome P450 2C9. J. Med. Chem. 45, 1983–1993.

    Article  PubMed  CAS  Google Scholar 

  449. Williams, P.A., J. Cosme, A. Ward, H.C. Angove, D. Matak Vinkovic, and H. Jhoti (2003). Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424, 464–468.

    Article  PubMed  CAS  Google Scholar 

  450. Wester, M.R., C.D. Stout, G. Schoch, J.K. Yano, and E.F. Johnson (2003). Crystallization of human P450 2C9. FASEB J. 17, A609.

    Google Scholar 

  451. Veronese, M.E., J.O. Miners, D. Randles, D. Gregov, and D.J. Birkett (1990). Validation of the tolbutamide metabolic ratio for population screening with use of sulfaphenazole to produce model phenotypic poor metabolizers. Clin. Pharmacol. Ther. 47, 403–411.

    PubMed  CAS  Google Scholar 

  452. Wen, X., J.S. Wang, J.T. Backman, J. Laitila, and P.J. Neuvonen (2002). Trimethoprim and sulfamethoxazole are selective inhibitors of CYP2C8 and CYP2C9, respectively. Drug Metab. Dispos. 30, 631–635.

    Article  PubMed  CAS  Google Scholar 

  453. Wen, X., J.S. Wang, K.T. Kivisto, P.J. Neuvonen, and J.T. Backman (2001). In vitro evaluation of valproic acid as an inhibitor of human cytochrome P450 isoforms: Preferential inhibition of cytochrome P450 2C9 (CYP2C9). Br. J. Clin. Pharmacol. 52, 547–553.

    Article  PubMed  CAS  Google Scholar 

  454. Zhang, Z.Y., J. Kerr, R.S. Wexler, H.Y. Li, A.J. Robinson, P.P. Harlow et al. (1997). Warfarin analog inhibition of human CYP2C9-catalyzed S-warfarin 7-hydroxylation. Thromb. Res. 88, 389–398.

    Article  PubMed  CAS  Google Scholar 

  455. Beaune, P., P.M. Dansette, D. Mansuy, L. Kiffel, M. Finck, C. Amar et al. (1987). Human antiendoplasmic reticulum autoantibodies appearing in a drug-induced hepatitis are directed against a human liver cytochrome P-450 that hydroxylates the drug. Proc. Natl. Acad. Sci. USA 84, 551–555.

    Article  PubMed  CAS  Google Scholar 

  456. Dansette, P.M., D.C. Thang, H. El Amri, and D. Mansuy (1992). Evidence for thiophene-S-oxide as a primary reactive metabolite of thiophene in vivo: Formation of a dihydrothiophene sulfoxide mercapturic acid. Biochem. Biophys. Res. Commun. 186, 1624–1630.

    Article  PubMed  CAS  Google Scholar 

  457. Beaune, P., D. Pessayre, P. Dansette, D. Mansuy, and M. Manns (1994). Autoantibodies against cytochromes P450: Role in human diseases. Adv. Pharmacol. 30, 199–245.

    PubMed  CAS  Google Scholar 

  458. Carlile, D.J., N. Hakooz, M.K. Bayliss, and J.B. Houston (1999). Microsomal prediction of in vivo clearance of CYP2C9 substrates in humans. Br. J. Clin. Pharmacol. 47, 625–635.

    Article  PubMed  CAS  Google Scholar 

  459. Goldstein, J.A. (2001). Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br. J. Clin. Pharmacol. 52, 349–355.

    Article  PubMed  CAS  Google Scholar 

  460. Kaminsky, L.S. and Z.Y. Zhang (1997). Human P450 metabolism of warfarin. Pharmacol. Ther. 73, 67–74.

    Article  PubMed  CAS  Google Scholar 

  461. Yamazaki, H. and T. Shimada (1997). Human liver cytochrome P450 enzymes involved in the 7-hydroxylation of R-and S-warfarin enantiomers. Biochem. Pharmacol. 54, 1195–1203.

    Article  PubMed  CAS  Google Scholar 

  462. Kunze, K.L., A.C. Eddy, M. Gibaldi, and W.F. Trager (1991). Metabolic enantiomeric interactions: The inhibition of human (S)-warfarin-7-hydroxylase by (R)-warfarin. Chirality 3, 24–29.

    Article  PubMed  CAS  Google Scholar 

  463. Rettie, A.E., K.R. Korzekwa, K.L. Kunze, R.F. Lawrence, A.C. Eddy, T. Aoyama et al. (1992). Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: A role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem. Res. Toxicol. 5, 54–59.

    Article  PubMed  CAS  Google Scholar 

  464. Rettie, A.E., L.C. Wienkers, F.J. Gonzalez, W.F. Trager, and K.R. Korzekwa (1994). Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 4, 39–42.

    Article  PubMed  CAS  Google Scholar 

  465. Yamazaki, H., K. Inoue, and T. Shimada (1998). Roles of two allelic variants (Arg144Cys and Ile359Leu) of cytochrome P4502C9 in the oxidation of tolbutamide and warfarin by human liver microsomes. Xenobiotica 28, 103–115.

    Article  PubMed  CAS  Google Scholar 

  466. Scordo, M.G., V. Pengo, E. Spina, M.L. Dahl, M. Gusella, and R. Padrini (2002). Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin. Pharmacol. Ther. 72, 702–710.

    Article  PubMed  CAS  Google Scholar 

  467. Higashi, M.K., D.L. Veenstra, L.M. Kondo, A.K. Wittkowsky, S.L. Srinouanprachanh, F.M. Farin et al. (2002). Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. J. Am. Med. Assoc. 287, 1690–1698.

    Article  CAS  Google Scholar 

  468. Tassies, D., C. Freire, J. Pijoan, S. Maragall, J. Monteagudo, A. Ordinas et al. (2002). Pharmacogenetics of acenocoumarol: Cytochrome P450 CYP2C9 polymorphisms influence dose requirements and stability of anticoagulation. Haematologica 87, 1185–1191.

    PubMed  CAS  Google Scholar 

  469. Gentry, P.R., C.E. Hack, L. Haber, A. Maier, and H.J. Clewell, III (2002). An approach for the quantitative consideration of genetic polymorphism data in chemical risk assessment: Examples with warfarin and parathion. Toxicol. Sci. 70, 120–139.

    Article  PubMed  CAS  Google Scholar 

  470. Lee, C.R., J.A. Pieper, A.L. Hinderliter, J.A. Blaisdell, and J.A. Goldstein (2002). Evaluation of cytochrome P4502C9 metabolic activity with tolbutamide in CYP2C91 heterozygotes. Clin. Pharmacol. Ther. 72, 562–571.

    Article  PubMed  CAS  Google Scholar 

  471. Shon, J.H., Y.R. Yoon, K.A. Kim, Y.C. Lim, K.J. Lee, J.Y. Park et al. (2002). Effects of CYP2C19 and CYP2C9 genetic polymorphisms on the disposition of and blood glucose lowering response to tolbutamide in humans. Pharmacogenetics 12, 111–119.

    Article  PubMed  CAS  Google Scholar 

  472. Miners, J. (2002). CYP2C9 polymorphism: Impact on tolbutamide pharmacokinetics and response. Pharmacogenetics 12, 91–92.

    Article  PubMed  Google Scholar 

  473. Hallberg, P., J. Karlsson, L. Kurland, L. Lind, T. Kahan, K. Malmqvist et al. (2002). The CYP2C9 genotype predicts the blood pressure response to irbesartan: Results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation vs Atenolol (SILVHIA) trial. J. Hypertens. 20, 2089–2093.

    Article  PubMed  CAS  Google Scholar 

  474. Yun, C.-H., H.S. Lee, H. Lee, J.K. Rho, H.G. Jeong, and F.P. Guengerich (1995). Oxidation of the angiotensin II receptor antagonist losartan (DuP 753) in human liver microsomes: Role of cytochrome P450 3A(4) in formation of the active metabolite EXP 3174. Drug Metab. Dispos. 23, 285–289.

    PubMed  CAS  Google Scholar 

  475. Stearns, R.A., P.K. Chakravarty, R. Chen, and S.H.L. Chiu (1995). Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes: Role of cytochrome P4502C and 3A subfamily members. Drug Metab. Dispos. 23, 207–215.

    PubMed  CAS  Google Scholar 

  476. Aithal, G.P., C.P. Day, J.B. Leathart, and A.K. Daly (2000). Relationship of polymorphism in CYP2C9 to genetic susceptibility to diclofenac-induced hepatitis. Pharmacogenetics 10, 511–518.

    Article  PubMed  CAS  Google Scholar 

  477. Martinez, C., E. Garcia-Martin, J.M. Ladero, J. Sastre, F. Garcia-Gamito, M. Diaz-Rubio et al. (2001). Association of CYP2C9 genotypes leading to high enzyme activity and colorectal cancer risk. Carcinogenesis 22, 1323–1326.

    Article  PubMed  CAS  Google Scholar 

  478. Yasar, U., E. Eliasson, and M.L. Dahl (2002). Association of CYP2C9 genotypes leading to high enzyme activity and colorectal cancer risk. Carcinogenesis 23, 665; author reply 667–668.

    Article  PubMed  CAS  Google Scholar 

  479. Garcia-Martin, E., C. Martinez, J.M. Ladero, F.J. Gamito, A. Rodriguez-Lescure, and J.A. Agundez (2002). Influence of cytochrome P450 CYP2C9 genotypes in lung cancer risk. Cancer Lett. 180, 41–46.

    Article  PubMed  CAS  Google Scholar 

  480. Minoletti, C., S. Dijols, P.M. Dansette, and D. Mansuy (1999). Comparison of the substrate specificities of human liver cytochrome P450s 2C9 and 2C18: Application to the design of a specific substrate of CYP 2C18. Biochemistry 38, 7828–7836.

    Article  PubMed  CAS  Google Scholar 

  481. Richardson, T.H., K.J. Griffin, F. Jung, J.L. Raucy, and E.F. Johnson (1997). Targeted antipeptide antibodies to cytochrome P450 2C18 based on epitope mapping of an inhibitory monoclonal antibody to P450 2C5. Arch. Biochem. Biophys. 338, 157–164.

    Article  PubMed  CAS  Google Scholar 

  482. Zaphiropoulos, P.G. (1999). RNA molecules containing exons originating from different members of the cytochrome P450 2C gene subfamily (CYP2C) in human epidermis and liver. Nucleic Acids Res. 27, 2585–2590.

    Article  PubMed  CAS  Google Scholar 

  483. Mace, K., E.D. Bowman, P. Vautravers, P.G. Shields, C.C. Harris, and A.M. Pfeifer (1998). Characterisation of xenobiotic-metabolising enzyme expression in human bronchial mucosa and peripheral lung tissues. Eur. J. Cancer 34, 914–920.

    Article  PubMed  CAS  Google Scholar 

  484. Mizugaki, M., M. Hiratsuka, Y. Agatsuma, Y. Matsubara, K. Fujii, S. Kure et al. (2000). Rapid detection of CYP2C18 genotypes by real-time fluorescence polymerase chain reaction. J. Pharm. Pharmacol. 52, 199–205.

    Article  PubMed  CAS  Google Scholar 

  485. Zhu-Ge, J., Y.N. Yu, Y.L. Qian, and X. Li (2002). Establishment of a transgenic cell line stably expressing human cytochrome P450 2C18 and identification of a CYP2C18 clone with exon 5 missing. World J. Gastroenterol. 8, 888–892.

    PubMed  Google Scholar 

  486. Payne, V.A., Y.T. Chang, and G.H. Loew (1999). Homology modeling and substrate binding study of human CYP2C18 and CYP2C19 enzymes. Proteins 37, 204–217.

    Article  PubMed  CAS  Google Scholar 

  487. Meier, U.T. and U.A. Meyer (1987). Genetic polymorphism of human cytochrome P-450 (S)-mephenytoin 4-hydroxylase. Studies with human autoantibodies suggest a functionally altered cytochrome P-450 isozyme as cause of the genetic deficiency. Biochemistry 26, 8466–8474.

    Article  PubMed  CAS  Google Scholar 

  488. Wilkinson, G.R., F.P. Guengerich, and R.A. Branch (1989). Genetic polymorphism of S-mephenytoin hydroxylation. Pharmacol. Ther. 43, 53–76.

    Article  PubMed  CAS  Google Scholar 

  489. Yasumori, T., N. Murayama, Y. Yamazoe, and R. Kato (1990). Polymorphism in hydroxylation of mephenytoin and hexobarbital stereoisomers in relation to hepatic P-450 human-2. Clin. Pharmacol. Ther. 47, 313–322.

    PubMed  CAS  Google Scholar 

  490. Kim, M.J., J.S. Bertino, Jr., A. Gaedigk, Y. Zhang, E.M. Sellers, and A.N. Nafziger (2002). Effect of sex and menstrual cycle phase on cytochrome P450 2C19 activity with omeprazole used as a biomarker. Clin. Pharmacol. Ther. 72, 192–199.

    Article  PubMed  CAS  Google Scholar 

  491. Zhou, H.H., L.B. Anthony, A.J. Wood, and G.R. Wilkinson (1990). Induction of polymorphic 4′-hydroxylation of S-mephenytoin by rifampicin. Br. J. Clin. Pharmacol. 30, 471–475.

    PubMed  CAS  Google Scholar 

  492. Blaisdell, J., H. Mohrenweiser, J. Jackson, S. Ferguson, S. Coulter, B. Chanas et al. (2002). Identification and functional characterization of new potentially defective alleles of human CYP2C19. Pharmacogenetics 12, 703–711.

    Article  PubMed  CAS  Google Scholar 

  493. Desta, Z., X. Zhao, J.G. Shin, and D.A. Flockhart (2002). Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin. Pharmacokinet. 41, 913–958.

    Article  PubMed  CAS  Google Scholar 

  494. de Morais, S.M.F., G.R. Wilkinson, J. Blaisdell, K. Nakamura, U.A. Meyer, and J.A. Goldstein (1994). The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J. Biol. Chem. 269, 15419–15422.

    PubMed  Google Scholar 

  495. Ferguson, R.J., S.M. De Morais, S. Benhamou, C. Bouchardy, J. Blaisdell, G. Ibeanu et al. (1998). A new genetic defect in human CYP2C19: Mutation of the initiation codon is responsible for poor metabolism of S-mephenytoin. J. Pharmacol. Exp. Ther. 284, 356–361.

    PubMed  CAS  Google Scholar 

  496. Wester, M.R., J.M. Lasker, E.F. Johnson, and J.L. Raucy (2000). CYP2C19 participates in tolbutamide hydroxylation by human liver microsomes. Drug Metab. Dispos. 28, 354–359.

    PubMed  CAS  Google Scholar 

  497. Kaminsky, L.S., D.A. Dunbar, P.P. Wang, P. Beaune, D. Larrey, F.P. Guengerich et al. (1984). Human hepatic cytochrome P-450 composition as probed by in vitro microsomal metabolism of warfarin. Drug Metab. Dispos. 12, 470–477.

    PubMed  CAS  Google Scholar 

  498. Wienkers, L.C., C.J. Wurden, E. Storch, K.L. Kunze, A.E. Rettie, and W.F. Trager (1996). Formation of (R)-8-hydroxywarfarin in human liver microsomes: A new metabolic marker for the (S)-mephenytoin hydroxylase, P4502C19. Drug Metab. Dispos. 24, 610–614.

    PubMed  CAS  Google Scholar 

  499. Zhang, W., Y. Ramamoorthy, R.F. Tyndale, S.D. Glick, I.M. Maisonneuve, M.E. Kuehne et al. (2002). Metabolism of 18-methoxycoronaridine, an ibogaine analog, to 18-hydroxycoronaridine by genetically variable CYP2C19. Drug Metab. Dispos. 30, 663–669.

    Article  PubMed  CAS  Google Scholar 

  500. Ando, Y., E. Fuse, and W.D. Figg (2002). Thalidomide metabolism by the CYP2C subfamily. Clin. Cancer Res. 8, 1964–1973.

    PubMed  CAS  Google Scholar 

  501. Yamazaki, H. and T. Shimada (1997). Progesterone and testosterone hydroxylation by cytochromes P450 2C19, 2C9, and 3A4 in human liver microsomes. Arch. Biochem. Biophys. 346, 161–169.

    Article  PubMed  CAS  Google Scholar 

  502. Kappers, W.A., R.J. Edwards, S. Murray, and A.R. Boobis (2001). Diazinon is activated by CYP2C19 in human liver. Toxicol. Appl. Pharmacol. 177, 68–76.

    Article  PubMed  CAS  Google Scholar 

  503. Ibeanu, G.C., B.I. Ghanayem, P. Linko, L. Li, L.G. Pedersen, and J.A. Goldstein (1996). Identification of residues 99, 220, and 221 of human cytochrome P450 2C19 as key determinants of omeprazole hydroxylase activity. J. Biol. Chem. 271, 12496–12501.

    Article  PubMed  CAS  Google Scholar 

  504. Furuta, T., N. Shirai, M. Takashima, F. Xiao, H. Hanai, K. Nakagawa et al. (2001). Effects of genotypic differences in CYP2C19 status on cure rates for Helicobacter pylori infection by dual therapy with rabeprazole plus amoxicillin. Pharmacogenetics 11, 341–348.

    Article  PubMed  CAS  Google Scholar 

  505. Furuta, T., N. Shirai, F. Watanabe, S. Honda, K. Takeuchi, T. Iida et al. (2002). Effect of cytochrome P4502C19 genotypic differences on cure rates for gastroesophageal reflux disease by lansoprazole. Clin. Pharmacol. Ther. 72, 453–460.

    Article  PubMed  CAS  Google Scholar 

  506. Kita, T., T. Sakaeda, N. Aoyama, T. Sakai, Y. Kawahara, M. Kasuga et al. (2002). Optimal dose of omeprazole for CYP2C19 extensive metabolizers in anti-Helicobacter pylori therapy: Pharmacokinetic considerations. Biol. Pharm. Bull. 25, 923–927.

    Article  PubMed  CAS  Google Scholar 

  507. Kita, T., T. Sakaeda, T. Baba, N. Aoyama, M. Kakumoto, Y. Kurimoto et al. (2003). Different contribution of CYP2C19 in the in vitro metabolism of three proton pump inhibitors. Biol. Pharm. Bull. 26, 386–390.

    Article  PubMed  CAS  Google Scholar 

  508. Chau, T.K., S. Marakami, B. Kawai, K. Nasu, T. Kubota, and A. Ohnishi (2000). Genotype analysis of the CYP2C19 gene in HCV-seropositive patients with cirrhosis and hepatocellular carcinoma. Life Sci. 67, 1719–1724.

    Article  PubMed  CAS  Google Scholar 

  509. Roddam, P.L., S. Rollinson, E. Kane, E. Roman, A. Moorman, R. Cartwright et al. (2000). Poor metabolizers at the cytochrome P450 2D6 and 2C19 loci are at increased risk of developing adult acute leukaemia. Pharmacogenetics 10, 605–615.

    Article  PubMed  CAS  Google Scholar 

  510. Treluyer, J.M., E. Jacqz-Aigrain, F. Alvarez, and T. Cresteil (1991). Expression of CYP2D6 in developing human liver. Eur. J. Biochem. 202, 583–588.

    Article  PubMed  CAS  Google Scholar 

  511. Lo Guidice, J.M., D. Marez, N. Sabbagh, M. LegrandAndreoletti, C. Spire, E. Alcaïde et al. (1997). Evidence for CYP2D6 expression in human lung. Biochem. Biophys. Res. Commun. 241, 79–85.

    Article  PubMed  CAS  Google Scholar 

  512. Siegle, I., P. Fritz, K. Eckhardt, U.M. Zanger, and M. Eichelbaum (2001). Cellular localization and regional distribution of CYP2D6 mRNA and protein expression in human brain. Pharmacogenetics 11, 237–245.

    Article  PubMed  CAS  Google Scholar 

  513. Miksys, S., Y. Rao, E. Hoffmann, D.C. Mash, and R.F. Tyndale (2002). Regional and cellular expression of CYP2D6 in human brain: Higher levels in alcoholics. J. Neurochem. 82, 1376–1387.

    Article  PubMed  CAS  Google Scholar 

  514. Idle, J.R., A. Mahgoub, R. Lancaster, and R.L. Smith (1978). Hypotensive response to debrisoquine and hydroxylation phenotype. Life Sci. 22, 979–984.

    Article  PubMed  CAS  Google Scholar 

  515. Alvan, G., C. von Bahr, P. Seideman, and F. Sjoqvist (1982). High plasma concentrations of β-receptor blocking drugs and deficient debrisoquine hydroxylation. Lancet i, 333.

    Article  Google Scholar 

  516. Evans, D.A.P., D. Harmer, D.Y. Downham, E.J. Whibley, J.R. Idle, J. Ritchie et al. (1983). The genetic control of sparteine and debrisoquine metabolism in man with new methods of analysing bimodal distributions. J. Med. Genet. 20, 321–329.

    PubMed  CAS  Google Scholar 

  517. Skoda, R.C., F.J. Gonzalez, A. Demierre, and U.A. Meyer (1988). Two mutant alleles of the human cytochrome P-450db1 gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc. Natl. Acad. Sci. USA 85, 5240–5243.

    Article  PubMed  CAS  Google Scholar 

  518. Gaedigk, A., R.R. Gotschall, N.S. Forbes, S.D. Simon, G.L. Kearns, and J.S. Leeder (1999). Optimization of cytochrome P4502D6 (CYP2D6) phenotype assignment using a genotyping algorithm based on allele frequency data. Pharmacogenetics 9, 669–682.

    PubMed  CAS  Google Scholar 

  519. Raimundo, S., J. Fischer, M. Eichelbaum, E.U. Griese, M. Schwab, and U.M. Zanger (2000). Elucidation of the genetic basis of the common ‘intermediate metabolizer’ phenotype for drug oxidation by CYP2D6. Pharmacogenetics 10, 577–581.

    Article  PubMed  CAS  Google Scholar 

  520. Zanger, U.M., J. Fischer, S. Raimundo, T. Stuven, B.O. Evert, M. Schwab et al. (2001). Comprehensive analysis of the genetic factors determining expression and function of hepatic CYP2D6. Pharmacogenetics 11, 573–585.

    Article  PubMed  CAS  Google Scholar 

  521. Tyndale, R., T. Aoyama, F. Broly, T. Matsunaga, T. Inaba, W. Kalow et al. (1991). Identification of a new variant CYP2D6 allele lacking the codon encoding Lys-281: Possible association with the poor metabolizer phenotype. Pharmacogenetics 1, 26–32.

    Article  PubMed  CAS  Google Scholar 

  522. Yu, A., B.M. Kneller, A.E. Rettie, and R.L. Haining (2002). Expression, purification, biochemical characterization, and comparative function of human cytochrome P450 2D6.1, 2D6.2, 2D6.10, and 2D6.17 allelic isoforms. J. Pharmacol. Exp. Ther. 303, 1291–1300.

    Article  PubMed  CAS  Google Scholar 

  523. Fletcher, B., D.B. Goldstein, A.L. Bradman, M.E. Weale, N. Bradman, and M.G. Thomas (2003). High-throughput analysis of informative CYP2D6 compound haplotypes. Genomics 81, 166–174.

    Article  PubMed  CAS  Google Scholar 

  524. Dahl, M.L., I. Johansson, L. Bertilsson, M. Ingelman-Sundberg, and F. Sjoqvist (1995). Ultrarapid hydroxylation of debrisoquine in a Swedish population. Analysis of the molecular genetic basis. J. Pharmacol. Exp. Ther. 274, 516–520.

    PubMed  CAS  Google Scholar 

  525. Lundqvist, E., I. Johansson, and M. Ingelman-Sundberg (1999). Genetic mechanisms for duplication and multiduplication of the human CYP2D6 gene and methods for detection of duplicated CYP2D6 genes. Gene 226, 327–338.

    Article  PubMed  CAS  Google Scholar 

  526. Lovlie, R., A.K. Daly, A. Molven, J.R. Idle, and V.M. Steen (1996). Ultrarapid metabolizers of debrisoquine: Characterization and PCR-based detection of alleles with duplication of the CYP2D6 gene. FEBS Lett. 392, 30–34.

    Article  PubMed  CAS  Google Scholar 

  527. Köhnke, M.D., E.U. Griese, D. Stosser, I. Gaertner, and G. Barth (2002). Cytochrome P450 2D6 deficiency and its clinical relevance in a patient treated with risperidone. Pharmacopsychiatry 35, 116–118.

    Article  PubMed  Google Scholar 

  528. Guengerich, F.P. (2001). Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem. Res. Toxicol. 14, 611–650.

    PubMed  CAS  Google Scholar 

  529. Wolff, T., L.M. Distlerath, M.T. Worthington, J.D. Groopman, G.J. Hammons, F.F. Kadlubar et al. (1985). Substrate specificity of human liver cytochrome P-450 debrisoquine 4-hydroxylase probed using immunochemical inhibition and chemical modeling. Cancer Res. 45, 2116–2122.

    PubMed  CAS  Google Scholar 

  530. Islam, S.A., C.R. Wolf, M.S. Lennard, and M.J.E. Sternberg (1991). A three-dimensional molecular template for substrates of human cytochrome P450 involved in debrisoquine 4-hydroxylation. Carcinogenesis 12, 2211–2219.

    Article  PubMed  CAS  Google Scholar 

  531. Strobl, G.R., S. von Kruedener, J. Stöckigt, F.P. Guengerich, and T. Wolff (1993). Development of a pharmacophore for inhibition of human liver cytochrome P-450 2D6: Molecular modeling and inhibition studies. J. Med. Chem. 36, 1136–1145.

    Article  PubMed  CAS  Google Scholar 

  532. Koymans, L., N.P.E. Vermeulen, S.A.B.E. van Acker, J.M. te Koppele, J.J.P. Heykants, K. Lavrijsen et al. (1992). A predictive model for substrates of cytochrome P450-debrisoquine (2D6). Chem. Res. Toxicol. 5, 211–219.

    Article  PubMed  CAS  Google Scholar 

  533. de Groot, M.J., G.J. Bijloo, B.J. Martens, F.A.A. van Acker, and N.P.E. Vermeulen (1997). A refined substrate model for human cytochrome P450 2D6. Chem. Res. Toxicol. 10, 41–48.

    Article  PubMed  Google Scholar 

  534. Upthagrove, A.L. and W.L. Nelson (2001). Importance of amine pKa and distribution coefficient in the metabolism of fluorinated propranolol derivatives. Preparation, identification of metabolite regioisomers, and metabolism by CYP2D6. Drug Metab. Dispos. 29, 1377–1388.

    PubMed  CAS  Google Scholar 

  535. Miller, G.P., I.H. Hanna, Y. Nishimura, and F.P. Guengerich (2001). Oxidation of phenylethylamine derivatives by cytochrome P450 2D6: The issue of substrate protonation in binding and catalysis. Biochemistry 40, 14215–14223.

    Article  PubMed  CAS  Google Scholar 

  536. Grace, J.M., M.T. Kinter, and T.L. Macdonald (1994). Atypical metabolism of deprenyl and its enantiomer, (S)-(+)-N,α-dimethyl-N-propynylphenethylamine, by cytochrome P450 2D6. Chem. Res. Toxicol. 7, 286–290.

    Article  PubMed  CAS  Google Scholar 

  537. Niwa, T., Y. Yabusaki, K. Honma, N. Matsuo, K. Tatsuta, F. Ishibashi et al. (1998). Contribution of human hepatic cytochrome P450 isoforms to regioselective hydroxylation of steroid hormones. Xenobiotica 28, 539–547.

    Article  PubMed  CAS  Google Scholar 

  538. Hiroi, T., T. Chow, S. Imaoka, and Y. Funae (2000). Catalytic specificity of each CYP2D isoform in rat and human. Abstracts, 13th Int. Sympos. Microsomes and Drug Oxidations, 10–14 July, Stresa: p. 113.

    Google Scholar 

  539. Guengerich, F.P., G.P. Miller, I.H. Hanna, M.V. Martin, S. Léger, C. Black et al. (2002). Diversity in the oxidation of substrates by cytochrome P450 2D6. Lack of an obligatory role of aspartate 301-substrate electrostatic bonding. Biochemistry 41, 11025–11034.

    Article  PubMed  CAS  Google Scholar 

  540. Martinez, C., J.A. Agundez, G. Gervasini, R. Martin, and J. Benitez (1997). Tryptamine: A possible endogenous substrate for CYP2D6. Pharmacogenetics 7, 85–93.

    Article  PubMed  CAS  Google Scholar 

  541. Yu, A.M., J.R. Idle, T. Herraiz, A. Küpfer, and F.J. Gonzalez (2003). Screening for endogenous substrates reveals that CYP2D6 is a 5-methoxyindolethylamine O-demethylase. Pharmacogenetics 13, 307–319.

    Article  PubMed  CAS  Google Scholar 

  542. Yu, A.M., J.R. Idle, L.G. Byrd, K.W. Krausz, A. Kupfer, and F.J. Gonzalez (2003). Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6. Pharmacogenetics 13, 173–181.

    Article  PubMed  CAS  Google Scholar 

  543. Koymans, L., N.P.E. Vermeulen, A. Baarslag, and G. Donne-Op den Kelder (1993). A preliminary 3D model for cytochrome P450 2D6 constructed by homology model building. J. Comput. Aided Mol. Des. 7, 281–289.

    Article  PubMed  CAS  Google Scholar 

  544. de Groot, M.J., N.P.E. Vermeulen, J.D. Kramer, F.A.A. van Acker, and G.M. Donné-Op den Kelder (1996). A three-dimensional protein model for human cytochrome P450 2D6 based on the crystal structure of P450 101, P450 102, and P450 108. Chem. Res. Toxicol. 9, 1079–1091.

    Article  PubMed  Google Scholar 

  545. Lewis, D.F.V., P.J. Eddershaw, P.S. Goldfarb, and M.H. Tarbit (1997). Molecular modeling of cytochrome P4502D6 (CYP2D6) based on an alignment with CYP102: Structural studies on specific CYP2D6 substrate metabolism. Xenobiotica 27, 319–340.

    Article  PubMed  CAS  Google Scholar 

  546. Modi, S., M.J. Paine, M.J. Sutcliffe, L.Y. Lian, W.U. Primrose, C.R. Wolf et al. Roberts (1996). A model for human cytochrome P450 2D6 based on homology modeling and NMR studies of substrate binding. Biochemistry 35, 4540–4550.

    Article  PubMed  CAS  Google Scholar 

  547. de Groot, M.J., M.J. Ackland, V.A. Horne, A.A. Alex, and B.C. Jones (1999). A novel approach to predicting P450 mediated drug metabolism. CYP2D6 catalyzed N-dealkylation reactions and qualitative metabolite predictions using a combined protein and pharmacophore model for CYP2D6. J. Med. Chem. 42, 4062–4070.

    Article  PubMed  CAS  Google Scholar 

  548. Kirton, S.B., C.A. Kemp, N.P. Tomkinson, S. St.-Gallay, and M.J. Sutcliffe (2002). Impact of incorporating the 2C5 crystal structure into comparative models of cytochrome P450 2D6. Proteins 49, 216–231.

    Article  PubMed  CAS  Google Scholar 

  549. Venhorst, J., A.M. ter Laak, J.N. Commandeur, Y. Funae, T. Hiroi, and N.P. Vermeulen (2003). Homology modeling of rat and human cytochrome P450 2D (CYP2D) isoforms and computational rationalization of experimental ligand-binding specificities. J. Med. Chem. 46, 74–86.

    Article  PubMed  CAS  Google Scholar 

  550. Crespi, C.L., D.T. Steimel, B.W. Penman, K.R. Korzekwa, P. Fernandez-Salguero, J.T.M. Buters et al. (1995). Comparison of substrate metabolism by wild type CYP2D6 protein and a variant containing methionine, not valine, at position 374. Pharmacogenetics 5, 234–243.

    Article  PubMed  CAS  Google Scholar 

  551. Ellis, S.W., K. Rowland, M.J. Ackland, E. Rekka, A.P. Simula, M.S. Lennard et al. (1996). Influence of amino acid residue 374 of cytochrome P-450 2D6(CYP2D6) on the regio-and enantio-selective metabolism of metoprolol. Biochem. J. 316, 647–654.

    PubMed  CAS  Google Scholar 

  552. Ellis, S.W., G.P. Hayhurst, G. Smith, T. Lightfoot, M.M.S. Wong, A.P. Simula et al. (1995). Evidence that aspartic acid 301 is a critical substrate-contact residue in the active site of cytochrome P450 2D6. J. Biol. Chem. 270, 29055–29058.

    Article  PubMed  CAS  Google Scholar 

  553. Hanna, I.H., M.-S. Kim, and F.P. Guengerich (2001). Heterologous expression of cytochrome P450 2D6 mutants, electron transfer, and catalysis of bufuralol hydroxylation. The role of aspartate 301 in structural integrity. Arch. Biochem. Biophys. 393, 255–261.

    Article  PubMed  CAS  Google Scholar 

  554. Paine, M.J., L.A. McLaughlin, J.U. Flanagan, C.A. Kemp, M.J. Sutcliffe, G.C. Roberts et al. (2003). Residues glutamate 216 and aspartate 301 are key determinants of substrate specificity and product regioselectivity in cytochrome P450 2D6. J. Biol. Chem. 278, 4021–4027.

    Article  PubMed  CAS  Google Scholar 

  555. Smith, G., S. Modi, I. Pillai, L.-Y. Lian, M.J. Sutcliffe, M.P. Pritchard et al. (1998). Determinants of the substrate specificity of human cytochrome P-450 CYP2D6: Design and construction of a mutant with testosterone hydroxylase activity. Biochem. J. 331, 783–792.

    PubMed  CAS  Google Scholar 

  556. Wiseman, H. and D.F. Lewis (1996). The metabolism of tamoxifen by human cytochromes P450 is rationalized by molecular modelling of the enzyme-substrate interactions: Potential importance to its proposed anti-carcinogenic/carcinogenic actions. Carcinogenesis 17, 1357–1360.

    Article  PubMed  CAS  Google Scholar 

  557. Lightfoot, T., S.W. Ellis, J. Mahling, M.J. Ackland, F.E. Blaney, G.J. Bijloo et al. (2000). Regioselectivity hydroxylation of debrisoquine by cytochrome P4502D6: Implications for active site modelling. Xenobiotica 30, 219–233.

    Article  PubMed  CAS  Google Scholar 

  558. Ellis, S.W., G.P. Hayhurst, T. Lightfoot, G. Smith, J. Harlow, K. Rowland-Yeo et al. (2000). Evidence that serine 304 is not a key ligand-binding residue in the active site of cytochrome P450 2D6. Biochem. J. 345, 565–571.

    Article  PubMed  CAS  Google Scholar 

  559. Hayhurst, G.P., J. Harlow, J. Chowdry, E. Gross, E. Hilton, M.S. Lennard et al. (2001). Influence of phenylalanine-481 substitutions on the catalytic activity of cytochrome P450 2D6. Biochem. J. 355, 373–379.

    Article  PubMed  CAS  Google Scholar 

  560. Ramamoorthy, Y., R.F. Tyndale, and E.M. Sellers (2001). Cytochrome P450 2D6.1 and cytochrome P450 2D6.10 differ in catalytic activity for multiple substrates. Pharmacogenetics 11, 477–487.

    Article  PubMed  CAS  Google Scholar 

  561. Modi, S., D.E. Gilham, M.J. Sutcliffe, L.-Y. Lian, W.U. Primrose, C.R. Wolf et al. (1997). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine as a substrate of cytochrome P450 2D6: Allosteric effects of NADPH-cytochrome P450 reductase. Biochemistry 36, 4461–4470.

    Article  PubMed  CAS  Google Scholar 

  562. Hanna, I.H., J.A. Krauser, H. Cai, M.-S. Kim, and F.P. Guengerich (2001). Diversity in mechanisms of substrate oxidation by cytochrome P450 2D6. Lack of an allosteric role of NADPH-cytochrome P450 reductase in catalytic regioselectivity. J. Biol. Chem. 276, 39553–39561.

    Article  PubMed  CAS  Google Scholar 

  563. Guengerich, F.P., G.P. Miller, I.H. Hanna, H. Sato, and M.V. Martin (2002). Oxidation of methoxyphenethylamines by cytochrome P450 2D6. Analysis of rate-limiting steps. J. Biol. Chem. 277, 33711–33719.

    Article  PubMed  CAS  Google Scholar 

  564. Fukuda, T., Y. Nishida, S. Imaoka, T. Hiroi, M. Naohara, Y. Funae et al. (2000). The decreased in vivo clearance of CYP2D6 substrates by CYP2D6*10 might be caused not only by the low-expression but also by low affinity of CYP2D6. Arch. Biochem. Biophys. 380, 303–308.

    Article  PubMed  CAS  Google Scholar 

  565. Otton, S.V., T. Inaba, and W. Kalow (1984). Competitive inhibition of sparteine oxidation in human liver by β-adrenoceptor antagonists and other cardiovascular drugs. Life Sci. 34, 73–80.

    Article  PubMed  CAS  Google Scholar 

  566. Palamanda, J.R., C.N. Casciano, L.A. Norton, R.P. Clement, L.V. Favreau, C.C. Lin et al. (2001). Mechanism-based inactivation of CYP2D6 by 5-fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine. Drug Metab. Dispos. 29, 863–867.

    PubMed  CAS  Google Scholar 

  567. Oates, N.S., R.R. Shah, J.R. Idle, and R.L. Smith (1983). Influence of oxidation polymorphism on phenformin kinetics and dynamics. Clin. Pharmacol. Ther. 34, 827–834.

    PubMed  CAS  Google Scholar 

  568. Oates, N.S., R.R. Shah, P.L. Drury, J.R. Idle, and R.L. Smith (1982). Captopril-induced agranulocytosis associated with an impairment of debrisoquine hydroxylation. Br. J. Pharmacol. 14, 601P.

    Google Scholar 

  569. Rau, T., R. Heide, K. Bergmann, H. Wuttke, U. Werner, N. Feifel, and T. Eschenhagen (2002). Effect of the CYP2D6 genotype on metoprolol metabolism persists during long-term treatment. Pharmacogenetics 12, 465–472.

    Article  PubMed  CAS  Google Scholar 

  570. Dorne, J.L., K. Walton, W. Slob, and A.G. Renwick (2002). Human variability in polymorphic CYP2D6 metabolism: Is the kinetic default uncertainty factor adequate? Food Chem. Toxicol. 40, 1633–1656.

    Article  PubMed  CAS  Google Scholar 

  571. Chou, W.H., F.X. Yan, J. de Leon, J. Barnhill, T. Rogers, M. Cronin et al. (2000). Extension of a pilot study: Impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J. Clin. Psychopharmacol. 20, 246–251.

    Article  PubMed  CAS  Google Scholar 

  572. Dahl, M.L. (2002). Cytochrome P450 phenotyping/genotyping in patients receiving antipsychotics: Useful aid to prescribing?. Clin. Pharmacokinet. 41, 453–470.

    Article  PubMed  CAS  Google Scholar 

  573. Scolnick, E.M. (2002). Discovery and development of antidepressants: A perspective from a pharmaceutical discovery company. Biol. Psychiatry 52, 154–156.

    Article  PubMed  Google Scholar 

  574. Caporaso, N., R.B. Hayes, M. Dosemeci, R. Hoover, R. Ayesh, M. Hetzel et al. (1989). Lung cancer risk, occupational exposure, and the debrisoquine metabolic phenotype. Cancer Res. 49, 3675–3679.

    PubMed  CAS  Google Scholar 

  575. Bouchardy, C., S. Benhamou, and P. Dayer (1996). The effect of tobacco on lung cancer risk depends on CYP2D6 activity. Cancer Res. 56, 251–253.

    PubMed  CAS  Google Scholar 

  576. Shaw, G.L., R.T. Falk, J.N. Frame, B. Weiffenbach, J.V. Nesbitt, H.I. Pass et al. (1998). Genetic polymorphism of CYP2D6 and lung cancer risk. Cancer Epidemiol. Biomarkers Prev. 7, 215–219.

    PubMed  CAS  Google Scholar 

  577. Rostami-Hodjegan, A., M.S. Lennard, H.F. Woods, and G.T. Tucker (1998). Meta-analysis of studies of the CYP2D6 polymorphism in relation to lung cancer and Parkinson’s desease. Pharmacogenetics 8, 227–238.

    Article  PubMed  CAS  Google Scholar 

  578. Legrand-Andreoletti, M., I. Stucker, D. Marez, P. Galais, J. Cosme, N. Sabbagh et al. (1998). Cytochrome P450 CYP2D6 gene polymorphism and lung cancer susceptibility in Caucasians. Pharmacogenetics 8, 7–14.

    Article  PubMed  CAS  Google Scholar 

  579. Christensen, P.M., P.C. Gøtzsche, and K. Brøsen (1997). The sparteine/debrisoquine (CYP2D6) oxidation polymorphism and the risk of lung cancer: A meta-analysis. Eur. J. Clin. Pharmacol. 51, 389–393.

    Article  PubMed  CAS  Google Scholar 

  580. Fleming, C.M., A. Kaisary, G.R. Wilkinson, P. Smith, and R.A. Branch (1992). The ability to 4-hydroxylate debrisoquine is related to recurrence of bladder cancer. Pharmacogenetics 2, 128–134.

    Article  PubMed  CAS  Google Scholar 

  581. Worrall, S.F., M. Corrigan, A. High, D. Starr, C. Matthias, C.R. Wolf et al. (1998). Susceptibility and outcome in oral cancer: Preliminary data showing an association with polymorphism in cytochrome P450 CYP2D6. Pharmacogenetics 8, 433–439.

    Article  PubMed  CAS  Google Scholar 

  582. Barbeau, A., M. Roy, S. Paris, T. Cloutier, L. Plasse, and J. Poirier (1985). Ecogenetics of Parkinson’s disease: 4-hydroxylation of debrisoquine. Lancet ii, 1213–1215.

    Article  Google Scholar 

  583. Armstrong, M., A.K. Daly, S. Cholerton, D.N. Bateman, and J.R. Idle (1992). Mutant debrisoquine hydroxylation genes in Parkinson’s disease. Lancet 339, 1017–1018.

    Article  PubMed  CAS  Google Scholar 

  584. Harhangi, B.S., B.A. Oostra, P. Heutink, C.M. van Duijn, A. Hofman, and M.M. Breteler (2001). CYP2D6 polymorphism in Parkinson’s disease: The Rotterdam Study. Mov. Disord. 16, 290–293.

    Article  PubMed  CAS  Google Scholar 

  585. Allam, M.F., A. Serrano del Castillo, and R. Fernandez-Crehuet Navajas (2002). Smoking and Parkinson’s disease: Explanatory hypothesis. Int. J. Neurosci. 112, 851–854.

    Article  PubMed  Google Scholar 

  586. Zanger, U.M., H.P. Hauri, J. Loeper, J.C. Homberg, and U.A. Meyer (1988). Antibodies against human cytochrome P-450dbl in autoimmune hepatitis type II. Proc. Natl. Acad. Sci. USA 85, 8256–2860.

    Article  PubMed  CAS  Google Scholar 

  587. Manns, M.P. (1991). Cytochrome P450 enzymes as human autoantigens. Immunol. Res. 10, 503–507.

    PubMed  CAS  Google Scholar 

  588. Manns, M.P., K.J. Griffin, K.F. Sullivan, and E.F. Johnson (1991). LKM-1 autoantibodies recognize a short linear sequence in P450IID6, a cytochrome P-450 monooxygenase. J. Clin. Invest. 88, 1370–1378.

    PubMed  CAS  Google Scholar 

  589. Loeper, J., V. Descatoire, M. Maurice, P. Beaune, J. Belghiti, D. Houssin et al. (1993). Cytochromes P-450 in human hepatocyte plasma membrane: Recognition by several autoantibodies. Gastroenterology 104, 203–216.

    PubMed  CAS  Google Scholar 

  590. Vergani, D. (2000). LKM antibody: Getting in some target practice. Gut 46, 449–450.

    Article  PubMed  CAS  Google Scholar 

  591. Vitozzi, S., P. Lapierre, I. Djilali-Saiah, and F. Alvarez (2002). Autoantibody detection in type 2 autoimmune hepatitis using a chimera recombinant protein. J. Immunol. Meth. 262, 103–110.

    Article  CAS  Google Scholar 

  592. Nolte, W., F. Polzien, B. Sattler, G. Ramadori, and H. Hartmann (1995). Recurrent episodes of acute hepatitis associated with LKM-1 (cytochrome P450 2D6) antibodies in identical twin brothers. J. Hepatol. 23, 734–739.

    Article  PubMed  CAS  Google Scholar 

  593. Orme-Johnson, W.H. and D.M. Ziegler (1965). Alcohol mixed function oxidase activity of mammalian liver micoromes. Biochem. Biophys. Res. Commun. 21, 78–82.

    Article  PubMed  CAS  Google Scholar 

  594. Lieber, C.S. and L.M. DeCarli (1970). Hepatic microsomal ethanol oxidizing system: In vitro chracteristics and adaptive properties in vivo. J. Biol. Chem. 245, 2505–2512.

    PubMed  CAS  Google Scholar 

  595. Teschke, R., Y. Hasumura, and C.S. Lieber (1974). Hepatic microsomal ethanol-oxidizing system: Solubilization, isolation and characterization. Arch. Biochem. Biophys. 163, 404–415.

    Article  PubMed  CAS  Google Scholar 

  596. Ryan, D.E., L. Ramanathan, S. Iida, P.E. Thomas, M. Haniu, J.E. Shively et al. (1985). Characterization of a major form of rat hepatic microsomal cytochrome P-450 induced by isoniazid. J. Biol. Chem. 260, 6385–6393.

    PubMed  CAS  Google Scholar 

  597. Wrighton, S.A., P.E. Thomas, D.E. Ryan, and W. Levin (1987). Purification and characterization of ethanol-inducible human hepatic cytochrome P-450HLj. Arch. Biochem. Biophys. 258, 292–297.

    Article  PubMed  CAS  Google Scholar 

  598. Umeno, M., O.W. McBride, C.-S. Yang, H.V. Gelboin, and F.J. Gonzalez (1988). Human ethanol-inducible P450IIE1: Complete gene sequence, promoter characterization, chromosome mapping, and cDNA-directed expression. Biochemistry 27, 9006–9013.

    Article  PubMed  CAS  Google Scholar 

  599. Guengerich, F.P. and C.G. Turvy (1991). Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemical analysis of surgical liver samples. J. Pharmacol. Exp. Ther. 256, 1189–1194.

    PubMed  CAS  Google Scholar 

  600. Vieira, I., M. Sonnier, and T. Cresteil (1996). Developmental expression of CYP2E1 in the human liver: Hypermethylation control of gene expression during the neonatal period. Eur. J. Biochem. 238, 476–483.

    Article  PubMed  CAS  Google Scholar 

  601. Ding, X. and L.S. Kaminsky (2003). Human extrahepatic cytochromes P450: Function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu. Rev. Pharmacol. Toxicol. 43, 149–173.

    Article  PubMed  CAS  Google Scholar 

  602. Warner, M. and J.A. Gustafsson (1994). Effect of ethanol on cytochrome P450 in the rat brain. Proc. Natl. Acad. Sci. USA 91, 1019–1023.

    Article  PubMed  CAS  Google Scholar 

  603. Upadhya, S.C., P.S. Tirumalai, M.R. Boyd, T. Mori, and V. Ravindranath (2000). Cytochrome P4502E (CYP2E) in brain: Constitutive expression, induction by ethanol and localization by fluorescence in situ hybridization. Arch. Biochem. Biophys. 373, 23–34.

    Article  PubMed  CAS  Google Scholar 

  604. Kazakoff, K., P. Iversen, T. Lawson, J. Baron, F.P. Guengerich, and P. Pour (1994). Involvement of cytochrome P450 2E1-like isoform in the activation of N-nitrosobis(2-oxopropyl)amine in the rat nasal mucosa. Eur. J. Cancer 30B, 179–185.

    CAS  Google Scholar 

  605. Norton, I.D., M.V. Apte, P.S. Haber, G.W. McCaughan, R.C. Pirola, and J.S. Wilson (1998). Cytochrome P4502E1 is present in rat pancreas and is induced by chronic ethanol administration. Gut 42, 426–430.

    PubMed  CAS  Google Scholar 

  606. Larson, J.R., M.J. Coon, and T.D. Porter (1991). Purification and properties of a shortened form of cytochrome P-450 2E1: Deletion of the NH2-terminal membrane-insertion signal peptide does not alter the catalytic activities. Proc. Natl. Acad. Sci. USA 88, 9141–9145.

    Article  PubMed  CAS  Google Scholar 

  607. Gillam, E.M.J., Z. Guo, and F.P. Guengerich (1994). Expression of modified human cytochrome P450 2E1 in Escherichia coli, purification, and spectral and catalytic properties. Arch. Biochem. Biophys. 312, 59–66.

    Article  PubMed  CAS  Google Scholar 

  608. Neve, E.P.A. and M. Ingelman-Sundberg (1999). A soluble NH2-terminally truncated catalytically active form of rat cytochrome P450 2E1 targeted to liver mitochondria. FEBS Lett. 460, 309–314.

    Article  PubMed  CAS  Google Scholar 

  609. Robin, M.A., H.K. Anandatheerthavarada, J.K. Fang, M. Cudic, L. Otvos, and N.G. Avadhani (2001). Mitochondrial targeted cytochrome P450 2E1 (P450 MT5) contains an intact N-terminus and requires mitochondrial specific electron transfer proteins for activity. J. Biol. Chem. 276, 24680–24689.

    Article  PubMed  CAS  Google Scholar 

  610. Neve, E.P. and M. Ingelman-Sundberg (2000). Molecular basis for the transport of cytochrome P450 2E1 to the plasma membrane. J. Biol. Chem. 275, 17130–17135.

    Article  PubMed  CAS  Google Scholar 

  611. Thomas, P.E., S. Bandiera, S.L. Maines, D.E. Ryan, and W. Levin (1987). Regulation of cytochrome P-450j, a high-affinity N-nitrosodimethylamine demethylase, in rat hepatic microsomes. Biochemistry 26, 2280–2289.

    Article  PubMed  CAS  Google Scholar 

  612. Koop, D.R. and D.J. Tierney (1990). Multiple mechanisms in the regulation of ethanol-inducible cytochrome P450IIE1. BioEssays 12, 429–435.

    Article  PubMed  CAS  Google Scholar 

  613. Ueno, T. and F.J. Gonzalez (1990). Transcriptional control of the rat hepatic CYP2E1 gene. Mol. Cell Biol. 10, 4495–4505.

    PubMed  CAS  Google Scholar 

  614. Woodcroft, K.J. and R.F. Novak (1999). The role of phosphatidylinositol 3-kinase, Src kinase, and protein kinase A signaling pathways in insulin and glucagon regulation of CYP2E1 expression. Biochem. Biophys. Res. Commun. 266, 304–307.

    Article  PubMed  CAS  Google Scholar 

  615. Siewert, E., R. Bort, R. Kluge, P.C. Heinrich, J. Castell, and R. Jover (2000). Hepatic cytochrome P450 down-regulation during aseptic inflammation in the mouse is interleukin 6 dependent. Hepatology 32, 49–55.

    Article  PubMed  CAS  Google Scholar 

  616. Lagadic-Gossmann, D., C. Lerche, M. Rissel, F. Joannard, M. Galisteo, A. Guillouzo et al. (2000). The induction of the human hepatic CYP2E1 gene by interleukin 4 is transcriptional and regulated by protein kinase C. Cell Biol. Toxicol. 16, 221–233.

    Article  PubMed  CAS  Google Scholar 

  617. Hakkola, J., Y. Hu, and M. Ingelman-Sundberg (2003). Mechanisms of down-regulation of CYP2E1 expression by inflammatory cytokines in rat hepatoma cells. J. Pharmacol. Exp. Ther. 304, 1048–1054.

    Article  PubMed  CAS  Google Scholar 

  618. Kim, S.G. and R.F. Novak (1990). Induction of rat hepatic P450IIE1 (CYP 2E1) by pyridine: Evidence for a role of protein synthesis in the absence of transcriptional activation. Biochem. Biophys. Res. Commun. 166, 1072–1079.

    Article  PubMed  CAS  Google Scholar 

  619. Kocarek, T.A., R.C. Zangar, and R.F. Novak (2000). Post-transcriptional regulation of rat CYP2E1 expression: Role of CYP2E1 mRNA untranslated regions in control of translational efficiency and message stability. Arch. Biochem. Biophys. 376, 180–190.

    Article  PubMed  CAS  Google Scholar 

  620. Roberts, B.J., B.J. Song, Y. Soh, S.S. Park, and S.E. Shoaf (1995). Ethanol induces CYP2E1 by protein stabilization: Role of ubiquitin conjugation in the rapid degradation of CYP2E1. J. Biol. Chem. 270, 29632–29635.

    Article  PubMed  CAS  Google Scholar 

  621. Yang, M.X. and A.I. Cederbaum (1997). Characterization of cytochrome P4502E1 turnover in transfected HepG2 cells expressing human CYP2E1. Arch. Biochem. Biophys. 341, 25–33.

    Article  PubMed  CAS  Google Scholar 

  622. Emery, M.g., C. Jubert, K.E. Thummel, and E.D. Kharasch (1999). Duration of cytochrome P-450 2E1 (CYP2E1) inhibition and estimation of functional CYP2E1 enzyme half-life after single-dose disulfiram administration in humans. J. Pharmacol. Exp. Ther. 291, 213–219.

    PubMed  CAS  Google Scholar 

  623. Chien, J.Y., K.E. Thummel, and J.T. Slattery (1997). Pharmacokinetic consequences of induction of CYP2E1 by ligand stabilization. Drug Metab. Dispos. 25, 1165–1175.

    PubMed  CAS  Google Scholar 

  624. Watanabe, J., S. Hayashi, and K. Kawajiri (1994). Different regulation and expression of the human CYP2E1 gene due to the RsaI polymorphism in the 5′-flanking region. J. Biochem. (Tokyo) 116, 321–326.

    CAS  Google Scholar 

  625. Fairbrother, K.S., J. Grove, I. de Waziers, D.T. Steimel, C.P. Day, C.L. Crespi et al. (1998). Detection and characterization of novel polymorphisms in the CYP2E1 gene. Pharmacogenetics 8, 543–552.

    Article  PubMed  CAS  Google Scholar 

  626. Fritsche, E., G.S. Pittman, and D.A. Bell (2000). Localization, sequence analysis, and ethnic distribution of a 96-bp insertion in the promoter of the human CYP2E1 gene. Mutat. Res. 432, 1–5.

    PubMed  CAS  Google Scholar 

  627. Powell, H., N.R. Kitteringham, M. Pirmohamed, D.A. Smith, and B.K. Park (1998). Expression of cytochrome P4502E1 in human liver: Assessment by mRNA, genotype and phenotype. Pharmacogenetics 8, 411–421.

    Article  PubMed  CAS  Google Scholar 

  628. Inoue, K., H. Yamazaki, and T. Shimada (2000). Characterization of liver microsomal 7-ethoxycoumarin O-deethylation and chlorzoxazone 6-hydroxylation activities in Japanese and Caucasian subjects genotyped for CYP2E1 gene. Arch. Toxicol. 74, 372–378.

    Article  PubMed  CAS  Google Scholar 

  629. O’Shea, D., S.N. Davis, R.B. Kim, and G.R. Wilkinson (1994). Effect of fasting and obesity in humans on the 6-hydroxylation of chloroxazone: A putative probe of CYP2E1 activity. Clin. Pharmacol. Ther. 56, 359–367.

    PubMed  CAS  Google Scholar 

  630. Koop, D.R. and J.P. Casazza (1985). Identification of ethanol-inducible P-450 isozyme 3a as the acetone and acetol monooxygenase of rabbit microsomes. J. Biol. Chem. 260, 13607–13612.

    PubMed  CAS  Google Scholar 

  631. Bondoc, F.Y., Z. Bao, W.Y. Hu, F.J. Gonzalez, Y. Wang, C.S. Yang et al. (1999). Acetone catabolism by cytochrome P450 2E1: Studies with CYP2E1-null mice. Biochem. Pharmacol. 105, 83–88.

    Google Scholar 

  632. Kashiwagi, T., S. Ji, J.J. Lemasters, and R.G. Thurman (1982). Rates of alcohol dehydrogenase-dependent ethanol metabolism in periportal and pericentral regions of the perfused rat liver. Mol. Pharmacol. 21, 438–443.

    PubMed  CAS  Google Scholar 

  633. Kono, H., B.U. Bradford, M. Yin, K.K. Sulik, D.R. Koop, J.M. Peters et al. (1999). CYP2E1 is not involved in early alcohol-induced liver injury. Am. J. Physiol. 277, G1259–G1267.

    PubMed  CAS  Google Scholar 

  634. Terelius, Y., C. Norsten-Höög, T. Cronholm, and M. Ingelman-Sundberg (1991). Acetaldehyde as a substrate for ethanol-inducible cytochrome P450 (CYP2E1). Biochem. Biophys. Res. Commun. 179, 689–694.

    Article  PubMed  CAS  Google Scholar 

  635. Kunitoh, S., S. Imaoka, T. Hiroi, Y. Yabusaki, T. Monna, and Y. Funae (1997). Acetaldehyde as well as ethanol is metabolized by human CYP2E1. J. Pharmacol. Exp. Ther. 280, 527–532.

    PubMed  CAS  Google Scholar 

  636. Bell-Parikh, L.C. and F.P. Guengerich (1999). Kinetics of cytochrome P450 2E1-catalyzed oxidation of ethanol to acetic acid via acetaldehyde. J. Biol. Chem. 274, 23833–23840.

    Article  PubMed  CAS  Google Scholar 

  637. Tassaneeyakul, W., M.E. Veronese, D.J. Birkett, F.J. Gonzalez, and J.O. Miners (1993). Validation of 4-nitrophenol as an in vitro substrate probe for human liver CYP2E1 using cDNA expression and microsomal kinetic techniques. Biochem. Pharmacol. 46, 1975–1981.

    Article  PubMed  CAS  Google Scholar 

  638. Peter, R., R.G. Böcker, P.H. Beaune, M. Iwasaki, F.P. Guengerich, and C.-S. Yang (1990). Hydroxylation of chlorzoxazone as a specific probe for human liver cytochrome P-450 IIE1. Chem. Res. Toxicol. 3, 566–573.

    Article  PubMed  CAS  Google Scholar 

  639. Yamazaki, H., Z. Guo, and F.P. Guengerich (1995). Selectivity of cytochrome P450 2E1 in chlorzoxazone 6-hydroxylation. Drug Metab. Dispos. 23, 438–440.

    PubMed  CAS  Google Scholar 

  640. Preussmann, R. and B.W. Stewart (1984). N-Nitroso carcinogens. In C.E. Searle (ed.), Chemical Carcinogens, Vol. 2. American Chemical Society, Washington, D. C., pp. 643–828.

    Google Scholar 

  641. Argus, M.F., J.C. Arcos, K.M. Pastor, B.C. Wu, and N. Venkatesan (1976). Dimethylnitrosaminedemethylase: Absence of increased enzyme catabolism and multiplicity of effector sites in repression. Hemoprotein involvement. Chem. Biol. Interact. 13, 127–140.

    Article  PubMed  CAS  Google Scholar 

  642. Lake, B.G., C.E. Heading, J.C. Phillips, S.D. Gangolli, and A.G. Lloyd (1974). Some studies on the metabolism in vitro of dimethylnitrosamine by rat liver. Biochem. Soc. Transact. 2, 610–612.

    CAS  Google Scholar 

  643. Levin, W., P.E. Thomas, N. Oldfield, and D.E. Ryan (1986). N-Demethylation of N-nitrosodimethylamine catalyzed by purified rat hepatic microsomal cytochrome P-450: Isozyme specificity and role of cytochrome b 5. Arch. Biochem. Biophys. 248, 158–165.

    Article  PubMed  CAS  Google Scholar 

  644. Wrighton, S.A., P.E. Thomas, D.T. Molowa, M. Haniu, J.E. Shively, S.L. Maines et al. (1986). Characterization of ethanol-inducible human liver N-nitrosodimethylamine demethylase. Biochemistry 25, 6731–6735.

    Article  PubMed  CAS  Google Scholar 

  645. Bastien, M.C. and J.P. Villeneuve (1998). Characterization of cytochrome P450 2E1 activity by the [14C]nitrosodimethylamine breath test. Can. J. Physiol. Pharmacol. 76, 756–763.

    Article  PubMed  CAS  Google Scholar 

  646. Raucy, J.L., J.C. Kraner, and J.M. Lasker (1993). Bioactivation of halogenated hydrocarbons by cytochrome P4502E1. Crit. Rev. Toxicol. 23, 1–20.

    PubMed  CAS  Google Scholar 

  647. Hong, J.Y., C.S. Yang, M. Lee, Y.Y. Wang, W. Huang, Y. Tan et al. (1997). Role of cytochromes P450 in the metabolism of methyl tert-butyl ether in human livers. Arch. Toxicol. 71, 266–269.

    Article  PubMed  CAS  Google Scholar 

  648. Wang, H., B. Chanas, and B.I. Ghanayem (2002). Cytochrome P450 2E1 (CYP2E1) is essential for acrylonitrile metabolism to cyanide: Comparative studies using CYP2E1-null and wild-type mice. Drug Metab. Dispos. 30, 911–917.

    Article  PubMed  CAS  Google Scholar 

  649. Hoffler, U., H.A. El-Masri, and B.I. Ghanayem (2003). Cytochrome P450 2E1 (CYP2E1) is the principal enzyme responsible for urethane metabolism: Comparative studies using CYP2E1-null and wildtype mice. J. Pharmacol. Exp. Ther. 305, 557–564.

    Article  PubMed  CAS  Google Scholar 

  650. Clarke, S.E., S.J. Baldwin, J.C. Bloomer, A.D. Ayrton, R.S. Sozio, and R.J. Chenery (1994). Lauric acid as a model substrate for the simultaneous determination of cytochrome P450 2E1 and 4A in hepatic microsomes. Chem. Res. Toxicol. 7, 836–842.

    Article  PubMed  CAS  Google Scholar 

  651. Castle, P.J., J.L. Merdink, J.R. Okita, S.A. Wrighton, and R.T. Okita (1995). Human liver lauric acid hydroxylase activities. Drug Metab. Dispos. 23, 1037–1043.

    PubMed  CAS  Google Scholar 

  652. Gillam, E.M.J., A.M. Aguinaldo, L.M. Notley, D. Kim, R.G. Mundkowski, A. Volkov et al. (1999). Formation of indigo by recombinant mammalian cytochrome P450. Biochem. Biophys. Res. Commun. 265, 469–472.

    Article  PubMed  CAS  Google Scholar 

  653. Adachi, J., Y. Mori, S. Matsui, H. Takigami, J. Fujino, H. Kitagawa et al. (2001). Indirubin and indigo are potent aryl hydrocarbon receptor ligands present in human urine. J. Biol. Chem. 276, 31475–31478.

    Article  PubMed  CAS  Google Scholar 

  654. Spracklin, D.K., D.C. Hankins, J.M. Fisher, K.E. Thummel, and E.D. Kharasch (1997). Cytochrome P450 2E1 is the principal catalyst of human oxidative halothane metabolism in vitro. J. Pharmacol. Exp. Ther. 281, 400–411.

    PubMed  CAS  Google Scholar 

  655. Kharasch, E.D., D.C. Hankins, and K. Cox (1999). Clinical isoflurane metabolism by cytochrome P450 2E1. Anesthesiology 90, 766–771.

    Article  PubMed  CAS  Google Scholar 

  656. Bell, L.C. and F.P. Guengerich (1997). Oxidation kinetics of ethanol by human cytochrome P450 2E1. Rate-limiting product release accounts for effects of isotopic hydrogen substitution and cytochrome b 5 on steady-state kinetics. J. Biol. Chem. 272, 29643–29651.

    Article  PubMed  CAS  Google Scholar 

  657. Yamazaki, H., M. Nakano, E.M.J. Gillam, L.C. Bell, F.P. Guengerich, and T. Shimada (1996). Requirements for cytochrome b 5 in the oxidation of 7-ethoxycoumarin, chlorzoxazone, aniline, and N-nitrosodimethylamine by recombinant cytochrome P450 2E1 and by human liver microsomes. Biochem. Pharmacol. 52, 301–309.

    Article  PubMed  CAS  Google Scholar 

  658. Cooper, M.T. and T.D. Porter (2001). Cytochrome b5 coexpression increases the CYP2E1-dependent mutagenicity of dialkylnitrosamines in methyltransferase-deficient strains of Salmonella typhimurium. Mutat. Res. 484, 61–68.

    PubMed  CAS  Google Scholar 

  659. Schenkman, J.B. and I. Jansson (2003). The many roles of cytochrome b 5. Pharmacol. Ther. 97, 139–152.

    Article  PubMed  CAS  Google Scholar 

  660. Tan, Y., S.P. White, S.R. Paranawithana, and C.S. Yang (1997). A hypothetical model for the active site of human cytochrome P4502E1. Xenobiotica 27, 287–299.

    Article  PubMed  CAS  Google Scholar 

  661. Lewis, D.F., B.G. Lake, M.G. Bird, G.D. Loizou, M. Dickins, and P.S. Goldfarb (2003). Homology modelling of human CYP2E1 based on the CYP2C5 crystal structure: Investigation of enzyme-substrate and enzyme-inhibitor interactions. Toxicol. In Vitro 17, 93–105.

    Article  PubMed  CAS  Google Scholar 

  662. Smith, S.V., A.P. Koley, R. Dai, R.C. Robinson, H. Leong, A. Markowitz et al. (2000). Conformational modulation of human cytochrome P450 2E1 by ethanol and other substrates: A CO flash photolysis study. Biochemistry 39, 5731–5737.

    Article  PubMed  CAS  Google Scholar 

  663. Yin, H., M.W. Anders, K.R. Korzekwa, L. Higgins, K.E. Thummel, E.D. Kharasch et al. (1995). Designing safer chemicals: Predicting the rates of metabolism of halogenated alkanes. Proc. Natl. Acad. Sci. USA 92, 11076–11080.

    Article  PubMed  CAS  Google Scholar 

  664. Lewis, D.F., C. Sams, and G.D. Loizou (2003). A quantitative structure-activity relationship analysis on a series of alkyl benzenes metabolized by human cytochrome P450 2E1. J. Biochem. Mol. Toxicol. 17, 47–52.

    Article  PubMed  CAS  Google Scholar 

  665. Keefer, L.K., W. Lijinsky, and H. Garcia (1973). Deuterium isotope effect on the carcinogenicity of dimethylnitrosamine in rat liver. J. Natl. Cancer Inst. 51, 299–302.

    PubMed  CAS  Google Scholar 

  666. Wade, D., C.S. Yang, C.J. Metral, J.M. Roman, J.A. Hrabie, C.W. Riggs et al. (1987). Deuterium isotope effect on denitrosation and demethylation of N-nitrosodimethylamine by rat liver microsomes. Cancer Res. 47, 3373–3377.

    PubMed  CAS  Google Scholar 

  667. Yang, C.S., H. Ishizaki, M. Lee, D. Wade, and A. Fadel (1991). Deuterium isotope effect in the interaction of N-nitrosodimethylamine, ethanol, and related compounds with cytochrome P-450IIE1. Chem. Res. Toxicol. 4, 408–413.

    Article  PubMed  CAS  Google Scholar 

  668. Calcutt, W. and F.P. Guengerich (2003). Kinetic isotope effects in dialkylnitrosamine dealkylations catalyzed by human cytochrome P450s 2A6 and 2E1. FASEB J. 17, A1325.

    Google Scholar 

  669. Reitz, R.H., A. Mendrala, and F.P. Guengerich (1989). In vitro metabolism of methylene chloride in human and animal tissues: Use in physiologically-based pharmacokinetic models. Toxicol. Appl. Pharmacol. 97, 230–246.

    Article  PubMed  CAS  Google Scholar 

  670. Pernecky, S.J., T.D. Porter, and M.J. Coon (1990). Expression of rabbit cytochrome P-450IIE2 in yeast and stabilization of the enzyme by 4-methylpyrazole. Biochem. Biophys. Res. Commun. 172, 1331–1337.

    Article  PubMed  CAS  Google Scholar 

  671. Koop, D.R. (1990). Inhibition of ethanol-inducible cytochrome P450IIE1 by 3-amino-1, 2,4-triazole. Chem. Res. Toxicol. 3, 377–383.

    Article  PubMed  CAS  Google Scholar 

  672. Hultmark, D., K. Sundh, L. Johansson, and E. Arrhenius (1979). Ethanol inhibition of vinyl chloride metabolism in isolated rat hepatocytes. Chem. Biol. Interact. 25, 1–6.

    Article  PubMed  CAS  Google Scholar 

  673. Wong, L.C.K., J.M. Winston, C.B. Hong, and H. Plotnick (1982). Carcinogenicity and toxicity of 1,2-dibromoethane in the rat. Toxicol. Appl. Pharmacol. 63, 155–165.

    Article  PubMed  CAS  Google Scholar 

  674. Kwak, M.K., S.G. Kim, J.Y. Kwak, R.F. Novak, and N.D. Kim (1994). Inhibition of cytochrome P4502E1 expression by organosulfur compounds allylsulfide, allylmercaptan and allylmethylsulfide in rats. Biochem. Pharmacol. 47, 531–539.

    Article  PubMed  CAS  Google Scholar 

  675. Nakajima, M., R. Yoshida, N. Shimada, H. Yamazaki, and T. Yokoi (2001). Inhibition and inactivation of human cytochrome P450 isoforms by phenethyl isothiocyanate. Drug Metab. Dispos. 29, 1110–1113.

    PubMed  CAS  Google Scholar 

  676. Lucas, D., C. Farez, L.G. Bardou, J. Vaisse, J.R. Attali, and P. Valensi (1998). Cytochrome P450 2E1 activity in diabetic and obese patients as assessed by chlorzoxazone hydroxylation. Fundam. Clin. Pharmacol. 12, 553–558.

    PubMed  CAS  Google Scholar 

  677. Le Marchand, L., G.R. Wilkinson, and L.R. Wilkens (1999). Genetic and dietary predictors of CYP2E1 activity: A phenotyping study in Hawaii Japanese using chlorzoxazone. Cancer Epidemiol. Biomarkers Prev. 8, 495–500.

    PubMed  CAS  Google Scholar 

  678. Morimoto, M., A.L. Hagbjork, A.A. Nanji, M. Ingelman-Sundberg, K.O. Lindros, P.C. Fu et al. (1993). Role of cytochrome P4502E1 in alcoholic liver disease pathogenesis. Alcohol 10, 459–464.

    Article  PubMed  CAS  Google Scholar 

  679. Morgan, K., S.W. French, and T.R. Morgan (2002). Production of a cytochrome P450 2E1 transgenic mouse and initial evaluation of alcoholic liver damage. Hepatology 36, 122–134.

    Article  PubMed  CAS  Google Scholar 

  680. Koop, D.R., B. Klopfenstein, Y. Iimuro, and R.G. Thurman (1997). Gadolinium chloride blocks alcohol-dependent liver toxicity in rats treated chronically with intragastric alcohol despite the induction of CYP2E1. Mol. Pharmacol. 51, 944–950.

    PubMed  CAS  Google Scholar 

  681. Lytton, S.D., A. Helander, Z.Q. Zhang-Gouillon, K. Stokkeland, R. Bordone, S. Aricó et al. (1999). Autoantibodies against cytochromes P-4502E1 and P-4503a in alcoholics. Mol. Pharmacol. 55, 223–233.

    PubMed  CAS  Google Scholar 

  682. Clot, P., E. Albano, E. Eliasson, M. Tabone, S. Arico, Y. Israel et al. (1996). Cytochrome P4502E1 hydroxyethyl radical adducts as the major antigen in autoantibody formation among alcoholics. Gastroenterology 111, 206–216.

    Article  PubMed  CAS  Google Scholar 

  683. Bourdi, M., W. Chen, R.M. Peter, J.L. Martin, J.T.M. Buters, S.D. Nelson et al. (1996). Human cytochrome P450 2E1 is a major autoantigen associated with halothane hepatitis. Chem. Res. Toxicol. 9, 1159–1166.

    Article  PubMed  CAS  Google Scholar 

  684. Ekström, G. and M. Ingelman-Sundberg (1989). Rat liver microsomal NADPH-supported oxidase activity and lipid peroxidation dependent on ethanol-inducible cytochrome P-450 (P-450IIE1). Biochem. Pharmacol. 38, 1313–1319.

    Article  PubMed  Google Scholar 

  685. Nieto, N., S.L. Friedman, P. Greenwel, and A.I. Cederbaum (1999). CYP2E1-mediated oxidative stress induces collagen type I expression in rat hepatic stellate cells. Hepatology 30, 987–996.

    Article  PubMed  CAS  Google Scholar 

  686. Cederbaum, A.I., D. Wu, M. Mari, and J. Bai (2001). CYP2E1-dependent toxicity and oxidative stress in HepG2 cells. Free Radic. Biol. Med. 31, 1539–1543.

    Article  PubMed  CAS  Google Scholar 

  687. Wan, J., J. Shi, L. Hui, D. Wu, X. Jin, N. Zhao et al. (2002). Association of genetic polymorphisms in CYP2E1, MPO, NQO1, GSTM1, and GSTT1 genes with benzene poisoning. Environ. Health Perspect. 110, 1213–1218.

    PubMed  CAS  Google Scholar 

  688. Uematsu, F., H. Kikuchi, M. Motomiya, T. Abe, I. Sagami, T. Ohmachi et al. (1991). Association between restriction fragment length polymorphism of the human cytochrome P450IIE1 gene and susceptibility to lung cancer. Jpn. J. Cancer Res. 82, 254–256.

    PubMed  CAS  Google Scholar 

  689. Hirvonen, A., K. Husgafvel-Pursiainen, S. Anttila, A. Karjalainen, M. Sorsa, and H. Vainio (1992). Metabolic cytochrome P450 genotypes and assessment of individual susceptibility to lung cancer. Pharmacogenetics 2, 259–263.

    Article  PubMed  CAS  Google Scholar 

  690. Ingelman-Sundberg, M., I. Johansson, I. Persson, Q.Y. Yue, M.L. Dahl, L. Bertilsson et al. (1992). Genetic polymorphism of cytochromes P450: Interethnic differences and relationship to incidence of lung cancer. Pharmacogenetics 2, 264–271.

    Article  PubMed  CAS  Google Scholar 

  691. Persson, I., I. Johansson, H. Bergling, M.L. Dahl, J., Seidegård, R. Rylander et al. (1993). Genetic polymorphism of cytochrome P4502E1 in a Swedish population: Relationship to incidence of lung cancer. FEBS Lett. 319, 207–211.

    Article  PubMed  CAS  Google Scholar 

  692. London, S.J., A.K. Daly, J. Cooper, C.L. Carpenter, W.C. Navidi, L. Ding et al. (1996). Lung cancer risk in relation to the CYP2E1 RsaI genetic polymorphism among African-Americans and Caucasians in Los Angeles County. Pharmacogenetics 6, 151–158.

    Article  PubMed  CAS  Google Scholar 

  693. Kato, S., P.G. Shields, N.E. Caporaso, H. Sugimura, G.E. Trivers, M.A. Tucker et al. (1994). Analysis of cytochrome P450 2E1 genetic polymorphisms in relation to human lung cancer. Cancer Epidemiol. Biomarkers Prev. 3, 515–518.

    PubMed  CAS  Google Scholar 

  694. Itoga, S., F. Nomura, Y. Makino, T. Tomonaga, H. Shimada, T. Ochiai et al. (2002). Tandem repeat polymorphism of the CYP2E1 gene: An association study with esophageal cancer and lung cancer. Alcohol. Clin. Exp. Res. 26, 15S–19S.

    PubMed  CAS  Google Scholar 

  695. Bouchardy, C., A. Hirvonen, C. Coutelle, P.J. Ward, P. Dayer, and S. Benhamou (2000). Role of alcohol dehydrogenase 3 and cytochrome P-4502E1 genotypes in susceptibility to cancers of the upper aerodigestive tract. Int. J. Cancer 87, 734–740.

    Article  PubMed  CAS  Google Scholar 

  696. Liu, S., J.Y. Park, S.P. Schantz, J.C. Stern, and P. Lazarus (2001). Elucidation of CYP2E1 5′ regulatory RsaI/PstI allelic variants and their role in risk for oral cancer. Oral Oncol. 37, 437–445.

    Article  PubMed  CAS  Google Scholar 

  697. Kato, S., M. Onda, N. Matsukura, A. Tokunaga, T. Tajiri, D.Y. Kim et al. (1995). Cytochrome P4502E1 (CYP2E1) genetic polymorphism in a case-control study of gastric cancer and liver disease. Pharmacogenetics 5, S141–S144.

    Article  PubMed  Google Scholar 

  698. Wong, R.H., C.L. Du, J.D. Wang, C.C. Chan, J.C. Luo, and T.J. Cheng (2002). XRCC1 and CYP2E1 polymorphisms as susceptibility factors of plasma mutant p53 protein and anti-p53 antibody expression in vinyl chloride monomerexposed polyvinyl chloride workers. Cancer Epidemiol. Biomarkers Prev. 11, 475–482.

    PubMed  CAS  Google Scholar 

  699. Nhamburo, P.T., S. Kimura, O.W. McBride, C.A. Kozak, H.V. Gelboin, and F.J. Gonzalez (1990). The human CYP2F gene subfamily: Identification of a cDNA encoding a new cytochrome P450, cDNA-directed expression, and chromosome mapping. Biochemistry 29, 5491–5499.

    Article  PubMed  CAS  Google Scholar 

  700. Czerwinski, M., T.L. McLemore, R.M. Philpot, P.T. Nhamburo, K. Korzekwa, H.V. Gelboin et al. (1991). Metabolic activation of 4-ipomeanol by complementary DNA-expressed human cytochromes P-450: Evidence for species-specific metabolism. Cancer Res. 51, 4636–4638.

    PubMed  CAS  Google Scholar 

  701. Lanza, D.L., E. Code, C.L. Crespi, F.J. Gonzalez, and G.S. Yost (1999). Specific dehydrogenation of 3-methylindole and epoxidation of naphthalene by recombinant human CYP2F1 expressed in lymphoblastoid cells. Drug Metab. Dispos. 27, 798–803.

    PubMed  CAS  Google Scholar 

  702. Nakajima, T., E. Elovaara, F.J. Gonzalez, H.V. Gelboin, H. Raunio, O. Pelkonen et al. (1994). Styrene metabolism by cDNA-expressed human hepatic and pulmonary cytochromes P450. Chem. Res. Toxicol. 7, 891–896.

    Article  PubMed  CAS  Google Scholar 

  703. Carr, B.A., J. Wan, R.N. Hines, and G.S. Yost (2003). Characterization of the human lung CYP2F1 gene and identification of a novel lungspecific binding motif. J. Biol. Chem. 278, 15473–15483.

    Article  PubMed  CAS  Google Scholar 

  704. Wu, S., C.R. Moomaw, K.B. Tomer, J.R. Falck, and D.C. Zeldin (1996). Molecular cloning and expression of CYP2J2, a human cytochrome P450 arachidonic acid epoxygenase highly expressed in heart. J. Biol. Chem. 271, 3460–3468.

    Article  PubMed  CAS  Google Scholar 

  705. Zeldin, D.C., J. Foley, J. Ma, J.E. Boyle, J.M.S. Pascual, C.R. Moomaw et al. (1996). CYP2J subfamily P450s in the lung: Expression, localization, and potential functional significance. Mol. Pharmacol. 50, 1111–1117.

    PubMed  CAS  Google Scholar 

  706. Zeldin, D.C., J. Foley, S.M. Goldsworthy, M.E. Cook, J.E. Boyle, J. Ma et al. (1997). CYP2J subfamily cytochrome P450s in the gastrointestinal tract: Expression, localization, and potential functional significance. Mol. Pharmacol. 51, 931–943.

    PubMed  CAS  Google Scholar 

  707. Zeldin, D.C. (2001). Epoxygenase pathways of arachidonic acid metabolism. J. Biol. Chem. 276, 36059–36062.

    Article  PubMed  CAS  Google Scholar 

  708. King, L.M., J. Ma, S. Srettabunjong, J. Graves, J.A. Bradbury, L. Li et al. (2002). Cloning of CYP2J2 gene and identification of functional polymorphisms. Mol. Pharmacol. 61, 840–852.

    Article  PubMed  CAS  Google Scholar 

  709. Nelson, D.R. (2003). Comparison of P450s from human and fugu: 420 million years of vertebrate P450 evolution. Arch. Biochem. Biophys. 409, 18–24.

    Article  PubMed  CAS  Google Scholar 

  710. Rylander, T., E.P.A. Neve, M. Ingelman-Sundberg, and M. Oscarson (2001). Identification and tissue distribution of the novel human cytochrome P450 2S1 (CYP2S1). Biochem. Biophys. Res. Commun. 281, 529–535.

    Article  PubMed  CAS  Google Scholar 

  711. Molowa, D.T., E.G. Schuetz, S.A. Wrighton, P.B. Watkins, P. Kremers, G. Mendez-Picon et al. (1986). Complete cDNA sequence of a cytochrome P-450 inducible by glucocorticoids in human liver. Proc. Natl. Acad. Sci. USA 83, 5311–5315.

    Article  PubMed  CAS  Google Scholar 

  712. Beaune, P.H., D.R. Umbenhauer, R.W. Bork, R.S. Lloyd, and F.P. Guengerich (1986). Isolation and sequence determination of a cDNA clone related to human cytochrome P-450 nifedipine oxidase. Proc. Natl. Acad. Sci. USA 83, 8064–8068.

    Article  PubMed  CAS  Google Scholar 

  713. Bork, R.W., T. Muto, P.H. Beaune, P.K. Srivastava, R.S. Lloyd, and F.P. Guengerich (1989). Characterization of mRNA species related to human liver cytochrome P-450 nifedipine oxidase and the regulation of catalytic activity. J. Biol. Chem. 264, 910–919.

    PubMed  CAS  Google Scholar 

  714. Kolars, J., P. Schmiedelin-Ren, W. Dobbins, R. Merion, S. Wrighton, and P. Watkins (1990). Heterogeneity of P-450 IIIA expression in human gut epithelia. FASEB J. 4, A2242.

    Google Scholar 

  715. Kolars, J.C., P. Schmiedlin-Ren, J.D. Schuetz, C. Fang, and P.B. Watkins (1992). Identification of rifampin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J. Clin. Invest. 90, 1871–1878.

    PubMed  CAS  Google Scholar 

  716. Böcker, R.H. and F.P. Guengerich (1986). Oxidation of 4-ary1-and 4-alky1-substituted 2,6-dimethy1-3,5-bis(alkoxycarbonyl)-1,4-dihy-dropyridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450. J. Med. Chem. 29, 1596–1603.

    Article  PubMed  Google Scholar 

  717. Waxman, D.J., C. Attisano, F.P. Guengerich, and D.P. Lapenson (1988). Cytochrome P-450 steroid hormone metabolism catalyzed by human liver microsomes. Arch. Biochem. Biophys. 263, 424–436.

    Article  PubMed  CAS  Google Scholar 

  718. Shimada, T. and F.P. Guengerich (1989). Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc. Natl. Acad. Sci. USA 86, 462–465.

    Article  PubMed  CAS  Google Scholar 

  719. Brian, W.R., M.-A. Sari, M. Iwasaki, T. Shimada, L.S. Kaminsky, and F.P. Guengerich (1990). Catalytic activities of human liver cytochrome P-450 IIIA4 expressed in Saccharomyces cerevisiae. Biochemistry 29, 11280–11292.

    Article  PubMed  CAS  Google Scholar 

  720. Guengerich, F.P. (1990). Mechanism-based inactivation of human liver cytochrome P-450 IIIA4 by gestodene. Chem. Res. Toxicol. 3, 363–371.

    Article  PubMed  CAS  Google Scholar 

  721. Kelley, J.D., D.L. Eaton, F.P. Guengerich, and R.A. Coulombe, Jr. (1997). Aflatoxin B1 activation in human lung. Toxicol. Appl. Pharmacol. 144, 88–95.

    Article  Google Scholar 

  722. Koch, I., R. Weil, R. Wolbold, J. Brockmoller, E. Hustert, O. Burk et al. (2002). Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab. Dispos. 30, 1108–1114.

    Article  PubMed  CAS  Google Scholar 

  723. Nakamoto, T., I. Hase, S. Imaoka, T. Hiroi, Y. Oda, A. Asada et al. (2000). Quantitative RT-PCR for CYP3A4 mRNA in human peripheral lymphocytes: Induction of CYP3A4 in lymphocytes and in liver by rifampicin. Pharmacogenetics 10, 571–575.

    Article  PubMed  CAS  Google Scholar 

  724. de Wildt, S.N., G.L. Kearns, J.S. Leeder, and J.N. van den Anker (1999). Cytochrome P450 3A. Ontogeny and drug disposition. Clin. Pharmacokinet. 37, 485–505.

    Article  PubMed  Google Scholar 

  725. El Mouelhi, M., M.S. Didolkar, E.G. Elias, F.P. Guengerich, and F.C. Kauffman (1987). Hepatic drug metabolizing enzymes in primary and secondary tumors of human liver. Cancer Res. 47, 460–466.

    PubMed  Google Scholar 

  726. Fujitaka, K., T. Oguri, T. Isobe, Y. Fujiwara, and N. Kohno (2001). Induction of cytochrome P450 3A4 by docetaxel in peripheral mononuclear cells and its expression in lung cancer. Cancer Chemother. Pharmacol. 48, 42–46.

    Article  PubMed  CAS  Google Scholar 

  727. Hughes, S.J., M.A. Morse, C.M. Weghorst, H. Kim, P.B. Watkins, F.P. Guengerich et al. (1999). Cytochromes P450 are expressed in proliferating cells in Barrett’s metaplasia. Neoplasia 1, 145–153.

    Article  PubMed  CAS  Google Scholar 

  728. Inoue, K., J. Inazawa, H. Nakagawa, T. Shimada, H. Yamazaki, F.P. Guengerich et al. (1992). Assignment of the human cytochrome P450 nifedipine oxidase gene (CYP3A4) to band 7q22.1 by in situ fluorescence hybridization. Jpn. J. Hum. Genet. 37, 133–138.

    Article  PubMed  CAS  Google Scholar 

  729. Lu, A.Y.H., A. Somogyi, S. West, R. Kuntzman, and A.H. Conney (1972). Pregnenolone-16α-carbonitrile: A new type of inducer of drug-metabolizing enzymes. Arch. Biochem. Biophys. 152, 457–462.

    Article  PubMed  CAS  Google Scholar 

  730. Guengerich, F.P. (1999). Human cytochrome P-450 3A4: Regulation and role in drug metabolism. Annu. Rev. Pharmacol. Toxicol. 39, 1–17.

    Article  PubMed  CAS  Google Scholar 

  731. Barwick, J.L., L.C. Quattrochi, A.S. Mills, C. Potenza, R.H. Tukey, and P.S. Guzelian (1996). Trans-species gene transfer for analysis of glucocorticoid-inducible transcriptional activation of transiently expressed human CYP3A4 and rabbit CYP3A6 in primary cultures of adult rat and rabbit hepatocytes. Mol. Pharmacol. 50, 10–16.

    PubMed  CAS  Google Scholar 

  732. Schuetz, E.G. and P.S. Guzelian (1984). Induction of cytochrome P-450 by glucocorticoids in rat liver: II. Evidence that glucocorticoids regulate induction of cytochrome P-450 by a nonclassical receptor mechanism. J. Biol. Chem. 259, 2007–2012.

    PubMed  CAS  Google Scholar 

  733. Calleja, C., J.M. Pascussi, J.C. Mani, P. Maurel, and M.J. Vilarem (1998). The antibiotic rifampicin is a nonsteroidal ligand and activator of the human glucocorticoid receptor. Nat. Med. 4, 92–96.

    Article  PubMed  CAS  Google Scholar 

  734. Ray, D.W., A.M. Lovering, J.R. Davis, and A. White (1998). Rifampicin: A glucocorticoid receptor ligand?. Nat. Med. 4, 1090–1091.

    Article  PubMed  CAS  Google Scholar 

  735. Kliewer, S.A., J.T. Moore, L. Wade, J.L. Staudinger, M.A. Watson, S.A. Jones et al. (1998). An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 92, 73–82.

    Article  PubMed  CAS  Google Scholar 

  736. Lehmann, J.M., D.D. McKee, M.A. Watson, T.M. Wilson, J.T. Moore, and S.A. Kliewer (1998). The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Invest. 102, 1016–1023.

    PubMed  CAS  Google Scholar 

  737. Coumoul, X., M. Diry, and R. Barouki (2002). PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides. Biochem. Pharmacol. 64, 1513–1519.

    Article  PubMed  CAS  Google Scholar 

  738. Jones, S.A., L.B. Moore, G.B. Wisely, and S.A. Kliewer (2002). Use of in vitro pregnane X receptor assays to assess CYP3A4 induction potential of drug candidates. Meth. Enzymol. 357, 161–170.

    PubMed  CAS  Google Scholar 

  739. Raucy, J., L. Warfe, M.F. Yueh, and S.W. Allen (2002). A cell-based reporter gene assay for determining induction of CYP3A4 in a high-volume system. J. Pharmacol. Exp. Ther. 303, 412–423.

    Article  PubMed  CAS  Google Scholar 

  740. Luo, G., M. Cunningham, S. Kim, T. Burn, J. Lin, M. Sinz et al. (2002). CYP3A4 induction by drugs: Correlation between a pregnane X receptor reporter gene assay and CYP3A4 expression in human hepatocytes. Drug Metab. Dispos. 30, 795–804.

    Article  PubMed  CAS  Google Scholar 

  741. Zhang, J., P. Kuehl, E.D. Green, J.W. Touchman, P.B. Watkins, A. Daly et al. (2001). The human pregnane X receptor: Genomic structure and identification and functional characterization of natural allelic variants. Pharmacogenetics 11, 555–572.

    Article  PubMed  CAS  Google Scholar 

  742. Goodwin, B., E. Hodgson, and C. Liddle (1999). The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol. Pharmacol. 56, 1329–1339.

    PubMed  CAS  Google Scholar 

  743. El-Sankary, W., V. Bombail, G.G. Gibson, and N. Plant (2002). Glucocorticoid-mediated induction of CYP3A4 is decreased by disruption of a protein: DNA interaction distinct from the pregnane X receptor response element. Drug Metab. Dispos. 30, 1029–1034.

    Article  PubMed  CAS  Google Scholar 

  744. Takeshita, A., M. Taguchi, N. Koibuchi, and Y. Ozawa (2002). Putative role of the orphan nuclear receptor SXR (steroid and xenobiotic receptor) in the mechanism of CYP3A4 inhibition by xenobiotics. J. Biol. Chem. 277, 32453–32458.

    Article  PubMed  CAS  Google Scholar 

  745. Goodwin, B., E. Hodgson, D.J. D’Costa, G.R. Robertson, and C. Liddle (2002). Transcriptional regulation of the human CYP3A4 gene by the constitutive androstane receptor. Mol. Pharmacol. 62, 359–365.

    Article  PubMed  CAS  Google Scholar 

  746. Thummel, K.E., C. Brimer, K. Yasuda, J. Thottassery, T. Senn, Y. Lin et al. (2001). Transcriptional control of intestinal cytochrome P-4503A by 1α,25-dihydroxy vitamin D3. Mol. Pharmacol. 60, 1399–1406.

    PubMed  CAS  Google Scholar 

  747. Hara, H., Y. Yasunami, and T. Adachi (2002). Alteration of cellular phosphorylation state affects vitamin D receptor-mediated CYP3A4 mRNA induction in Caco-2 cells. Biochem. Biophys. Res. Commun. 296, 182–188.

    Article  PubMed  CAS  Google Scholar 

  748. Ourlin, J.C., Y. Jounaidi, P. Maurel, and M.J. Vilarem (1997). Role of the liver-enriched transcription factors C/EBPα and DBP in the expression of human CYP3A4 and CYP3A7. J. Hepatol. 26(Suppl 2), 54–62.

    Article  PubMed  CAS  Google Scholar 

  749. Tirona, R.G., W. Lee, B.F. Leake, L.B. Lan, C.B. Cline, V. Lamba et al. (2003). The orphan nuclear receptor HNF4α determines PXR-and CAR-mediated xenobiotic induction of CYP3A4. Nat. Med. 9, 220–224.

    Article  PubMed  CAS  Google Scholar 

  750. Jover, R., R. Bort, M.J. Gomez-Lechon, and J.V. Castell (2002). Down-regulation of human CYP3A4 by the inflammatory signal interleukin-6: Molecular mechanism and transcription factors involved. FASEB J. 16, 1799–1801.

    PubMed  CAS  Google Scholar 

  751. Danan, G., V. Descatoire, and D. Pessayre (1981). Self-induction by erythromycin of its own transformation into a metabolite forming an inactive complex with reduced cytochrome P-450. J. Pharmacol. Exp. Ther. 218, 509–514.

    PubMed  CAS  Google Scholar 

  752. Bensoussan, C., M. Delaforge, and D. Mansuy (1995). Particular ability of cytochromes P450 3A to form inhibitory P450-iron-metabolite complexes upon metabolic oxidation of amino drugs. Biochem. Pharmacol. 49, 591–602.

    Article  PubMed  CAS  Google Scholar 

  753. Wang, X.Y., K.F. Medzihradszky, D. Maltby, and M.A. Correia (2001). Phosphorylation of native and heme-modified CYP3A4 by protein kinase C: A mass spectrometric characterization of the phosphorylated peptides. Biochemistry 40, 11318–11326.

    Article  PubMed  CAS  Google Scholar 

  754. Sy, S.K., A. Ciaccia, W. Li, E.A. Roberts, A. Okey, W. Kalow et al. (2002). Modeling of human hepatic CYP3A4 enzyme kinetics, protein, and mRNA indicates deviation from log-normal distribution in CYP3A4 gene expression. Eur. J. Clin. Pharmacol. 58, 357–365.

    Article  PubMed  CAS  Google Scholar 

  755. Ball, S.E., J. Scatina, J. Kao, G.M. Ferron, R. Fruncillo, P. Mayer et al. (1999). Population distribution and effects on drug metabolism of a genetic variant in the 5′ promoter region of CYP3A4. Clin. Pharmacol. Ther. 66, 288–294.

    Article  PubMed  CAS  Google Scholar 

  756. Spurdle, A.B., B. Goodwin, E. Hodgson, J.L. Hopper, X. Chen, D.M. Purdie et al. (2002). The CYP3A4*1B polymorphism has no functional significance and is not associated with risk of breast or ovarian cancer. Pharmacogenetics 12, 355–366.

    Article  PubMed  CAS  Google Scholar 

  757. Eiselt, R., T.L. Domanski, A. Zibat, R. Mueller, E. Presecan-Siedel, E. Hustert et al. (2001). Identification and functional characterization of eight CYP3A4 protein variants. Pharmacogenetics 11, 447–458.

    Article  PubMed  CAS  Google Scholar 

  758. Garcia-Martin, E., C. Martinez, R.M. Pizarro, F.J. Garcia-Gamito, H. Gullsten, H. Raunio et al. (2002). CYP3A4 variant alleles in white individuals with low CYP3A4 enzyme activity. Clin. Pharmacol. Ther. 71, 196–204.

    Article  PubMed  CAS  Google Scholar 

  759. Lamba, J.K., Y.S. Lin, K. Thummel, A. Daly, P.B. Watkins, S. Strom et al. (2002). Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics 12, 121–132.

    Article  PubMed  CAS  Google Scholar 

  760. Dai, D., J. Tang, R. Rose, E. Hodgson, R.J. Bienstock, H.W. Mohrenweiser et al. (2001). Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chlorpyrifos. J. Pharmacol. Exp. Ther. 299, 825–831.

    PubMed  CAS  Google Scholar 

  761. Lamba, J.K., Y.S. Lin, E.G. Schuetz, and K.E. Thummel (2002). Genetic contribution to variable human CYP3A-mediated metabolism. Adv. Drug Deliv. Rev. 54, 1271–1294.

    Article  PubMed  CAS  Google Scholar 

  762. Williams, J.A., B.J. Ring, V.E. Cantrell, D.R. Jones, J. Eckstein, K. Ruterbories et al. (2002). Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7. Drug Metab. Dispos. 30, 883–891.

    Article  PubMed  CAS  Google Scholar 

  763. Wang, R.W., P.H. Kari, A.Y.H. Lu, P.E. Thomas, F.P. Guengerich, and K.P. Vyas (1991). Biotransformation of lovastatin. IV. Identification of cytochrome P-450 3A proteins as the major enzymes responsible for the oxidative metabolism of lovastatin in rat and human liver microsomes. Arch. Biochem. Biophys. 290, 355–361.

    Article  PubMed  CAS  Google Scholar 

  764. Huskey, S.E.W., D.C. Dean, R.R. Miller, G.H. Rasmusson, and S.H.L. Chiu (1995). Identification of human cytochrome P450 isozymes responsible for the in vitro oxidative metabolism of finasteride. Drug Metab. Dispos. 23, 1126–1135.

    PubMed  CAS  Google Scholar 

  765. Kronbach, T., V. Fischer, and U.A. Meyer (1988). Cyclosporine metabolism in human liver: Identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin. Pharmacol. Ther. 43, 630–635.

    PubMed  CAS  Google Scholar 

  766. Combalbert, J., I. Fabre, G. Fabre, I. Dalet, J. Derancourt, J.P. Cano et al. (1989). Metabolism of cyclosporin A. IV. Purification and identification of the rifampicin-inducible human liver cytochrome P-450 (cyclosporin A oxidase) as a product of P450IIIA gene subfamily. Drug Metab. Dispos. 17, 197–207.

    PubMed  CAS  Google Scholar 

  767. Koudriakova, T., E. Iatsimirskaia, I. Utkin, E. Gangl, P. Vouros, E. Storozhuk et al. (1998). Metabolism of the human immunodeficiency virus protease inhibitors indinavir and ritonavir by human intestinal microsomes and expressed cytochrome P4503A4/3A5: Mechanism-based inactivation of cytochrome P4503A by ritonavir. Drug Metab. Dispos. 26, 552–561.

    PubMed  CAS  Google Scholar 

  768. Warrington, J.S., R.I. Shader, L.L. von Moltke, and D.J. Greenblatt (2000). In vitro biotransformation of sildenafil (Viagra): Identification of human cytochromes and potential drug interactions. Drug Metab. Dispos. 28, 392–397.

    PubMed  CAS  Google Scholar 

  769. Kudo, S., M.G. Okumura, and T. Ishizaki (1999). Cytochrome P-450 isoforms involved in carboxylic acid ester cleavage of Hantzsch pyridine ester of pranidipine. Drug Metab. Dispos. 27, 303–308.

    PubMed  CAS  Google Scholar 

  770. Zhang, Z., Y. Li, R.A. Stearns, P.R. Ortiz De Montellano, T.A. Baillie, and W. Tang (2002). Cytochrome P450 3A4-mediated oxidative conversion of a cyano to an amide group in the metabolism of pinacidil. Biochemistry 41, 2712–2718.

    Article  PubMed  CAS  Google Scholar 

  771. Hosea, N.A. and F.P. Guengerich (1998). Oxidation of non-ionic detergents by cytochrome P450 enzymes. Arch. Biochem. Biophys. 353, 365–373.

    Article  PubMed  CAS  Google Scholar 

  772. Bodin, K., L. Bretillon, Y. Aden, L. Bertilsson, U. Broome, C. Einarsson, and U. Diczfalusy (2001). Antiepileptic drugs increase plasma levels of 4β-hydroxycholesterol in humans: Evidence for involvement of cytochrome P450 3A4. J. Biol. Chem. 276, 38685–38689.

    Article  PubMed  CAS  Google Scholar 

  773. Bodin, K., U. Andersson, E. Rystedt, E. Ellis, M. Norlin, I. Pikuleva et al. (2002). Metabolism of 4β-hydroxycholesterol in humans. J. Biol. Chem. 277, 31534–31540.

    Article  PubMed  CAS  Google Scholar 

  774. Furster, C. and K. Wikvall (1999). Identification of CYP3A4 as the major enzyme responsible for 25-hydroxylation of 5β-cholestane-3α,7α,12α-triol in human liver microsomes. Biochim. Biophys. Acta 1437, 46–52.

    PubMed  CAS  Google Scholar 

  775. Honda, A., G. Salen, Y. Matsuzaki, A.K. Batta, G. Xu, E. Leitersdorf et al. (2001). Side chain hydroxylations in bile acid biosynthesis catalyzed by CYP3A are markedly up-regulated in Cyp27-/- mice but not in cerebrotendinous xanthomatosis. J. Biol. Chem. 276, 34579–34585.

    Article  PubMed  CAS  Google Scholar 

  776. Dussault, I., H.D. Yoo, M. Lin, E. Wang, M. Fan, A.K. Batta et al. (2003). Identification of an endogenous ligand that activates pregnane X receptor-mediated sterol clearance. Proc. Natl. Acad. Sci. USA 100, 833–838.

    Article  PubMed  CAS  Google Scholar 

  777. Boocock, D.J., K. Brown, A.H. Gibbs, E. Sanchez, K.W. Turteltaub, and I.N. White (2002). Identification of human CYP forms involved in the activation of tamoxifen and irreversible binding to DNA. Carcinogenesis 23, 1897–1901.

    Article  PubMed  CAS  Google Scholar 

  778. Ueng, Y.-F., T. Shimada, H. Yamazaki, and F.P. Guengerich (1995). Oxidation of aflatoxin B1 by bacterial recombinant human cytochrome P450 enzymes. Chem. Res. Toxicol. 8, 218–225.

    Article  PubMed  CAS  Google Scholar 

  779. Iyer, R., B. Coles, K.D. Raney, R. Thier, F.P. Guengerich, and T.M. Harris (1994). DNA adduction by the potent carcinogen aflatoxin B1: Mechanistic studies. J. Am. Chem. Soc. 116, 1603–1609.

    Article  CAS  Google Scholar 

  780. Crespi, C.L., V.P. Miller, and B.W. Penman (1997). Microtiter plate assays for inhibition of human, drug-metabolizing cytochromes P450. Anal. Biochem. 248, 188–190.

    Article  PubMed  CAS  Google Scholar 

  781. Stresser, D.M., S.D. Turner, A.P. Blanchard, V.P. Miller, and C.L. Crespi (2002). Cytochrome P450 fluorometric substrates: Identification of isoform-selective probes for rat CYP2D2 and human CYP3A4. Drug Metab. Dispos. 30, 845–852.

    Article  PubMed  CAS  Google Scholar 

  782. Chauret, N., N. Tremblay, R.L. Lackman, J.-Y. Gauthier, J.M. Silva, J. Marois et al. (1999). Description of a 96-well plate assay to measure cytochrome P4503A inhibition in human liver microsomes using a selective fluorescent probe. Anal. Biochem. 276, 215–226.

    Article  PubMed  CAS  Google Scholar 

  783. Kenworthy, K.E., J.C. Bloomer, S.E. Clarke, and J.B. Houston (1999). CYP3A4 drug interactions: Correlation of 10 in vitro probe substrates. Br. J. Clin. Pharmacol. 48, 716–727.

    Article  PubMed  CAS  Google Scholar 

  784. Schellens, J.H.M., P.A. Soons, and D.D. Breimer (1988). Lack of bimodality in nifedipine plasma kinetics in a large population of healthy subjects. Biochem. Pharmacol. 37, 2507–2510.

    Article  PubMed  CAS  Google Scholar 

  785. Lown, K., J. Kolars, K. Turgeon, R. Merion, S.A. Wrighton, and P.B. Watkins (1992). The erythromycin breath test selectively measures P450IIIA in patients with severe liver disease. Clin. Pharmacol. Ther. 51, 229–238.

    PubMed  CAS  Google Scholar 

  786. Gremse, D.A., H.H. A-Kader, T.J. Schroeder, and W.F. Balistreri (1990). Assessment of lidocaine metabolite formation as a quantitative liver function test in children. Hepatology 12, 565–569.

    PubMed  CAS  Google Scholar 

  787. May, D.G., J. Porter, G.R. Wilkinson, and R.A. Branch (1994). Frequency distribution of dapsone N-hydroxylase, a putative probe for P450 3A4 activity, in a white population. Clin. Pharmacol. Ther. 55, 492–500.

    PubMed  CAS  Google Scholar 

  788. Thummel, K.E., D.D. Shen, R.L. Carithers, Jr., P. Hartwell, T.D. Podoll, W.F. Tarager et al. (1993). Prediction of in vivo midazolam clearance from hepatic CYP3A content and midazolam 1′-hydroxylation activity in liver transplant patients. In Abstracts, 5th North American ISSX Meeting, Vol. 4. p. 235, 17–21 October, Tucson, AZ.

    Google Scholar 

  789. Wanwimolruk, S., M.F. Paine, S.N. Pusek, and P.B. Watkins (2002). Is quinine a suitable probe to assess the hepatic drug-metabolizing enzyme CYP3A4? Br. J. Clin. Pharmacol. 54, 643–651.

    Article  PubMed  CAS  Google Scholar 

  790. Ged, C., J.M. Rouillon, L. Pichard, J. Combalbert, N. Bressot, P. Bories et al. (1989). The increase in urinary excretion of 6β-hydroxycortisol as a marker of human hepatic cytochrome P450IIIA induction. Br. J. Clin. Pharmacol. 28, 373–387.

    PubMed  CAS  Google Scholar 

  791. Watkins, P.B., T.A. Hamilton, T.M. Annesley, C.N. Ellis, J.C. Kolars, and J.J. Voorhees (1990). The erythromycin breath test as a predictor of cyclosporine blood levels. Clin. Pharmacol. Ther. 48, 120–129.

    PubMed  CAS  Google Scholar 

  792. Kinirons, M.T., D. Oshea, T.E. Downing, A.T. Fitzwilliam, L. Joellenbeck, J.D. Groopman et al. (1993). Absence of correlations among 3 putative in vivo probes of human cytochrome P4503A activity in young healthy men. Clin. Pharmacol. Ther. 54, 621–629.

    PubMed  CAS  Google Scholar 

  793. Krivoruk, Y., M.T. Kinirons, A.J.J. Wood, and M. Wood (1994). Metabolism of cytochrome P4503A substrates in vivo administered by the same route: Lack of correlation between alfentanil clearance and erythromycin breath test. Clin. Pharmacol. Ther. 56, 608–614.

    PubMed  CAS  Google Scholar 

  794. Kivistö, K.T. and H.K. Kroemer (1997). Use of probe drugs as predictors of drug metabolism in humans. J. Clin. Pharmacol. 37, 40S–48S.

    PubMed  Google Scholar 

  795. Thummel, K.E., D. O’Shea, M.F. Paine, D.D. Shen, K.L. Kunze, J.D. Perkins et al. (1996). Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin. Pharmacol. Ther. 59, 491–502.

    Article  PubMed  CAS  Google Scholar 

  796. Paine, M.F., D.A. Wagner, K.A. Hoffmaster, and P.B. Watkins (2002). Cytochrome P450 3A4 and P-glycoprotein mediate the interaction between an oral erythromycin breath test and rifampin. Clin. Pharmacol. Ther. 72, 524–535.

    Article  PubMed  CAS  Google Scholar 

  797. Schuetz, E.G., W.T. Beck, and J.D. Schuetz (1996). Modulators and substrates of P-glycoprotein and cytochrome P4503A coordinately up-regulate these proteins in human colon carcinoma cells. Mol. Pharmacol. 49, 311–318.

    PubMed  CAS  Google Scholar 

  798. Gillam, E.M.J., T. Baba, B.-R. Kim, S. Ohmori, and F.P. Guengerich (1993). Expression of modified human cytochrome P450 3A4 in Escherichia coli and purification and reconstitution of the enzyme. Arch. Biochem. Biophys. 305, 123–131.

    Article  PubMed  CAS  Google Scholar 

  799. Imaoka, S., Y. Imai, T. Shimada, and Y. Funae (1992). Role of phospholipids in reconstituted cytochrome P450 3A forms and mechanism of their activation of catalytic activity. Biochemistry 31, 6063–6069.

    Article  PubMed  CAS  Google Scholar 

  800. Ingelman-Sundberg, M., A.-L. Hagbjörk, Y.-F. Ueng, H. Yamazaki, and F.P. Guengerich (1996). High rates of substrate hydroxylation by human cytochrome P450 3A4 in reconstituted membranous vesicles: Influence of membrane charge. Biochem. Biophys. Res. Commun. 221, 318–322.

    Article  PubMed  CAS  Google Scholar 

  801. Peyronneau, M.A., J.P. Renaud, G. Truan, P. Urban, D. Pompon, and D. Mansuy (1992). Optimization of yeast-expressed human liver cytochrome-P450 3A4 catalytic activities by coexpressing NADPH-cytochrome P450 reductase and cytochrome b 5. Eur. J. Biochem. 207, 109–116.

    Article  PubMed  CAS  Google Scholar 

  802. Guengerich, F.P. and W.W. Johnson (1997). Kinetics of ferric cytochrome P450 reduction by NADPH-cytochrome P450 reductase: Rapid reduction in absence of substrate and variations among cytochrome P450 systems. Biochemistry 36, 14741–14750.

    Article  PubMed  CAS  Google Scholar 

  803. Shet, M.S., C.W. Fisher, P.L. Holmans, and R.W. Estabrook (1993). Human cytochrome P450 3A4: Enzymatic properties of a purified recombinant fusion protein containing NADPH-P450 reductase. Proc. Natl. Acad. Sci. USA 90, 11748–11752.

    Article  PubMed  CAS  Google Scholar 

  804. Gillam, E.M.J., Z. Guo, Y.-F. Ueng, H. Yamazaki, I. Cock, P.E.B. Reilly et al. (1995). Expression of cytochrome P450 3A5 in Escherichia coli: Effects of 5′ modifications, purification, spectral characterization, reconstitution conditions, and catalytic activities. Arch. Biochem. Biophys. 317, 374–384.

    Article  PubMed  CAS  Google Scholar 

  805. Yamazaki, H., M. Nakano, Y. Imai, Y.-F. Ueng, F.P. Guengerich, and T. Shimada (1996). Roles of cytochrome b 5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes. Arch. Biochem. Biophys. 325, 174–182.

    Article  PubMed  CAS  Google Scholar 

  806. Yamazaki, H., M. Nakajima, M. Nakamura, S. Asahi, N. Shimada, E.M.J. Gillam et al. (1999). Enhancement of cytochrome P-450 3A4 catalytic activities by cytochrome b 5 in bacterial membranes. Drug Metab. Dispos. 27, 999–1004.

    PubMed  CAS  Google Scholar 

  807. Parikh, A., E.M.J. Gillam, and F.P. Guengerich (1997). Drug metabolism by Escherichia coli expressing human cytochromes P450. Nat. Biotechnol. 15, 784–788.

    Article  PubMed  CAS  Google Scholar 

  808. Blake, J.A.R., M. Pritchard, S. Ding, G.C.M. Smith, B. Burchell, C.R. Wolf et al. (1996). Coexpression of a human P450 (CYP3A4) and P450 reductase generates a highly functional monooxygenase system in Escherichia coli, FEBS Lett. 397, 210–214.

    Article  PubMed  CAS  Google Scholar 

  809. Nakajima, M., K. Tane, S. Nakamura, N. Shimada, H. Yamazaki, and T. Yokoi (2002). Evaluation of approach to predict the contribution of multiple cytochrome P450s in drug metabolism using relative activity factor: Effects of the differences in expression levels of NADPH-cytochrome P450 reductase and cytochrome b 5 in the expression system and the differences in the marker activities. J. Pharm. Sci. 91, 952–963.

    Article  PubMed  CAS  Google Scholar 

  810. Noshiro, M. and T. Omura (1978). Immunochemical study on the electron pathway from NADH to cytochrome P-450 of liver microsomes. J. Biochem. (Tokyo) 83, 61–77.

    CAS  Google Scholar 

  811. Perret, A. and D. Pompon (1998). Electron shuttle between membrane-bound cytochrome P450 3A4 and b 5 rules uncoupling mechanisms. Biochemistry 37, 11412–11424.

    Article  PubMed  CAS  Google Scholar 

  812. Yamazaki, H., W.W. Johnson, Y.-F. Ueng, T. Shimada, and F.P. Guengerich (1996). Lack of electron transfer from cytochrome b 5 in stimulation of catalytic activities of cytochrome P450 3A4: Characterization of a reconstituted cytochrome P450 3A4/NADPH-cytochrome P450 reductase system and studies with apo-cytochrome b 5. J. Biol. Chem. 271, 27438–27444.

    Article  PubMed  CAS  Google Scholar 

  813. Auchus, R.J., T.C. Lee, and W.L. Miller (1998). Cytochrome b 5 augments the 17,20-lyase activity of human P450c17 without direct electron transfer. J. Biol. Chem. 273, 3158–3165.

    Article  PubMed  CAS  Google Scholar 

  814. Aitken, A.E., L.J. Roman, P.A. Loughran, M. de la Garza, and B.S.S. Masters (2001). Expressed CYP4A4 metabolism of prostaglandin E-1 and arachidonic acid. Arch. Biochem. Biophys. 393, 329–338.

    Article  PubMed  CAS  Google Scholar 

  815. Guryev, O.L., A.A. Gilep, S.A. Usanov, and R.W. Estabrook (2001). Interaction of apo-cytochrome b 5 with cytochromes P4503A4 and P45017A: Relevance of heme transfer reactions. Biochemistry 40, 5018–5031.

    Article  PubMed  CAS  Google Scholar 

  816. Yamazaki, H., T. Shimada, M.V. Martin, and F.P. Guengerich (2001). Stimulation of cytochrome P450 reactions by apo-cytochrome b 5. Evidence against transfer of heme from cytochrome P450 3A4 to apo-cytochrome b 5 or heme oxygenase. J. Biol. Chem. 276, 30885–30891.

    Article  PubMed  CAS  Google Scholar 

  817. Ekins, S., G. Bravi, J.H. Wikel, and S.A. Wrighton (1999). Three-dimensional-quantitative structure activity relationship analysis of cytochrome P-450 3A4 substrates. J. Pharmacol. Exp. Ther. 291, 424–433.

    PubMed  CAS  Google Scholar 

  818. Ekins, S., G. Bravi, S. Binkley, J.S. Gillespie, B.J. Ring, J.H. Wikel et al. (1999). Three-and four-dimensional quantitative structure activity relationship analyses of cytochrome P-450 3A4 inhibitors. J. Pharmacol. Exp. Ther. 290, 429–438.

    PubMed  CAS  Google Scholar 

  819. Stevens, J.C., T.L. Domanski, G.R. Harlow, R.B. White, E. Orton, and J.R. Halpert (1999). Use of the steroid derivative RPR 106541 in combination with site-directed mutagenesis for enhanced cytochrome P-450 3A4 structure/function analysis. J. Pharmacol. Exp. Ther. 290, 594–602.

    PubMed  CAS  Google Scholar 

  820. Domanski, T.L., Y.A. He, G.R. Harlow, and J.R. Halpert (2000). Dual role of human cytochrome P450 3A4 residue Phe-304 in substrate specificity and cooperativity. J. Pharmacol. Exp. Ther. 293, 585–591.

    PubMed  CAS  Google Scholar 

  821. Fowler, S.M., R.J. Riley, M.P. Pritchard, M.J. Sutcliffe, T. Friedberg, and C.R. Wolf (2000). Amino acid 305 determines catalytic center accessibility in CYP3A4. Biochemistry 39, 4406–4414.

    Article  PubMed  CAS  Google Scholar 

  822. Xue, L., H.F. Wang, Q. Wang, G.D. Szklarz, T.L. Domanski, J.R. Halpert et al. (2001). Influence of P450 3A4 SRS-2 residues on cooperativity and/or regioselectivity of aflatoxin B1 oxidation. Chem. Res. Toxicol. 14, 483–491.

    Article  PubMed  CAS  Google Scholar 

  823. Fowler, S.M., J.M. Taylor, T. Friedberg, C.R. Wolf, and R.J. Riley (2002). CYP3A4 active site volume modification by mutagenesis of leucine 211. Drug Metab. Dispos. 30, 452–456.

    Article  PubMed  CAS  Google Scholar 

  824. Smith, D.A. and B.C. Jones (1992). Speculations on the substrate structure-activity relationship (SSAR) of cytochrome P450 enzymes. Biochem. Pharmacol. 44, 2089–2098.

    Article  PubMed  CAS  Google Scholar 

  825. Macdonald, T.L., W.G. Gutheim, R.B. Martin, and F.P. Guengerich (1989). Oxidation of substituted N,N-dimethylanilines by cytochrome P-450: Estimation of the effective oxidation-reduction potential of cytochrome P-450. Biochemistry 28, 2071–2077.

    Article  PubMed  CAS  Google Scholar 

  826. Yamazaki, H., Y.-F. Ueng, T. Shimada, and F.P. Guengerich (1995). Roles of divalent metal ions in oxidations catalyzed by recombinant cytochrome P450 3A4 and replacement of NADPH-cytochrome P450 reductase with other flavoproteins, iron-sulfur proteins, and oxygen surrogates. Biochemistry 34, 8380–8389.

    Article  PubMed  CAS  Google Scholar 

  827. Northrop, D.B. (1975). Steady-state analysis of kinetic isotope effects in enzymic reactions. Biochemistry 14, 2644–2651.

    Article  PubMed  CAS  Google Scholar 

  828. Kuby, S.A. (1991). A Study of Enzymes, Vol. I, Enzyme Catalysis, Kinetics, and Substrate Binding. CRC Press, Boca Raton, FL.

    Google Scholar 

  829. Walsh, C. (1979). Enzymatic Reaction Mechanisms. W. H. Freeman Co, San Francisco, CA.

    Google Scholar 

  830. Obach, R.S. (2001). Mechanism of cytochrome P4503A4-and 2D6-catalyzed dehydrogenation of ezlopitant as probed with isotope effects using five deuterated analogs. Drug Metab. Dispos. 29, 1599–1607.

    PubMed  CAS  Google Scholar 

  831. Wiebel, F.J., J.C. Leutz, L. Diamond, and H.V. Gelboin (1971). Aryl hydrocarbon (benzo[a]pyrene) hydroxylase in microsomes from rat tissues: Differential inhibition and stimulation by benzoflavones and organic solvents. Arch. Biochem. Biophys. 144, 78–86.

    Article  PubMed  CAS  Google Scholar 

  832. Kapitulnik, J., P.J. Poppers, M.K. Buening, J.G. Fortner, and A.H. Conney (1977). Activation of monooxygenases in human liver by 7,8-benzoflavone. Clin. Pharmacol. Ther. 22, 475–485.

    PubMed  CAS  Google Scholar 

  833. Buening, M.K., J.G. Fortner, A. Kappas, and A.H. Conney (1978). 7,8-Benzoflavone stimulates the metabolic activation of aflatoxin B1 to mutagens by human liver. Biochem. Biophys. Res. Commun. 82, 348–355.

    Article  PubMed  CAS  Google Scholar 

  834. Schwab, G.E., J.L. Raucy, and E.F. Johnson (1988). Modulation of rabbit and human hepatic cytochrome P-450-catalyzed steroid hydroxylations by α-naphthoflavone. Mol. Pharmacol. 33, 493–499.

    PubMed  CAS  Google Scholar 

  835. Hosea, N.A., G.P. Miller, and F.P. Guengerich (2000). Elucidation of distinct binding sites for cytochrome P450 3A4. Biochemistry 39, 5929–5939.

    Article  PubMed  CAS  Google Scholar 

  836. Guengerich, F.P., B.-R. Kim, E.M.J. Gillam, and T. Shimada (1994). Mechanisms of enhancement and inhibition of cytochrome P450 catalytic activity In M. C. Lechner (ed.), Proceedings, 8th International Conference on Cytochrome P450: Biochemistry, Biophysics, and Molecular Biology, John Libbey Eurotext, Paris, pp. 97–101.

    Google Scholar 

  837. Yun, C.-H., T. Shimada, and F.P. Guengerich (1992). Contributions of human liver cytochrome P-450 enzymes to the N-oxidation of 4, 4′-methylene-bis(2-chloroaniline). Carcinogenesis 13, 217–222.

    Article  PubMed  CAS  Google Scholar 

  838. Wang, R.W., D.J. Newton, T.D. Scheri, and A.Y.H. Lu (1997). Human cytochrome P450 3A4-catalyzed testosterone 6β-hydroxylation and erythromycin N-demethylation. Drug Metab. Dispos. 25, 502–507.

    PubMed  CAS  Google Scholar 

  839. Ludwig, E., J. Schmid, K. Beschke, and T. Ebner (1999). Activation of human cytochrome P-450 3A4-catalyzed meloxicam 5′-methylhydroxylation by quinidine and hydroquinidine in vitro. J. Pharmacol. Exp. Ther. 290, 1–8.

    PubMed  CAS  Google Scholar 

  840. Wang, R.W., D.J. Newton, N. Liu, W.M. Atkins, and A.Y.H. Lu (2000). Human cytochrome P-450 3A4: In vitro drug-drug interaction patterns are substrate-dependent. Drug Metab. Dispos. 28, 360–366.

    PubMed  CAS  Google Scholar 

  841. Schrag, M.L. and L.C. Wienkers (2001). Covalent alteration of the CYP3A4 active site: Evidence for multiple substrate binding domains. Arch. Biochem. Biophys. 391, 49–55.

    Article  PubMed  CAS  Google Scholar 

  842. Masubuchi, Y., A. Ose, and T. Horie (2002). Diclofenac-induced inactivation of CYP3A4 and its stimulation by quinidine. Drug Metab. Dispos. 30, 1143–1148.

    Article  PubMed  CAS  Google Scholar 

  843. Shou, M., J. Grogan, J.A. Mancewicz, K.W. Krausz, F.J. Gonzalez, H.V. Gelboin et al. (1994). Activation of CYP3A4: Evidence for the simultaneous binding of two substrates in a cytochrome P450 active site. Biochemistry 33, 6450–6455.

    Article  PubMed  CAS  Google Scholar 

  844. Korzekwa, K.R., N. Krishnamachary, M. Shou, A. Ogai, R.A. Parise, A.E. Rettie et al. (1998). Evaluation of atypical cytochrome P450 kinetics with two-substrate models: Evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry 37, 4137–4147.

    Article  PubMed  CAS  Google Scholar 

  845. Shou, M., R. Dai, D. Cui, K.R. Korzekwa, T.A. Baillie, and T.H. Rushmore (2001). A kinetic model for the metabolic interaction of two substrates at the active site of cytochrome P450 3A4. J. Biol. Chem. 276, 2256–2262.

    Article  PubMed  CAS  Google Scholar 

  846. Kenworthy, K.E., S.E. Clarke, J. Andrews, and J.B. Houston (2001). Multisite kinetic models for CYP3A4: Simultaneous activation and inhibition of diazepam and testosterone metabolism. Drug Metab. Dispos. 29, 1644–1651.

    PubMed  CAS  Google Scholar 

  847. Galetin, A., S.E. Clarke, and J.B. Houston (2002). Quinidine and haloperidol as modifiers of CYP3A4 activity: Multisite kinetic model approach. Drug Metab. Dispos. 30, 1512–1522.

    Article  PubMed  CAS  Google Scholar 

  848. Domanski, T.L., J. Liu, G.R. Harlow, and J.R. Halpert (1998). Analysis of four residues within substrate recognition site 4 of human cytochrome P450 3A4: Role in steroid hydroxylase activity and α-naphthoflavone stimulation. Arch. Biochem. Biophys. 350, 223–232.

    Article  PubMed  CAS  Google Scholar 

  849. Harlow, G.R. and J.R. Halpert (1998). Analysis of human cytochrome P450 3A4 cooperativity: Construction and characterization of a site-directed mutant that displays hyperbolic steroid hydroxylation kinetics. Proc. Natl. Acad. Sci. USA 95, 6636–6641.

    Article  PubMed  CAS  Google Scholar 

  850. He, Y.A., F. Roussel, and J.R. Halpert (2003). Analysis of homotropic and heterotropic cooperativity of diazepam oxidation by CYP3A4 using site-directed mutagenesis and kinetic modeling. Arch. Biochem. Biophys. 409, 92–101.

    Article  PubMed  CAS  Google Scholar 

  851. Domanski, T.L., Y.A. He, K.K. Khan, F. Roussel, Q. Wang, and J.R. Halpert (2001). Phenylalanine and tryptophan scanning mutagenesis of CYP3A4 substrate recognition site residues and effect on substrate oxidation and cooperativity. Biochemistry 40, 10150–10160.

    Article  PubMed  CAS  Google Scholar 

  852. Dabrowski, M.J., M.L. Schrag, L.C. Wienkers, and W.M. Atkins (2002). Pyrene-pyrene complexes at the active site of cytochrome P450 3A4: Evidence for a multiple substrate binding site. J. Am. Chem. Soc. 124, 11866–11867.

    Article  PubMed  CAS  Google Scholar 

  853. Cupp-Vickery, J., R. Anderson, and Z. Hatziris (2000). Crystal structures of ligand complexes of P450eryF exhibiting homotropic cooperativity. Proc. Natl. Acad. Sci. USA 97, 3050–3055.

    Article  PubMed  CAS  Google Scholar 

  854. Khan, K.K., H. Liu, and J.R. Halpert (2003). Homotropic versus heterotorpic cooperativity of cytochrome P450eryF: A substrate oxidation and spectral titration study. Drug Metab. Dispos. 31, 356–359.

    Article  PubMed  CAS  Google Scholar 

  855. Koley, A.P., J.T.M. Buters, R.C. Robinson, A. Markowitz, and F.K. Friedman (1995). CO binding kinetics of human cytochrome P450 3A4: Specific interaction of substrates with kinetically distinguishable conformers. J. Biol. Chem. 270, 5014–5018.

    Article  PubMed  CAS  Google Scholar 

  856. Koley, A.P., J.T.M. Buters, R.C. Robinson, A. Markowitz, and F.K. Friedman (1997). Differential mechanisms of cytochrome P450 inhibition and activation by α-naphthoflavone. J. Biol. Chem. 272, 3149–3152.

    Article  PubMed  CAS  Google Scholar 

  857. Koley, A.P., R.C. Robinson, and F.K. Friedman (1996). Cytochrome P450 conformation and substrate interactions as probed by CO binding kinetics. Biochimie 78, 706–713.

    Article  PubMed  CAS  Google Scholar 

  858. Koley, A.P., R.C. Robinson, A. Markowitz, and F.K. Friedman (1997). Drug-drug interactions: Effect of quinidine on nifedipine binding to human cytochrome P450 3A4. Biochem. Pharmacol. 53, 455–460.

    Article  PubMed  CAS  Google Scholar 

  859. Anzenbacherova’, E., N. Bec, P. Anzenbacher, J. Hudecek, P. Soucek, C. Jung et al. (2000). Flexibility and stability of the structure of cytochromes P450 3A4 and BM-3. Eur. J. Biochem. 267, 2916–2920.

    Article  CAS  Google Scholar 

  860. Ma, B., M. Shatsky, H.J. Wolfson, and R. Nussinov (2002). Multiple diverse ligands binding at a single protein site: A matter of pre-existing populations. Protein Sci. 11, 184–197.

    Article  PubMed  CAS  Google Scholar 

  861. Carlson, H.A. (2002). Protein flexibility and drug design: How to hit a moving target. Curr. Opin. Chem. Biol. 6, 447–452.

    Article  PubMed  CAS  Google Scholar 

  862. Carlson, H.A. (2002). Protein flexibility is an important component of structure-based drug discovery. Curr. Pharm. Des. 8, 1571–1578.

    Article  PubMed  CAS  Google Scholar 

  863. Schlichting, I., J. Berendzen, K. Chu, A.M. Stock, S.A. Maves, D.E. Benson et al. (2000). The catalytic pathway of cytochrome P450cam at atomic resolution. Science 287, 1615–1622.

    Article  PubMed  CAS  Google Scholar 

  864. Atkins, W.M., R.W. Wang, and A.Y.H. Lu (2001). Allosteric behavior in cytochrome P450-dependent in vitro drug-drug interactions: A prospective based on conformational dynamics. Chem. Res. Toxicol. 14, 338–347.

    Article  PubMed  CAS  Google Scholar 

  865. Segel, I.H. (1975). Enzyme Kinetics. Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems. John Wiley & Sons, New York.

    Google Scholar 

  866. Atkins, W.M., W.D. Lu, and D.L. Cook (2002). Is there a toxicological advantage for non-hyperbolic kinetics in cytochrome P450 catalysis? Functional allostery from “distributive catalysis.” J. Biol. Chem. 277, 33258–33266.

    Article  PubMed  CAS  Google Scholar 

  867. Di Petrillo, K., S. Wood, V. Kostrubsky, K. Chatfield, J. Bement, S. Wrighton et al. (2002). Effect of caffeine on acetaminophen hepatotoxicity in cultured hepatocytes treated with ethanol and isopentanol. Toxicol. Appl. Pharmacol. 185, 91–97.

    Article  Google Scholar 

  868. Tang, W. and R.A. Stearns (2001). Heterotropic cooperativity of cytochrome P450 3A4 and potential drug-drug interactions. Curr. Drug Metab. 2, 185–198.

    Article  PubMed  CAS  Google Scholar 

  869. Egnell, A.C., J.B. Houston, and C.S. Boyer (2003). In vivo CYP3A4 heteroactivation is a possible mechanism for the drug interaction between felbamate and carbamazepine. J. Pharmacol. Exp. Ther. 305, 1251–1262.

    Article  PubMed  CAS  Google Scholar 

  870. Yun, C.-H., R.A. Okerholm, and F.P. Guengerich (1993). Oxidation of the antihistaminic drug terfenadine in human liver microsomes: Role of cytochrome P450 3A(4) in N-dealkylation and C-hydroxylation. Drug Metab. Dispos. 21, 403–409.

    PubMed  CAS  Google Scholar 

  871. Delaforge, M., M. Jaouen, and D. Mansuy (1983). Dual effects of macrolide antibiotics on rat liver cytochrome P-450: Induction and formation of metabolite-complexes: A structure-activity relationship. Biochem. Pharmacol. 32, 2309–2318.

    Article  PubMed  CAS  Google Scholar 

  872. Bailey, D.G., B. Edgar, J.D. Spence, C. Munzo, and J.M.O. Arnold (1990). Felodipine and nifedipine interactions with grapefruit juice. Clin. Pharmacol. Ther. 47, 180.

    Google Scholar 

  873. Greenblatt, D.J., K.C. Patki, L.L. von Moltke, and R.I. Shader (2001). Drug interactions with grapefruit juice: An update. J. Clin. Psychopharmacol. 21, 357–359.

    Article  PubMed  CAS  Google Scholar 

  874. Guengerich, F.P. and D.-H. Kim (1990). In vitro inhibition of dihydropyridine oxidation and aflatoxin B1 activation in human liver microsomes by naringenin and other flavonoids. Carcinogenesis 11, 2275–2279.

    Article  PubMed  CAS  Google Scholar 

  875. von Moltke, L.L., D.J. Greenblatt, J.M. Grassi, B.W. Granda, S.X. Duan, S.M. Fogelman et al. (1998). Protease inhibitors as inhibitors of human cytochromes P450: High risk associated with ritonavir. J. Clin. Pharmacol. 38, 106–111.

    Google Scholar 

  876. Unger, M., U. Holzgrabe, W. Jacobsen, C. Cummins, and L.Z. Benet (2002). Inhibition of cytochrome P450 3A4 by extracts and kavalactones of Piper methysticum (kava-kava). Planta Med. 68, 1055–1058.

    Article  PubMed  CAS  Google Scholar 

  877. Lin, H.L., U.M. Kent, and P.F. Hollenberg (2002). Mechanism-based inactivation of cytochrome P450 3A4 by 17α-ethynylestradiol: Evidence for heme destruction and covalent binding to protein. J. Pharmacol. Exp. Ther. 301, 160–167.

    Article  PubMed  CAS  Google Scholar 

  878. Palovaara, S., K.T. Kivisto, P. Tapanainen, P. Manninen, P.J. Neuvonen, and K. Laine (2000). Effect of an oral contraceptive preparation containing ethinylestradiol and gestodene on CYP3A4 activity as measured by midazolam 1′-hydroxylation. Br. J. Clin. Pharmacol. 50, 333–337.

    Article  PubMed  CAS  Google Scholar 

  879. Kuhl, H., C. Jung-Hoffmann, and F. Heidt (1988). Alterations in the serum levels of gestodene and SHBG during 12 cycles of treatment with 30 μg ethinylestradiol and 75μg gestodene. Contraception 38, 477–486.

    Article  PubMed  CAS  Google Scholar 

  880. Balogh, A., S. Gessinger, U. Svarovsky, M. Hippius, U. Mellinger, G. Klinger et al. (1998). Can oral contraceptive steroids influence the elimination of nifedipine and its primary pryidine metabolite in humans?. Eur. J. Clin. Pharmacol. 54, 729–734.

    Article  PubMed  CAS  Google Scholar 

  881. Guengerich, F.P. (1986). Covalent binding to apoprotein is a major fate of heme in a variety of reactions in which cytochrome P-450 is destroyed. Biochem. Biophys. Res. Commun. 138, 193–198.

    Article  PubMed  CAS  Google Scholar 

  882. He, K., L.M. Bornheim, A.M. Falick, D. Maltby, H. Yin, and M.A. Correia (1998). Identification of the heme-modified peptides from cumene hydroperoxide-inactivated cytochrome P450 3A4. Biochemistry 37, 17448–17457.

    Article  PubMed  CAS  Google Scholar 

  883. Wienkers, L.C. (2001). Problems associated with in vitro assessment of drug inhibition of CYP3A4 and other P-450 enzymes and its impact on drug discovery. J. Pharmacol. Toxicol. Methods 45, 79–84.

    Article  PubMed  CAS  Google Scholar 

  884. Plant, N.J. and G.G. Gibson (2003). Evaluation of the toxicological relevance of CYP3A4 induction. Curr. Opin. Drug Discov. Devel. 6, 50–56.

    PubMed  CAS  Google Scholar 

  885. Yee, G.C., M.S. Kennedy, R. Storb, and E.D. Thomas (1984). Effect of hepatic dysfunction on oral cyclosporine pharmacokinetics in marrow transplant patients. Blood 64, 1277–1279.

    PubMed  CAS  Google Scholar 

  886. von Moltke, L.L. D.J. Greenblatt, S.X. Duan, J.S. Harmatz, and R.I. Shader (1994). In vitro prediction of the terfenadine-ketoconazole pharmacokinetic interaction. J. Clin. Pharmacol. 34, 1222–1227.

    CAS  Google Scholar 

  887. Dorne, J.L., K. Walton, and A.G. Renwick (2003). Human variability in CYP3A4 metabolism and CYP3A4-related uncertainty factors for risk assessment. Food Chem. Toxicol. 41, 201–224.

    Article  PubMed  CAS  Google Scholar 

  888. Yang, L.Q., S.J. Li, Y.F. Cao, X.B. Man, W.F. Yu, H.Y. Wang et al. (2003). Different alterations of cytochrome P450 3A4 isoform and its gene expression in livers of patients with chronic liver diseases. World J. Gastroenterol. 9, 359–363.

    PubMed  CAS  Google Scholar 

  889. Lang, C.C., R.M. Brown, M.T. Kinirons, M.-A. Deathridge, F.P. Guengerich, D. Kelleher et al. (1996). Decreased intestinal P450 3A4 in celiac sprue: Reversal following successful gluten free diet. Clin. Pharmacol. Ther. 59, 41–46.

    Article  PubMed  CAS  Google Scholar 

  890. Zhou, S., Y. Gao, W. Jiang, M. Huang, A. Xu, and J.W. Paxton (2003). Interactions of herbs with cytochrome P450. Drug Metab. Rev. 35, 35–98.

    Article  PubMed  CAS  Google Scholar 

  891. Moore, L.B., B. Goodwin, S.A. Jones, G.B. Wisely, C.J. Serabjit-Singh, T.M. Willson et al. (2000). St. John’s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc. Natl. Acad. Sci. USA 97, 7500–7502.

    Article  PubMed  CAS  Google Scholar 

  892. Watkins, R.E., J.M. Maglich, L.B. Moore, G.B. Wisely, S.M. Noble, P.R. Davis-Searles et al. (2003). 2.1 Å crystal structure of human PXR in complex with the St. John’s wort compound hyperforin. Biochemistry 42, 1430–1438.

    Article  PubMed  CAS  Google Scholar 

  893. Henderson, L., Q.Y. Yue, C. Bergquist, B. Gerden, and P. Arlett (2002). St. John’s wort (Hypericum perforatum): Drug interactions and clinical outcomes. Br. J. Clin. Pharmacol. 54, 349–356.

    Article  PubMed  CAS  Google Scholar 

  894. Kolars, J.C., P. Benedict, P. Schmiedlin-Ren, and P.B. Watkins (1994). Aflatoxin B1-adduct formation in rat and human small bowel enterocytes. Gastroenterology 106, 433–439.

    PubMed  CAS  Google Scholar 

  895. Felix, C.A., A.H. Walker, B.J. Lange, T.M. Williams, N.J. Winick, N.-K.V. Cheung et al. (1998). Association of CYP3A4 genotype with treatment-related leukemia. Proc. Natl. Acad. Sci. USA 95, 13176–13181.

    Article  PubMed  CAS  Google Scholar 

  896. Miyoshi, Y., A. Ando, Y. Takamura, T. Taguchi, Y. Tamaki, and S. Noguchi (2002). Prediction of response to docetaxel by CYP3A4 mRNA expression in breast cancer tissues. Int. J. Cancer 97, 129–132.

    Article  PubMed  CAS  Google Scholar 

  897. Blanco, J.G., M.J. Edick, M.L. Hancock, N.J. Winick, T. Dervieux, M.D. Amylon et al. (2002). Genetic polymorphisms in CYP3A5, CYP3A4 and NQO1 in children who developed therapy-related myeloid malignancies. Pharmacogenetics 12, 605–611.

    Article  PubMed  CAS  Google Scholar 

  898. Rebbeck, T.R., J.M. Jaffe, A.H. Walker, A.J. Wein, and S.B. Malkowicz (1998). Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl. Cancer Inst. 90, 1225–1228.

    Article  PubMed  CAS  Google Scholar 

  899. Tayeb, M.T., C. Clark, L. Sharp, N.E. Haites, P.H. Rooney, G.I. Murray et al. (2002). CYP3A4 promoter variant is associated with prostate cancer risk in men with benign prostate hyperplasia. Oncol. Rep. 9, 653–655.

    PubMed  CAS  Google Scholar 

  900. Tayeb, M.T., C. Clark, N.E. Haites, L. Sharp, G.I. Murray, and H.L. McLeod (2003). CYP3A4 and VDR gene polymorphisms and the risk of prostate cancer in men with benign prostate hyperplasia. Br. J. Cancer 88, 928–932.

    Article  PubMed  CAS  Google Scholar 

  901. Ando, Y., T. Tateishi, Y. Sekido, T. Yamamoto, T. Satoh, Y. Hasegawa et al. (1999). Modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl. Cancer Inst. 91, 1587–1588.

    Article  PubMed  CAS  Google Scholar 

  902. Kittles, R.A., W. Chen, R.K. Panguluri, C. Ahaghotu, A. Jackson, C.A. Adebamowo et al. (2002). CYP3A4-V and prostate cancer in African Americans: Causal or confounding association because of population stratification?. Hum. Genet. 110, 553–560.

    Article  PubMed  Google Scholar 

  903. Wojnowski, L., E. Hustert, K. Klein, M. Goldammer, M. Haberl, J. Kirchheiner et al. (2002). Re: modification of clinical presentation of prostate tumors by a novel genetic variant in CYP3A4. J. Natl. Cancer Inst. 94, 630–631.

    PubMed  Google Scholar 

  904. Wrighton, S.A., B.J. Ring, P.B. Watkins, and M. VandenBranden (1989). Identification of a polymorphically expressed member of the human cytochrome P-450III family. Mol. Pharmacol. 86, 97–105.

    Google Scholar 

  905. Aoyama, T., S. Yamano, D.J. Waxman, D.P. Lapenson, U.A. Meyer, V. Fischer et al. (1989). Cytochrome P-450 hPCN3, a novel cytochrome P-450 IIIA gene product that is differentially expressed in adult human liver. J. Biol. Chem. 264, 10388–10395.

    PubMed  CAS  Google Scholar 

  906. Murray, G.I., S. Pritchard, W.T. Melvin, and M.D. Burke (1995). Cytochrome P450 CYP3A5 in the human anterior pituitary gland. FEBS Lett. 364, 79–82.

    Article  PubMed  CAS  Google Scholar 

  907. Yamakoshi, Y., T. Kishimoto, K. Sugimura, and H. Kawashima (1999). Human prostate CYP3A5: Identification of a unique 5′-untranslated sequence and characterization of purified recombinant protein. Biochem. Biophys. Res. Commun. 260, 676–681.

    Article  PubMed  CAS  Google Scholar 

  908. Hukkanen, J., T. Vaisanen, A. Lassila, R. Piipari, S. Anttila, O. Pelkonen et al. (2003). Regulation of CYP3A5 by glucocorticoids and cigarette smoke in human lung-derived cells. J. Pharmacol. Exp. Ther. 304, 745–752.

    Article  PubMed  CAS  Google Scholar 

  909. Janardan, S.K., K.S. Lown, P. Schmiedlin-Ren, K.E. Thummel, and P.B. Watkins (1996). Selective expression of CYP3A5 and not CYP3A4 in human blood. Pharmacogenetics 6, 379–385.

    Article  PubMed  CAS  Google Scholar 

  910. Hakkola, J., H. Raunio, R. Purkunen, S. Saarikoski, K. Vahakangas, O. Pelkonen et al. (2001). Cytochrome P450 3A expression in the human fetal liver: Evidence that CYP3A5 is expressed in only a limited number of fetal livers. Biol. Neonate 80, 193–201.

    Article  PubMed  CAS  Google Scholar 

  911. Jounaïdi, Y., P.S. Guzelian, and M.J. Vilarem (1994). Sequence of the 5′-flanking region of CYP3A5: Comparative analysis with CYP3A4 and CYP3A7. Biochem. Biophys. Res. Commun. 205, 1741–1747.

    Article  PubMed  Google Scholar 

  912. Schuetz, J.D., E.G. Schuetz, J.V. Thottassery, P.S. Guzelian, S. Strom, and D. Sun (1996). Identification of a novel dexamethasone responsive enhancer in the human CYP3A5 gene and its activation in human and rat liver cells. Mol. Pharmacol. 49, 63–72.

    PubMed  CAS  Google Scholar 

  913. Lin, Y.S., A.L. Dowling, S.D. Quigley, F.M. Farin, J. Zhang, J. Lamba et al. (2002). Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol. Pharmacol. 62, 162–172.

    Article  PubMed  CAS  Google Scholar 

  914. Hustert, E., M. Haberl, O. Burk, R. Wolbold, Y.Q. He, K. Klein et al. (2001). The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics 11, 773–779.

    Article  PubMed  CAS  Google Scholar 

  915. Paulussen, A., K. Lavrijsen, H. Bohets, J. Hendrickx, P. Verhasselt, W. Luyten et al. (2000). Two linked mutations in transcriptional regulatory elements of the CYP3A5 gene constitute the major genetic determinant of polymorphic activity in humans. Pharmacogenetics 10, 415–424.

    Article  PubMed  CAS  Google Scholar 

  916. Shih, P.S. and J.D. Huang (2002). Pharmacokinetics of midazolam and 1′-hydroxymidazolam in Chinese with different CYP3A5 genotypes. Drug Metab. Dispos. 30, 1491–1496.

    Article  PubMed  CAS  Google Scholar 

  917. Wrighton, S.A., W.R. Brian, M.A. Sari, M. Iwasaki, F.P. Guengerich, J.L. Raucy et al. (1990). Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol. Pharmacol. 38, 207–213.

    PubMed  CAS  Google Scholar 

  918. Gibbs, M.A., K.E. Thummel, D.D. Shen, and K.L. Kunze (1999). Inhibition of cytochrome P-450 3A(CYP3A) in human intestinal and liver microsomes: Comparison of Ki values and impact of CYP3A5 expression. Drug Metab. Dispos. 27, 180–187.

    PubMed  CAS  Google Scholar 

  919. Kamataki, T., M. Sugiura, Y. Yamazoe, and R. Kato (1979). Purification and properties of cytochrome P-450 and NADPH-cytochrome c (P-450) reductase from human liver microsomes. Biochem. Pharmacol. 28, 1993–2000.

    Article  PubMed  CAS  Google Scholar 

  920. Kitada, M., T. Kamataki, K. Itahashi, T. Rikihisa, R. Kato, and Y. Kanakubo (1985). Purification and properties of cytochrome P-450 from homogenates of human fetal livers. Arch. Biochem. Biophys. 241, 275–280.

    Article  PubMed  CAS  Google Scholar 

  921. Kitada, M., T. Kamataki, K. Itahashi, T. Rikihisa, R. Kato, and Y. Kanakubo (1985). Immunochemical examinations of cytochrome P-450 in various tissues of human fetuses using antibodies to human fetal cytochrome P-450, P-450 HFLa. Biochem. Biophys. Res. Commun. 131, 1154–1159.

    Article  PubMed  CAS  Google Scholar 

  922. Okajima, Y., N. Inaba, I. Fukazawa, Y. Ota, Y. Hirai, N. Sato et al. (1993). Immunohistochemical and immunoelectron microscopic study of cytochrome P-450 of human fetal livers (P-450HFLa): Implications for an onco-feto-placental enzyme. Asia Oceania J. Obstet. Gynaecol. 19, 329–341.

    PubMed  CAS  Google Scholar 

  923. Schuetz, J.D., S. Kauma, and P.S. Guzelian (1993). Identification of the fetal liver cytochrome CYP3A7 in human endometrium and placenta. J. Clin. Invest. 92, 1018–1024.

    PubMed  CAS  Google Scholar 

  924. Sarkar, M.A., V. Vadlamuri, S. Ghosh, and D.D. Glover (2003). Expression and cyclic variability of CYP3A4 and CYP3A7 isoforms in human endometrium and cervix during the menstrual cycle. Drug Metab. Dispos. 31, 1–6.

    Article  PubMed  CAS  Google Scholar 

  925. Hakkola, J., H. Raunio, R. Purkunen, O. Pelkonen, S. Saarikoski, T. Cresteil et al. (1996). Detection of cytochrome P450 gene expression in human placenta in first trimester of pregnancy. Biochem. Pharmacol. 52, 379–383.

    Article  PubMed  CAS  Google Scholar 

  926. Yang, H.Y.L., Q.P. Lee, A.E. Rettie, and M.R. Juchau (1994). Functional cytochrome P4503A isoforms in human embryonic tissues: Expression during organogenesis. Mol. Pharmacol. 46, 922–928.

    PubMed  CAS  Google Scholar 

  927. Schuetz, J.D., D.L. Beach, and P.S. Guzelian (1994). Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics 4, 11–20.

    Article  PubMed  CAS  Google Scholar 

  928. Tateishi, T., H. Nakura, M. Asoh, M. Watanabe, M. Tanaka, T. Kumai et al. (1997). A comparison of hepatic cytochrome P450 protein expression between infancy and postinfancy. Life Sci. 61, 2567–2574.

    Article  PubMed  CAS  Google Scholar 

  929. Komori, M., K. Nishio, H. Ohi, M. Kitada, and T. Kamataki (1989). Molecular cloning and sequence analysis of cDNA containing entire coding region for human fetal liver cytochrome P-450. J. Biochem. (Tokyo) 106, 161–163.

    Google Scholar 

  930. Itoh, S., T. Yanagimoto, S. Tagawa, H. Hashimoto, R. Kitamura et al. (1992). Genomic organization of human fetal specific P-450IIIA7 (cytochrome P-450HFLa)-related gene (s) and interaction of transcriptional regulatory factor with its DNA element in the 5′ flanking region. Biochim. Biophys. Acta 1130, 133–138.

    PubMed  CAS  Google Scholar 

  931. Greuet, J., L. Pichard, C. Bonfils, J. Domergue, and P. Maurel (1996). The fetal specific gene CYP3A7 is inducible by rifampicin in adult human hepatocytes in primary culture. Biochem. Biophys. Res. Commun. 225, 689–694.

    Article  PubMed  CAS  Google Scholar 

  932. Pascussi, J.M., Y. Jounaidi, L. Drocourt, J. Domergue, C. Balabaud, P. Maurel et al. (1999). Evidence for the presence of a functional pregnane X receptor response element in the CYP3A7 promoter gene. Biochem. Biophys. Res. Commun. 260, 377–381.

    Article  PubMed  CAS  Google Scholar 

  933. Bertilsson, G., A. Berkenstam, and P. Blomquist (2001). Functionally conserved xenobiotic responsive enhancer in cytochrome P450 3A7. Biochem. Biophys. Res. Commun. 280, 139–144.

    Article  PubMed  CAS  Google Scholar 

  934. Saito, T., Y. Takahashi, H. Hashimoto, and T. Kamataki (2001). Novel transcriptional regulation of the human CYP3A7 gene by Sp1 and Sp3 through nuclear factor κB-like element. J. Biol. Chem. 276, 38010–38022.

    PubMed  CAS  Google Scholar 

  935. Finta, C. and P.G. Zaphiropoulos (2000). The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons. Gene 260, 13–23.

    Article  PubMed  CAS  Google Scholar 

  936. Burk, O., H. Tegude, I. Koch, E. Hustert, R. Wolbold, H. Glaeser, K. et al. (2002). Molecular mechanisms of polymorphic CYP3A7 expression in adult human liver and intestine. J. Biol. Chem. 277, 24280–24288.

    Article  PubMed  CAS  Google Scholar 

  937. Kitada, M., T. Kamataki, K. Itahashi, T. Rikihisa, and Y. Kanakubo (1987). Significance of cytochrome P-450 (P-450 HFLa) of human fetal livers in the steroid and drug oxidations. Biochem. Pharmacol. 36, 453–456.

    Article  PubMed  CAS  Google Scholar 

  938. Kitada, M., T. Kamataki, K. Itahashi, T. Rikihisa, and Y. Kanakubo (1987). P-450 HFLa, a form of cytochrome P-450 purified from human fetal livers, is the 16α-hydroxylase of dehydroepiandrosterone 3-sulfate. J. Biol. Chem. 262, 13534–13537.

    PubMed  CAS  Google Scholar 

  939. Ohmori, S., N. Fujiki, H. Nakasa, H. Nakamura, I. Ishii, K. Itahashi et al. (1998). Steroid hydroxylation by human fetal CYP3A7 and human NADPH-cytochrome P450 reductase coexpressed in insect cells using baculovirus. Res. Commun. Mol. Pathol. Pharmacol. 100, 15–28.

    PubMed  CAS  Google Scholar 

  940. Gorski, J.C., S.D. Hall, D.R. Jones, M. VandenBranden, and S.A. Wrighton (1994). Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem. Pharmacol. 47, 1643–1653.

    Article  PubMed  CAS  Google Scholar 

  941. Gillam, E.M.J., R.M. Wunsch, Y.-F. Ueng, T. Shimada, P.E.B. Reilly, T. Kamataki et al. (1997). Expression of cytochrome P450 3A7 in Escherichia coli: Effects of 5′ modification and catalytic characterization of recombinant enzymes expressed in bicistronic format with NADPH-cytochrome P450 reductase. Arch. Biochem. Biophys. 346, 81–90.

    Article  PubMed  CAS  Google Scholar 

  942. Hashimoto, H., Y. Yanagawa, M. Sawada, S. Itoh, T. Deguchi, and T. Kamataki (1995). Simultaneous expression of human CYP3A7 and N-acetyltransferase in Chinese hamster CHL cells results in high cytotoxicity for carcinogenic heterocyclic amines. Arch. Biochem. Biophys. 320, 323–329.

    Article  PubMed  CAS  Google Scholar 

  943. Li, Y., T. Yokoi, M. Katsuki, J.S. Wang, J.D. Groopman, and T. Kamataki (1997). In vivo activation of aflatoxin B1 in C57BL/6N mice carrying a human fetus-specific CYP3A7 gene. Cancer Res. 57, 641–645.

    PubMed  CAS  Google Scholar 

  944. Yamada, A., K. Fujita, T. Yokoi, S. Muto, A. Suzuki, Y. Gondo et al. (1998). In vivo detection of mutations induced by aflatoxin B1 using human CYP3A7/HITEC hybrid mice. Biochem. Biophys. Res. Commun. 250, 150–153.

    Article  PubMed  CAS  Google Scholar 

  945. Li, Y., T. Yokoi, R. Kitamura, M. Sasaki, M. Gunji, M. Katsuki et al. (1996). Establishment of transgenic mice carrying human fetus-specific CYP3A7. Arch. Biochem. Biophys. 329, 235–240.

    Article  PubMed  CAS  Google Scholar 

  946. Chen, H., A.G. Fantel, and M.R. Juchau (2000). Catalysis of the 4-hydroxylation of retinoic acids by CYP3A7 in human fetal hepatic tissues. Drug Metab. Dispos. 28, 1051–1057.

    PubMed  CAS  Google Scholar 

  947. Inoue, E., Y. Takahashi, Y. Imai, and T. Kamataki (2000). Development of bacterial expression system with high yield of CYP3A7, a human fetuspecific form of cytochrome P450. Biochem. Biophys. Res. Commun. 269, 623–627.

    Article  PubMed  CAS  Google Scholar 

  948. Kondoh, N., T. Wakatsuki, A. Ryo, A. Hada, T. Aihara, S. Horiuchi et al. (1999). Identification and characterization of genes associated with human hepatocellular carcinogenesis. Cancer Res. 59, 4990–4996.

    PubMed  CAS  Google Scholar 

  949. Gellner, K., R. Eiselt, E. Hustert, H. Arnold, I. Koch, M. Haberl et al. (2001). Genomic organization of the human CYP3A locus: Identification of a new, inducible CYP3A gene. Pharmacogenetics 11, 111–121.

    Article  PubMed  CAS  Google Scholar 

  950. Domanski, T.L., C. Finta, J.R. Halpert, and P.G. Zaphiropoulos (2001). cDNA cloning and initial characterization of CYP3A43, a novel human cytochrome P450. Mol. Pharmacol. 59, 386–392.

    PubMed  CAS  Google Scholar 

  951. Westlind, A., S. Malmebo, I. Johansson, C. Otter, T.B. Andersson, M. Ingelman-Sundberg et al. (2001). Cloning and tissue distribution of a novel human cytochrome P450 of the CYP3A subfamily, CYP3A43. Biochem. Biophys. Res. Commun. 281, 1349–1355.

    Article  PubMed  CAS  Google Scholar 

  952. Palmer, C.N., T.H. Richardson, K.J. Griffin, M.H. Hsu, A.S. Muerhoff, J.E. Clark et al. (1993). Characterization of a cDNA encoding a human kidney, cytochrome P-450 4A fatty acid ω-hydroxylase and the cognate enzyme expressed in Escherichia coli. Biochim. Biophys. Acta 1172, 161–166.

    PubMed  CAS  Google Scholar 

  953. Bell, D.R., N.J. Plant, C.G. Rider, L. Na, S. Brown, I. Ateitalla et al. (1993). Species-specific induction of cytochrome P-450 4A RNAs: PCR cloning of partial guinea-pig, human and mouse CYP4A cDNAs. Biochem. J. 294, 173–180.

    PubMed  CAS  Google Scholar 

  954. Imaoka, S., H. Ogawa, S. Kimura, and F.J. Gonzalez (1993). Complete cDNA sequence and cDNA-directed expression of CYP4A11, a fatty acid ω-hydroxylase expressed in human kidney. DNA Cell Biol. 12, 893–899.

    PubMed  CAS  Google Scholar 

  955. Powell, P.K., I. Wolf, and J.M. Lasker (1996). Identification of CYP4A11 as the major lauric acid ω-hydroxylase in human liver microsomes. Arch. Biochem. Biophys. 335, 219–226.

    Article  PubMed  CAS  Google Scholar 

  956. Bellamine, A., Y. Wang, M.R. Waterman, J.V. Gainer, III, E.P. Dawson, N.J. Brown et al. (2003). Characterization of the CYP4A11 gene, a second CYP4A gene in humans. Arch. Biochem. Biophys. 409, 221–227.

    Article  PubMed  CAS  Google Scholar 

  957. Lu, A.Y.H. and M.J. Coon (1968). Role of hemoprotein P-450 in fatty acid ω-hydroxylation in a soluble enzyme system from liver microsomes. J. Biol. Chem. 243, 1331–1332.

    PubMed  CAS  Google Scholar 

  958. Gonzalez, M.C., C. Marteau, J. Franchi, and D. Migliore-Samour (2001). Cytochrome P450 4A11 expression in human keratinocytes: Effects of ultraviolet irradiation. Br. J. Dermatol. 145, 749–757.

    Article  PubMed  CAS  Google Scholar 

  959. Cummings, B.S., J.M. Lasker, and L.H. Lash (2000). Expression of glutathione-dependent enzymes and cytochrome P450s in freshly isolated and primary cultures of proximal tubular cells from human kidney. J. Pharmacol. Exp. Ther. 293, 677–685.

    PubMed  CAS  Google Scholar 

  960. Savas, Ü., M.H. Hsu, and E.F. Johnson (2003). Differential regulation of human CYP4A genes by peroxisome proliferators and dexamethasone. Arch. Biochem. Biophys. 409, 212–220.

    Article  PubMed  CAS  Google Scholar 

  961. Kawashima, H., T. Naganuma, E. Kusunose, T. Kono, R. Yasumoto, K. Sugimura et al. (2000). Human fatty acid ω-hydroxylase. CYP4A11: Determination of complete genomic sequence and characterization of purified recombinant protein. Arch. Biochem. Biophys. 378, 333–339.

    Article  PubMed  CAS  Google Scholar 

  962. Cattley, R.C., J. DeLuca, C. Elcombe, P. Fenner-Crisp, B.G. Lake, D.S. Marsman et al. (1998). Do peroxisome proliferating compounds pose a hepatocarcinogenic hazard to humans?. Regul. Toxicol. Pharmacol. 27, 47–60.

    Article  CAS  Google Scholar 

  963. Dierks, E.A., Z. Zhang, E.F. Johnson, and P.R. Ortiz de Montellano (1998). The catalytic site of cytochrome P4504A11 (CYP4A11) and its L131F mutant. J. Biol. Chem. 273, 23055–23061.

    Article  PubMed  CAS  Google Scholar 

  964. Hoch, U., Z. Zhang, D.L. Kroetz, and P.R. Ortiz de Montellano (2000). Structural determination of the substrate specificities and regioselectivities of the rat and human fatty acid ω-hydroxylases. Arch. Biochem. Biophys. 373, 63–71.

    Article  PubMed  CAS  Google Scholar 

  965. Powell, P.K., I. Wolf, R. Jin, and J.M. Lasker (1998). Metabolism of arachidonic acid to 20-hydroxy-5,8,11,14-eicosatetraenoic acid by P450 enzymes in human liver: Involvement of CYP4F2 and CYP4A11. J. Pharmacol. Exp. Ther. 285, 1327–1336.

    PubMed  CAS  Google Scholar 

  966. Lasker, J.M., W.B. Chen, I. Wolf, B.P. Bloswick, P.D. Wilson, and P.K. Powell (2000). Formation of 20-hydroxyeicosatetraenoic acid, a vasoactive and natriuretic eicosanoid, in human kidney. J. Biol. Chem. 275, 4118–4126.

    Article  PubMed  CAS  Google Scholar 

  967. Oliw, E.H., K. Stark, and J. Bylund (2001). Oxidation of prostaglandin H2 and prostaglandin H2 analogues by human cytochromes P450: Analysis of ω-side chain hydroxy metabolites and four steroisomers of 5-hydroxyprostaglandin I1 by mass spectrometry. Biochem. Pharmacol. 62, 407–415.

    Article  PubMed  CAS  Google Scholar 

  968. Chang, Y.T. and G.H. Loew (1999). Homology modeling and substrate binding study of human CYP4A11 enzyme. Proteins 34, 403–415.

    Article  PubMed  CAS  Google Scholar 

  969. LeBrun, L.A., U. Hoch, and P. R. Ortiz de Montellano (2002). Autocatalytic mechanism and consequences of covalent heme attachment in the cytochrome P4504A family. J. Biol. Chem. 277, 12755–12761.

    Article  PubMed  CAS  Google Scholar 

  970. Nhamburo, P.T., F.J. Gonzalez, O.W. McBride, H.V. Gelboin, and S. Kimura (1989). Identification of a new P450 expressed in human lung: Complete cDNA sequence, cDNA-directed expression, and chromosome mapping. Biochemistry 28, 8060–8066.

    Article  PubMed  CAS  Google Scholar 

  971. Imaoka, S., Y. Yoneda, T. Sugimoto, T. Hiroi, K. Yamamoto, T. Nakatani et al. (2000). CYP4B1 is a possible risk factor for bladder cancer in humans. Biochem. Biophys. Res. Commun. 277, 776–780.

    Article  PubMed  CAS  Google Scholar 

  972. Iscan, M., T. Klaavuniemi, T. Coban, N. Kapucuoglu, O. Pelkonen, and H. Raunio (2001). The expression of cytochrome P450 enzymes in human breast tumours and normal breast tissue. Breast Cancer Res. Treat. 70, 47–54.

    Article  PubMed  CAS  Google Scholar 

  973. Finnstrom, N., C. Bjelfman, T.G. Soderstrom, G. Smith, L. Egevad, B.J. Norlen et al. (2001). Detection of cytochrome P450 mRNA transcripts in prostate samples by RT-PCR. Eur. J. Clin. Invest. 31, 880–886.

    Article  PubMed  CAS  Google Scholar 

  974. Lo-Guidice, J.M., D. Allorge, C. Cauffiez, D. Chevalier, J.J. Lafitte, M. Lhermitte et al. (2002). Genetic polymorphism of the human cytochrome P450 CYP4B1: Evidence for a non-functional allelic variant. Pharmacogenetics 12, 367–374.

    Article  PubMed  CAS  Google Scholar 

  975. Zheng, Y.-M., M.B. Fisher, N. Yokotani, Y. Fujii-Kuriyama, and A.E. Rettie (1998). Identification of a meander region proline residue critical for heme binding to cytochrome P450: Implications for the catalytic function of human CYP4B1. Biochemistry 37, 12847–12851.

    Article  PubMed  CAS  Google Scholar 

  976. Imaoka, S., K. Hayashi, T. Hiroi, Y. Yabusaki, T. Kamataki, and Y. Funae (2001). A transgenic mouse expressing human CYP4B1 in the liver. Biochem. Biophys. Res. Commun. 284, 757–762.

    Article  PubMed  CAS  Google Scholar 

  977. Henne, K.R., M.B. Fisher, K.R. Iyer, D.H. Lang, W.F. Trager, and A.E. Rettie (2001). Active site characteristics of CYP4B1 probed with aromatic ligands. Biochemistry 40, 8597–8605.

    Article  PubMed  CAS  Google Scholar 

  978. Henne, K.R., K.L. Kunze, Y.M. Zheng, P. Christmas, R.J. Soberman, and A.E. Rettie (2001). Covalent linkage of prosthetic heme to CYP4 family P450 enzymes. Biochemistry 40, 12925–12931.

    Article  PubMed  CAS  Google Scholar 

  979. Hoch, U. and P.R. Ortiz de Montellano (2001). Covalently linked heme in cytochrome P4504A fatty acid hydroxylases. J. Biol. Chem. 276, 11339–11346.

    Article  PubMed  CAS  Google Scholar 

  980. Frank, S., S. Steffens, U. Fischer, A. Tlolko, N.G. Rainov, and C.M. Kramm (2002). Differential cytotoxicity and bystander effect of the rabbit cytochrome P450 4B1 enzyme gene by two different prodrugs: Implications for pharmacogene therapy. Cancer Gene Ther. 9, 178–188.

    Article  PubMed  CAS  Google Scholar 

  981. Kikuta, Y., E. Kusunose, T. Kondo, S. Yamamoto, H. Kinoshita, and M. Kusunose (1994). Cloning and expression of a novel form of leukotriene B4 omega-hydroxylase from human liver. FEBS Lett. 348, 70–74.

    Article  PubMed  CAS  Google Scholar 

  982. Kikuta, Y., E. Kusunose, and M. Kusunose (2002). Prostaglandin and leukotriene ω-hydroxylases. Prostaglandins Other Lipid Mediat. 68–69, 345–362.

    Article  PubMed  Google Scholar 

  983. Jin, R., D.R. Koop, J.L. Raucy, and J.M. Lasker (1998). Role of human CYP4F2 in hepatic catabolism of the proinflammatory agent leukotriene B4. Arch. Biochem. Biophys. 359, 89–98.

    Article  PubMed  CAS  Google Scholar 

  984. Kikuta, Y., Y. Miyauchi, E. Kusunose, and M. Kusunose (1999). Expression and molecular cloning of human liver leukotriene B4 ω-hydroxylase (CYP4F2) gene. DNA Cell Biol. 18, 723–730.

    Article  PubMed  CAS  Google Scholar 

  985. Kikuta, Y., E. Kusunose, and M. Kusunose (2000). Characterization of human liver leukotriene B4 ω-hydroxylase P450 (CYP4F2). J. Biochem. (Tokyo) 127, 1047–1052.

    CAS  Google Scholar 

  986. Kikuta, Y., E. Kusunose, K. Endo, S. Yamamoto, K. Sogawa, Y. Fujii-Kuriyama et al. (1993). A novel form of cytochrome P-450 family 4 in human polymorphonuclear leukocytes: cDNA cloning and expression of leukotriene B4 ω-hydroxylase. J. Biol. Chem. 268, 9376–9380.

    PubMed  CAS  Google Scholar 

  987. Kikuta, Y., M. Kato, Y. Yamashita, Y. Miyauchi, K. Tanaka, N. Kamada et al. (1998). Human leukotriene B4 ω-hydroxylase (CYP4F3) gene: Molecular cloning and chromosomal localization. DNA Cell Biol. 17, 221–230.

    PubMed  CAS  Google Scholar 

  988. Christmas, P., S.R. Ursino, J.W. Fox, and R.J. Soberman (1999). Expressio of the CYP4F3 gene. J. Biol. Chem. 274, 21191–21199.

    Article  PubMed  CAS  Google Scholar 

  989. Christmas, P., J.P. Jones, C.J. Patten, D.A. Rock, Y. Zheng, S.M. Cheng et al. (2001). Alternative splicing determines the function of CYP4F3 by switching substrate specificity. J. Biol. Chem. 276, 38166–38172.

    PubMed  CAS  Google Scholar 

  990. Bylund, J., N. Finnstrom, and E.H. Oliw (1999). Gene expression of a novel cytochrome P450 of the CYP4F subfamily in human seminal vesicles. Biochem. Biophys. Res. Commun. 261, 169–174.

    Article  PubMed  CAS  Google Scholar 

  991. Bylund, J., M. Hidestrand, M. Ingelman-Sundberg, and E.H. Oliw (2000). Identification of CYP4F8 in human seminal vesicles as a prominent 19-hydroxylase of prostaglandin endoperoxides. J. Biol. Chem. 275, 21844–21849.

    Article  PubMed  CAS  Google Scholar 

  992. Stark, K., H. Torma, M. Cristea, and E.H. Oliw (2003). Expression of CYP4F8 (prostaglandin H 19-hydroxylase) in human epithelia and prominent induction in epidermis of psoriatic lesions. Arch. Biochem. Biophys. 409, 188–196.

    Article  PubMed  CAS  Google Scholar 

  993. Cui, X., D.R. Nelson, and H.W. Strobel (2000). A novel human cytochrome P450 4F isoform (CYP4F11): cDNA cloning, expression, and genomic structural characterization. Genomics 68, 161–166.

    Article  PubMed  CAS  Google Scholar 

  994. Bylund, J., M. Bylund, and E.H. Oliw (2001). cDNA cloning and expression of CYP4F12, a novel human cytochrome P450. Biochem. Biophys. Res. Commun. 280, 892–897.

    Article  PubMed  CAS  Google Scholar 

  995. Hashizume, T., S. Imaoka, T. Hiroi, Y. Terauchi, T. Fujii, H. Miyazaki et al. (2001). cDNA cloning and expression of a novel cytochrome P450 (CYP4F12) from human small intestine. Biochem. Biophys. Res. Commun. 280, 1135–1141.

    Article  PubMed  CAS  Google Scholar 

  996. Hashizume, T., S. Imaoka, M. Mise, Y. Terauchi, T. Fujii, H. Miyazaki et al. (2002). Involvement of CYP2J2 and CYP4F12 in the metabolism of ebastine in human intestinal microsomes. J. Pharmacol. Exp. Ther. 300, 298–304.

    Article  PubMed  CAS  Google Scholar 

  997. Bylund, J., C. Zhang, and D.R. Harder (2002). Identification of a novel cytochrome P450, CYP4X1, with unique localization specific to the brain. Biochem. Biophys. Res. Commun. 296, 677–684.

    Article  PubMed  CAS  Google Scholar 

  998. Ullrich, V. (2003). Thoughts on thiolate tethering. Tribute and thanks to a teacher. Arch. Biochem. Biophys. 409, 45–51.

    Article  PubMed  CAS  Google Scholar 

  999. Yokoyama, C., A. Miyata, H. Ihara, V. Ullrich, and T. Tanabe (1991). Molecular cloning of human platelet thromboxane A synthase. Biochem. Biophys. Res. Commun. 178, 1479–1484.

    Article  PubMed  CAS  Google Scholar 

  1000. Nusing, R. and V. Ullrich (1992). Regulation of cyclooxygenase and thromboxane synthase in human monocytes. Eur. J. Biochem. 206, 131–136.

    Article  PubMed  CAS  Google Scholar 

  1001. Young, V., M. Ho, H. Vosper, J.J. Belch, and C.N. Palmer (2002). Elevated expression of the genes encoding TNF-α and thromboxane synthase in leucocytes from patients with systemic sclerosis. Rheumatology 41, 869–875.

    Article  PubMed  CAS  Google Scholar 

  1002. Nusing, R., P.M. Fehr, F. Gudat, E. Kemeny, M.J. Mihatsch, and V. Ullrich (1994). The localization of thromboxane synthase in normal and pathological human kidney tissue using a monoclonal antibody Tu 300. Virchows Arch. 424, 69–74.

    Article  PubMed  CAS  Google Scholar 

  1003. Ihara, H., C. Yokoyama, A. Miyata, T. Kosaka, R. Nusing, V. Ullrich et al. (1992). Induction of thromboxane synthase and prostaglandin endoperoxide synthase mRNAs in human erythroleukemia cells by phorbol ester. FEBS Lett. 306, 161–164.

    Article  PubMed  CAS  Google Scholar 

  1004. Yaekashiwa, M. and L.H. Wang (2002). Transcriptional control of the human thromboxane synthase gene in vivo and in vitro. J. Biol. Chem. 277, 22497–22508.

    Article  PubMed  CAS  Google Scholar 

  1005. Chevalier, D., J.M. Lo-Guidice, E. Sergent, D. Allorge, H. Debuysere, N. Ferrari et al. (2001). Identification of genetic variants in the human thromboxane synthase gene (CYP5A1). Mutat. Res. 432, 61–67.

    PubMed  CAS  Google Scholar 

  1006. Ullrich, V. and M. Haurand (1983). Thromboxane synthase as a cytochrome P450 enzyme. Adv. Prostaglandin Thromboxane Leukot. Res. 11, 105–110.

    PubMed  CAS  Google Scholar 

  1007. Haurand, M. and V. Ullrich (1985). Isolation and characterization of thromboxane synthase from human platelets as a cytochrome P-450 enzyme. J. Biol. Chem. 260, 15059–15067.

    PubMed  CAS  Google Scholar 

  1008. Yokoyama, C., A. Miyata, K. Suzuki, Y. Nishikawa, T. Yoshimoto, S. Yamamoto et al. (1993). Expression of human thromboxane synthase using a baculovirus system. FEBS Lett. 318, 91–94.

    Article  PubMed  CAS  Google Scholar 

  1009. Hecker, M., M. Haurand, V. Ullrich, U. Diczfalusy, and S. Hammarstrom (1987). Products, kinetics, and substrate specificity of homogeneous thromboxane synthase from human platelets: Development of a novel enzyme assay. Arch. Biochem. Biophys. 254, 124–135.

    Article  PubMed  CAS  Google Scholar 

  1010. Hecker, M., W.J. Baader, P. Weber, and V. Ullrich (1987). Thromboxane synthase catalyses hydroxylation of prostaglandin H2 analogs in the presence of iodosylbenzene. Eur. J. Biochem. 169, 563–569.

    Article  PubMed  CAS  Google Scholar 

  1011. Hecker, M. and V. Ullrich (1989). On the mechanism of prostacyclin and thromboxane A2 biosynthesis. J. Biol. Chem. 264, 141–150.

    PubMed  CAS  Google Scholar 

  1012. Alusy, U.D. and S. Hammarstrom (1977). Inhibitors of thromboxane synthase in human platelets. FEBS Lett. 82, 107–110.

    Article  PubMed  CAS  Google Scholar 

  1013. Gorman, R.R., G.L. Bundy, D.C. Peterson, F.F. Sun, O.V. Miller, and F.A. Fitzpatrick (1977). Inhibition of human platelet thromboxane synthetase by 9,11-azoprosta-5,13-dienoic acid. Proc. Natl. Acad. Sci. USA 74, 4007–4011.

    Article  PubMed  CAS  Google Scholar 

  1014. Vane, J.R. (1978). Inhibitors of prostaglandin, prostacyclin, and thromboxane synthesis. Adv. Prostaglandin Thromboxane Res. 4, 27–44.

    PubMed  CAS  Google Scholar 

  1015. Hecker, M., M. Haurand, V. Ullrich, and S. Terao (1986). Spectral studies on structure-activity relationships of thromboxane synthase inhibitors. Eur. J. Biochem. 157, 217–223.

    Article  PubMed  CAS  Google Scholar 

  1016. Pace-Asciak, C.R., D. Reynaud, P. Demin, R. Aslam, and A. Sun (2002). A new family of thromboxane receptor antagonists with secondary thromboxane synthase inhibition. J. Pharmacol. Exp. Ther. 301, 618–624.

    Article  PubMed  CAS  Google Scholar 

  1017. Miki, N., R. Miura, and Y. Miyake (1987). Purification and characterization of cholesterol 7α-hydroxylase cytochrome P-450 of untreated rabbit liver microsomes. J. Biochem. (Tokyo) 101, 1087–1094.

    CAS  Google Scholar 

  1018. Ogishima, T., S. Deguchi, and K. Okuda (1987). Purification and characterization of cholesterol 7α-hydroxylase from rat liver microsomes. J. Biol. Chem. 262, 7646–7650.

    PubMed  CAS  Google Scholar 

  1019. Nguyen, L.B., S. Shefer, G. Salen, G. Ness, R.D. Tanaka, V. Packin et al. (1990). Purification of cholesterol 7α-hydroxylase from human and rat liver and production of inhibiting polyclonal antibodies. J. Biol. Chem. 265, 4541–4546.

    PubMed  CAS  Google Scholar 

  1020. Noshiro, M. and K. Okuda (1990). Molecular cloning and sequence analysis of cDNA encoding human cholesterol 7 α-hydroxylase. FEBS Lett. 268, 137–140.

    Article  PubMed  CAS  Google Scholar 

  1021. Li, Y.C., D.P. Wang, and J.Y.L. Chiang (1990). Regulation of cholesterol 7α-hydroxylase in the liver: Cloning, sequencing, and regulation of cholesterol 7α-hydroxylase mRNA. J. Biol. Chem. 265, 12012–12019.

    PubMed  CAS  Google Scholar 

  1022. Jelinek, D.F., S. Andersson, C.A. Slaughter, and D.W. Russell (1990). Cloning and regulation of cholesterol 7α-hydroxylase, the rate-limiting enzyme in bile acid biosynthesis. J. Biol. Chem. 265, 8190–8197.

    PubMed  CAS  Google Scholar 

  1023. Cohen, J.C., J.J. Cali, D.F. Jelinek, M. Mehrabian, R.S. Sparkes, A.J. Lusis et al. (1992). Cloning of the human cholesterol 7α-hydroxylase gene (CYP7) and localization to chromosome 8q11–q12. Genomics 14, 153–161.

    Article  PubMed  CAS  Google Scholar 

  1024. Nishimoto, M., M. Noshiro, and K. Okuda (1993). Structure of the gene encoding human liver cholesterol 7α-hydroxylase. Biochim. Biophys. Acta 1172, 147–150.

    PubMed  CAS  Google Scholar 

  1025. Wang, D.P. and J.Y. Chiang (1994). Structure and nucleotide sequences of the human cholesterol 7α-hydroxylase gene (CYP7). Genomics 20, 320–323.

    Article  PubMed  CAS  Google Scholar 

  1026. Xu, G., G. Salen, S. Shefer, G.C. Ness, L.B. Nguyen, T.S. Parker et al. (1995). Unexpected inhibition of cholesterol 7α-hydroxylase by cholesterol in New Zealand white and Watanabe heritable hyperlipidemic rabbits. J. Clin. Invest. 95, 1497–1504.

    PubMed  CAS  Google Scholar 

  1027. Breuer, O., E. Sudjana-Sugiaman, G. Eggertsen, J.Y. Chiang, and I. Björkhem (1993). Cholesterol 7α-hydroxylase is up-regulated by the competitive inhibitor 7-oxocholesterol in rat liver. Eur. J. Biochem. 215, 705–710.

    Article  PubMed  CAS  Google Scholar 

  1028. Shibata, A., P.F. Ohneseit, Y.C. Tsai, C.H. Spruck, III, P.W. Nichols, H.S. Chiang et al. (1994). Mutational spectrum in the p53 gene in bladder tumors from the endemic area of black foot disease in Taiwan. Carcinogenesis 15, 1085–1087.

    Article  PubMed  CAS  Google Scholar 

  1029. Schwarz, M., E.G. Lund, K.D. Setchell, H.J. Kayden, J.E. Zerwekh, I. Bjorkhem et al. (1996). Disruption of cholesterol 7α-hydroxylase gene in mice. II. Bile acid deficiency is overcome by induction of oxysterol 7α-hydroxylase. J. Biol. Chem. 271, 18024–18031.

    Article  PubMed  CAS  Google Scholar 

  1030. Lehmann, J.M., S.A. Kliewer, L.B. Moore, T.A. Smith-Oliver, B.B. Oliver, J.L. Su et al. (1997). Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J. Biol. Chem. 272, 3137–3140.

    Article  PubMed  CAS  Google Scholar 

  1031. Peet, D.J., S.D. Turley, W. Ma, B.A. Janowski, J.M. Lobaccaro, R.E. Hammer et al. (1998). Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXRα. Cell 93, 693–704.

    Article  PubMed  CAS  Google Scholar 

  1032. Russell, D.W. (1999). Nuclear orphan receptors control cholesterol catabolism. Cell 97, 539–542.

    Article  PubMed  CAS  Google Scholar 

  1033. Makishima, M., A.Y. Okamoto, J.J. Repa, H. Tu, R.M. Learned, A. Luk et al. (1999). Identification of a nuclear receptor for bile acids. Science 284, 1362–1365.

    Article  PubMed  CAS  Google Scholar 

  1034. Nitta, M., S. Ku, C. Brown, A.Y. Okamoto, and B. Shan (1999). CPF: An orphan nuclear receptor that regulates liver-specific expression of the human cholesterol 7α-hydroxylase gene. Proc. Natl. Acad. Sci. USA 96, 6669–6665.

    Article  Google Scholar 

  1035. Chiang, J.Y., R. Kimmel, C. Weinberger, and D. Stroup (2000). Farnesoid X receptor responds to bile acids and represses cholesterol 7α-hydroxylase gene (CYP7A1) transcription. J. Biol. Chem. 275, 10918–10924.

    Article  PubMed  CAS  Google Scholar 

  1036. Staudinger, J.L., B. Goodwin, S.A. Jones, D. Hawkins-Brown, K.I. MacKenzie, A. LaTour et al. (2001). The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc. Natl. Acad. Sci. USA 98, 3369–3374.

    Article  PubMed  CAS  Google Scholar 

  1037. Gupta, S., W.M. Pandak, and P.B. Hylemon (2002). LXRα is the dominant regulator of CYP7A1 transcription. Biochem. Biophys. Res. Commun. 293, 338–343.

    Article  PubMed  CAS  Google Scholar 

  1038. Patel, D.D., B.L. Knight, A.K. Soutar, G.F. Gibbons, and D.P. Wade (2000). The effect of peroxisome-proliferator-activated receptor-α on the activity of the cholesterol 7α-hydroxylase gene. Biochem. J. 351, 747–753.

    Article  PubMed  CAS  Google Scholar 

  1039. Cheema, S.K. and L.B. Agellon (2000). The murine and human cholesterol 7α-hydroxylase gene promoters are differentially responsive to regulation by fatty acids mediated via peroxisome proliferator-activated receptor α. J. Biol. Chem. 275, 12530–12536.

    Article  PubMed  CAS  Google Scholar 

  1040. Palmer, C.N.a., M.H. Hsu, K.J. Griffin, J.L. Raucy, and E.F. Johnson (1998). Peroxisome proliferator activated receptor-α expression in human liver. Mol. Pharmacol. 53, 14–22.

    PubMed  CAS  Google Scholar 

  1041. Marrapodi, M. and J.Y. Chiang (2000). Peroxisome proliferator-activated receptor α (PPARα) and agonist inhibit cholesterol 7α-hydroxylase gene (CYP7A1) transcription. J. Lipid Res. 41, 514–520.

    PubMed  CAS  Google Scholar 

  1042. De Fabiani, E., N. Mitro, A.C. Anzulovich, A. Pinelli, G. Galli, and M. Crestani (2001). The negative effects of bile acids and tumor necrosis factor-α on the transcription of cholesterol 7α-hydroxylase gene (CYP7A1) converge to hepatic nuclear factor-4: A novel mechanism of feedback regulation of bile acid synthesis mediated by nuclear receptors. J. Biol. Chem. 276, 30708–30716.

    Article  PubMed  Google Scholar 

  1043. Feingold, K.R., D.K. Spady, A.S. Pollock, A.H. Moser, and C. Grunfeld (1996). Endotoxin, TNF, and IL-1 decrease cholesterol 7α-hydroxylase mRNA levels and activity. J. Lipid Res. 37, 223–228.

    PubMed  CAS  Google Scholar 

  1044. Drover, V.A., N.C. Wong, and L.B. Agellon (2002). A distinct thyroid hormone response element mediates repression of the human cholesterol 7α-hydroxylase (CYP7A1) gene promoter. Mol. Endocrinol., 16 14–23.

    Article  PubMed  CAS  Google Scholar 

  1045. Björkhem, I., Z. Araya, M. Rudling, B. Angelin, C. Einarsson, and K. Wikvall (2002). Differences in the regulation of the classical and the alternative pathway for bile acid synthesis in human liver. No coordinate regulation of CYP7A1 and CYP27A1. J. Biol. Chem. 277, 26804–26807.

    Article  PubMed  CAS  Google Scholar 

  1046. Wang, D., D. Stroup, M. Marrapodi, M. Crestani, G. Galli, and J.Y.L. Chiang (1996). Transcriptional regulation of the human cholesterol 7α-hydroxylase gene (CYP7A) in HepG2 cells. J. Lipid Res. 37, 1831–1841.

    PubMed  CAS  Google Scholar 

  1047. Kushwaha, R.S. and K.M. Born (1991). Effect of estrogen and progesterone on the hepatic cholesterol 7α-hydroxylase activity in ovariectomized baboons. Biochim. Biophys. Acta 1084, 300–302.

    PubMed  CAS  Google Scholar 

  1048. Crestani, M., A. Sadeghpour, D. Stroup, G. Galli, and J.Y. Chiang (1996). The opposing effects of retinoic acid and phorbol esters converge to a common response element in the promoter of the rat cholesterol 7α-hydroxylase gene (CYP7A). Biochem. Biophys. Res. Commun. 225, 585–592.

    Article  PubMed  CAS  Google Scholar 

  1049. Goodart, S.A., C. Huynh, W. Chen, A.D. Cooper, and B. Levy-Wilson (1999). Expression of the human cholesterol 7α-hydroxylase gene in transgenic mice. Biochem. Biophys. Res. Commun. 266, 454–459.

    Article  PubMed  CAS  Google Scholar 

  1050. Chen, J.Y., B. Levy-Wilson, S. Goodart, and A.D. Cooper (2002). Mice expressing the human CYP7A1 gene in the mouse CYP7A1 knock-out background lack induction of CYP7A1 expression by cholesterol feeding and have increased hypercholesterolemia when fed a high fat diet. J. Biol. Chem. 277, 42588–42595.

    Article  PubMed  CAS  Google Scholar 

  1051. Reihner, E., I. Björkhem, B. Angelin, S. Ewerth, and K. Einarsson (1989). Bile acid synthesis in humans: Regulation of hepatic microsomal cholesterol 7α-hydroxylase activity. Gastroenterology 97, 1498–1505.

    PubMed  CAS  Google Scholar 

  1052. Mayer, D. (1976). The circadian rhythm of synthesis and catabolism of cholesterol. Arch. Toxicol. 36, 267–276.

    Article  PubMed  CAS  Google Scholar 

  1053. Gielen, J., J. Van Cantfort, B. Robaye, and J. Renson (1975). Rat-liver cholesterol 7α-hydroxylase. 3. New results about its circadian rhythm. Eur. J. Biochem. 55, 41–48.

    Article  PubMed  CAS  Google Scholar 

  1054. Danielsson, H. and K. Wikvall (1981). Evidence for a specific cytochrome P-450 with short half-life catalyzing 7α-hydroxylation of cholesterol. Biochem. Biophys. Res. Commun. 103, 46–51.

    Article  PubMed  CAS  Google Scholar 

  1055. Hulcher, F.H., R.D. Margolis, and D.J. Bowman (1978). Circadian rhythm of cholesterol-7α-hydroxylase and cortisol in the African green monkey (Cercopithecus aethiops). Biochim. Biophys. Acta 529, 409–418.

    PubMed  CAS  Google Scholar 

  1056. Chiang, J.Y., W.F. Miller, and G.M. Lin (1990). Regulation of cholesterol 7 alpha-hydroxylase in the liver. Purification of cholesterol 7α-hydroxylase and the immunochemical evidence for the induction of cholesterol 7α-hydroxylase by cholestyramine and circadian rhythm. J. Biol. Chem. 265, 3889–3897.

    PubMed  CAS  Google Scholar 

  1057. Kinowaki, M., S. Tanaka, Y. Maeda, S. Higashi, K. Okuda, and T. Setoguchi (2002). Half-life of cholesterol 7α-hydroxylase activity and enzyme mass differ in animals and humans when determined by a monoclonal antibody against human cholesterol 7α-hydroxylase. J. Steroid Biochem. Mol. Biol. 81, 377–380.

    Article  PubMed  CAS  Google Scholar 

  1058. Noshiro, M., M. Nishimoto, and K. Okuda (1990). Rat liver cholesterol 7α-hydroxylase: Pretranslational regulation for circadian rhythm. J. Biol. Chem. 265, 10036–10041.

    PubMed  CAS  Google Scholar 

  1059. Sanghvi, A., E. Grassi, V. Warty, W. Diven, C. Wight, and R. Lester (1981). Reversible activation-inactivation of cholesterol 7α-hydroxylase possibly due to phosphorylation-dephosphorylation. Biochem. Biophys. Res. Commun. 103, 886–892.

    Article  PubMed  CAS  Google Scholar 

  1060. Goodwin, C.D., B.W. Cooper, and S. Margolis (1982). Rat liver cholesterol 7α-hydroxylase: Modulation of enzyme activity by changes in phosphorylation state. J. Biol. Chem. 257, 4469–4472.

    PubMed  CAS  Google Scholar 

  1061. Holsztynska, E.J. and D.J. Waxman (1987). Cytochrome P-450 cholesterol 7α-hydroxylase: Inhibition of enzyme deactivation by structurally diverse calmodulin antagonists and phosphatase inhibitors. Arch. Biochem. Biophys. 256, 543–559.

    Article  PubMed  CAS  Google Scholar 

  1062. Nguyen, L.B., S. Shefer, G. Salen, J.Y. Chiang, and M. Patel (1996). Cholesterol 7α-hydroxylase activities from human and rat liver are modulated in vitro posttranslationally by phosphorylation/dephosphorylation. Hepatology 24, 1468–1474.

    PubMed  CAS  Google Scholar 

  1063. Karam, W.G. and J.Y.L. Chiang (1992). Plymorphisms of human cholesterol 7α-hydroxylase. Biochem. Biophys. Res. Commun. 185, 588–595.

    Article  PubMed  CAS  Google Scholar 

  1064. Setchell, K.D., M. Schwarz, N.C. O’Connell, E.G. Lund, D.L. Davis, R. Lathe et al. (1998). Identification of a new inborn error in bile acid synthesis: Mutation of the oxysterol 7α-hydroxylase gene causes severe neonatal liver disease. J. Clin. Invest. 102, 1690–1703.

    PubMed  CAS  Google Scholar 

  1065. Hegele, R.A., J. Wang, S.B. Harris, J.H. Brunt, T.K. Young, A.J. Hanley et al. (2001). Variable association between genetic variation in the CYP7 gene promoter and plasma lipoproteins in three Canadian populations. Atherosclerosis 154, 579–587.

    Article  PubMed  CAS  Google Scholar 

  1066. Balasubramaniam, S., K.A. Mitropoulos, and N.B. Myant (1975). The substrate for cholesterol 7α-hydroxylase. Biochim. Biophys. Acta 398, 172–177.

    PubMed  CAS  Google Scholar 

  1067. Norlin, M., A. Toll, I. Björkhem, and K. Wikvall (2000). 24-hydroxycholesterol is a substrate for hepatic cholesterol 7α-hydroxylase (CYP7A). J. Lipid Res. 41, 1629–1639.

    PubMed  CAS  Google Scholar 

  1068. Norlin, M., U. Andersson, I. Björkhem, and K. Wikvall (2000). Oxysterol 7α-hydroxylase activity by cholesterol 7α-hydroxylase (CYP7A). J. Biol. Chem. 275, 34046–34053.

    Article  PubMed  CAS  Google Scholar 

  1069. Lathe, R. (2002). Steroid and sterol 7-hydroxylation: Ancient pathways. Steroids 67, 967–977.

    Article  PubMed  CAS  Google Scholar 

  1070. Nakayama, K., A. Puchkaev, and I.A. Pikuleva (2001). Membrane binding and substrate access merge in cytochrome P450 7A1, a key enzyme in degradation of cholesterol. J. Biol. Chem. 276, 31459–31465.

    Article  PubMed  CAS  Google Scholar 

  1071. Stahlberg, D., M. Rudling, B. Angelin, I. Björkhem, P. Forsell, K. Nilsell et al. (1997). Hepatic cholesterol metabolism in human obesity. Hepatology 25, 1447–1450.

    Article  PubMed  CAS  Google Scholar 

  1072. Post, S.M., E.C. de Wit, and H.M. Princen (1997). Cafestol, the cholesterol-raising factor in boiled coffee, suppresses bile acid synthesis by downregulation of cholesterol 7α-hydroxylase and sterol 27-hydroxylase in rat hepatocytes. Arterioscler. Thromb. Vasc. Biol. 17, 3064–3070.

    PubMed  CAS  Google Scholar 

  1073. Pandak, W.M., C. Schwarz, P.B. Hylemon, D. Mallonee, K. Valerie, D.M. Heuman et al. (2001). Effects of CYP7A1 overexpression on cholesterol and bile acid homeostasis. Am. J. Physiol. Gastrointest. Liver Physiol. 281, G878–G889.

    PubMed  CAS  Google Scholar 

  1074. Sauter, G., M. Weiss, and R. Hoermann (1997). Cholesterol 7α-hydroxylase activity in hypothyroidism and hyperthyroidism in humans. Horm. Metab. Res. 29, 176–179.

    PubMed  CAS  Google Scholar 

  1075. Pullinger, C.R., C. Eng, G. Salen, S. Shefer, A.K. Batta, S.K. Erickson et al. (2002). Human cholesterol 7α-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J. Clin. Invest. 110, 109–117.

    Article  PubMed  CAS  Google Scholar 

  1076. Beigneux, A., A.F. Hofmann, and S.G. Young (2002). Human CYP7A1 deficiency: Progress and enigmas. J. Clin. Invest. 110, 29–31.

    Article  PubMed  CAS  Google Scholar 

  1077. Stapleton, G., M. Steel, M. Richardson, J.O. Mason, K.A. Rose, R.G.M. Morris et al. (1995). A novel cytochrome P450 expressed primarily in brain. J. Biol. Chem. 270, 29739–29745.

    Article  PubMed  CAS  Google Scholar 

  1078. Rose, K.A., G. Stapleton, K. Dott, M.P. Kieny, R. Best, M. Schwarz et al. (1997). Cyp7b, a novel brain cytochrome P450, catalyzes the synthesis of neurosteroids 7α-hydroxy dehydroepiandrosterone and 7α-hydroxy pregnenolone. Proc. Natl. Acad. Sci. USA 94, 4925–4930.

    Article  PubMed  CAS  Google Scholar 

  1079. Rose, K., A. Allan, S. Gauldie, G. Stapleton, L. Dobbie, K. Dott et al. (2001). Neurosteroid hydroxylase CYP7B: Vivid reporter activity in dentate gyrus of gene-targeted mice and abolition of a widespread pathway of steroid and oxysterol hydroxylation. J. Biol. Chem. 276, 23937–23944.

    Article  PubMed  CAS  Google Scholar 

  1080. Bunting, S., S. Moncada, and J.R. Vane (1983). The prostacyclin-thromboxane A2 balance: Pathophysiological and therapeutic implications. Br. Med. Bull. 39, 271–276.

    PubMed  CAS  Google Scholar 

  1081. Miyata, A., S. Hara, C. Yokoyama, H. Inoue, V. Ullrich, and T. Tanabe (1994). Molecular cloning and expression of human prostacyclin synthase. Biochem. Biophys. Res. Commun. 200, 1728–1734.

    Article  PubMed  CAS  Google Scholar 

  1082. Ullrich, V., L. Castle, and P. Weber (1981). Spectral evidence for the cytochrome P450 nature of prostacyclin synthetase. Biochem. Pharmacol. 30, 2033–2036.

    Article  PubMed  CAS  Google Scholar 

  1083. DeWitt, D.L. and W.L. Smith (1983). Purification of prostacyclin synthase from bovine aorta by immunoaffinity chromatography. Evidence that the enzyme is a hemoprotein. J. Biol. Chem. 258, 3285–3293.

    PubMed  CAS  Google Scholar 

  1084. Hara, S., A. Miyata, C. Yokoyama, H. Inoue, R. Brugger, F. Lottspeich et al. (1994). Isolation and molecular cloning of prostacyclin synthase from bovine endothelial cells. J. Biol. Chem. 269, 19897–19903.

    PubMed  CAS  Google Scholar 

  1085. Spisni, E., G. Bartolini, M. Orlandi, B. Belletti, S. Santi, and V. Tomasi (1995). Prostacyclin (PG12) synthase is a constitutively expressed enzyme in human endothelial cells. Exp. Cell Res. 219, 507–513.

    Article  PubMed  CAS  Google Scholar 

  1086. Mehl, M., H.J. Bidmon, H. Hilbig, K. Zilles, R. Dringen, and V. Ullrich (1999). Prostacyclin synthase is localized in rat, bovine and human neuronal brain cells. Neurosci. Lett. 271, 187–190.

    Article  PubMed  CAS  Google Scholar 

  1087. Siegle, I., T. Klein, M.H. Zou, P. Fritz, and M. Komhoff (2000). Distribution and cellular localization of prostacyclin synthase in human brain. J. Histochem. Cytochem. 48, 631–641.

    PubMed  CAS  Google Scholar 

  1088. Huang, J.C., F. Arbab, K.J. Tumbusch, J.S. Goldsby, N. Matijevic-Aleksic, and K.K. Wu (2002). Human fallopian tubes express prostacyclin (PGI) synthase and cyclooxygenases and synthesize abundant PGI. J. Clin. Endocrinol. Metab. 87, 4361–4368.

    Article  PubMed  CAS  Google Scholar 

  1089. Yokoyama, C., T. Yabuki, H. Inoue, Y. Tone, S. Hara, T. Hatae et al. (1996). Human gene encoding prostacyclin synthase (PTGIS): Genomic organization, chromosomal localization, and promoter activity. Genomics 36, 296–304.

    Article  PubMed  CAS  Google Scholar 

  1090. Nakayama, T., M. Soma, Y. Izumi, and K. Kanmatsuse (1996). Organization of the human prostacyclin synthase gene. Biochem. Biophys. Res. Commun. 221, 803–806.

    Article  PubMed  CAS  Google Scholar 

  1091. Wang, L.H. and L. Chen (1996). Organization of the gene encoding human prostacyclin synthase. Biochem. Biophys. Res. Commun. 226, 631–637.

    Article  PubMed  CAS  Google Scholar 

  1092. Chevalier, D., C. Cauffiez, C. Bernard, J.M. Lo-Guidice, D. Allorge, F. Fazio et al. (2001). Characterization of new mutations in the coding sequence and 5′-untranslated region of the human prostacylcin synthase gene (CYP8A1). Hum. Genet. 108, 148–155.

    Article  PubMed  CAS  Google Scholar 

  1093. Chevalier, D., D. Allorge, J.M. Lo-Guidice, C. Cauffiez, C. Lepetit, F. Migot-Nabias et al. (2002). Sequence analysis, frequency and ethnic distribution of VNTR polymorphism in the 5′-untranslated region of the human prostacyclin synthase gene (CYP8A1). Prostaglandins Other Lipid Mediat. 70, 31–37.

    Article  PubMed  CAS  Google Scholar 

  1094. Nakayama, T., M. Soma, D. Rehemudula, Y. Takahashi, H. Tobe, M. Satoh et al. (2000). Association of 5′ upstream promoter region of prostacyclin synthase gene variant with cerebral infarction. Am. J. Hypertens. 13, 1263–1267.

    Article  PubMed  CAS  Google Scholar 

  1095. Nakayama, T., M. Soma, S. Saito, J. Honye, J. Yajima, D. Rahmutula et al. (2002). Association of a novel single nucleotide polymorphism of the prostacyclin synthase gene with myocardial infarction. Am. Heart J. 143, 797–801.

    Article  PubMed  CAS  Google Scholar 

  1096. Nakayama, T., M. Soma, Y. Takahashi, D. Rehemudula, H. Tobe, M. Sato et al. (2001). Polymorphism of the promoter region of prostacyclin synthase gene is not related to essential hypertension. Am. J. Hypertens. 14, 409–411.

    Article  PubMed  CAS  Google Scholar 

  1097. Nakayama, T., M. Soma, D. Rahmutula, H. Tobe, M. Sato, J. Uwabo et al. (2002). Association study between a novel single nucleotide polymorphism of the promoter region of the prostacyclin synthase gene and essential hypertension. Hypertens. Res. 25, 65–68.

    Article  PubMed  CAS  Google Scholar 

  1098. Nakayama, T., M. Soma, Y. Watanabe, B. Hasimu, M. Sato, N. Aoi et al. (2002). Splicing mutation of the prostacyclin synthase gene in a family associated with hypertension. Biochem. Biophys. Res. Commun. 297, 1135–1139.

    Article  PubMed  CAS  Google Scholar 

  1099. Hatae, T., S. Hara, C. Yokoyama, T. Yabuki, H. Inoue, V. Ullrich et al. (1996). Site-directed mutagenesis of human prostacyclin synthase: Alteration of Cys441 of the Cys-pocket, and Glu347 and Arg350 of the EXXR motif. FEBS Lett. 389, 268–272.

    Article  PubMed  CAS  Google Scholar 

  1100. Shyue, S.K., K.H. Ruan, L.H. Wang, and K.K. Wu (1997). Prostacyclin synthase active sites. Identification by molecular modeling-guided site-directed mutagenesis. J. Biol. Chem. 272, 3657–3662.

    Article  PubMed  CAS  Google Scholar 

  1101. Lin, Y., K.K. Wu, and K.H. Ruan (1998). Characterization of the secondary structure and membrane interaction of the putative membrane anchor domains of prostaglandin I2 synthase and cytochrome P450 2C1. Arch. Biochem. Biophys. 352, 78–84.

    Article  PubMed  CAS  Google Scholar 

  1102. Lin, Y.Z., H. Deng, and K.H. Ruan (2000). Topology of catalytic portion of prostaglandin I2 synthase: Identification by molecular modeling-guided site-specific antibodies. Arch. Biochem. Biophys. 379, 188–197.

    Article  PubMed  CAS  Google Scholar 

  1103. Deng, H., A. Huang, S.P. So, Y.Z. Lin, and K.H. Ruan (2002). Substrate access channel topology in membrane-bound prostacyclin synthase. Biochem. J. 362, 545–551.

    Article  PubMed  CAS  Google Scholar 

  1104. Reed, G.A., I.O. Griffin, and T.E. Eling (1985). Inactivation of prostaglandin H synthase and prostacyclin synthase by phenylbutazone. Requirement for peroxidative metabolism. Mol. Pharmacol. 27, 109–114.

    PubMed  CAS  Google Scholar 

  1105. Wade, M.L., N.F. Voelkel, and F.A. Fitzpatrick (1995). “Suicide” inactivation of prostaglandin I2 synthase: Characterization of mechanism-based inactivation with isolated enzyme and endothelial cells. Arch. Biochem. Biophys. 321, 453–458.

    Article  PubMed  CAS  Google Scholar 

  1106. Zou, M.H. and V. Ullrich (1996). Peroxynitrite formed by simultaneous generation of nitric oxide and superoxide selectively inhibits bovine aortic prostacyclin synthase. FEBS Lett. 382, 101–104.

    Article  PubMed  CAS  Google Scholar 

  1107. Crow, J.P. and J.S. Beckman (1995). Reactions between nitric oxide, superoxide, and peroxynitrite: Footprints of peroxynitrite in vivo. Adv. Pharmacol. 34, 17–43.

    PubMed  CAS  Google Scholar 

  1108. Zou, M., C. Martin, and V. Ullrich (1997). Tyrosine nitration as a mechanism of selective inactivation of prostacyclin synthase by peroxynitrite. Biol. Chem. 378, 707–713.

    PubMed  CAS  Google Scholar 

  1109. Schmidt, P., N. Youhnovski, A. Daiber, A. Balan, M. Arsic, M. Bachschmid et al. (2003). Specific nitration at tyrosine-430 revealed by high resolution mass spectrometry as basis for redox regulation of bovine prostacyclin synthase. J. Biol. Chem. 278, 12813–12819.

    Article  PubMed  CAS  Google Scholar 

  1110. Tuder, R.M., C.D. Cool, M.W. Geraci, J. Wang, S.H. Abman, L. Wright et al. (1999). Prostacyclin synthase expression is decreased in lungs from patients with severe pulmonary hypertension. Am. J. Respir. Crit. Care Med. 159, 1925–1932.

    PubMed  CAS  Google Scholar 

  1111. Iwai, N., T. Katsuya, K. Ishikawa, T. Mannami, J. Ogata, J. Higaki et al. (1999). Human prostacyclin synthase gene and hypertension: The Suita study. Circulation 100, 2231–2236.

    PubMed  CAS  Google Scholar 

  1112. Geraci, M.W., B. Gao, D.C. Shepherd, M.D. Moore, J.Y. Westcott, K.A. Fagan et al. (1999). Pulmonary prostacyclin synthase overexpression in transgenic mice protects against development of hypoxic pulmonary hypertension. J. Clin. Invest. 103, 1509–1515.

    PubMed  CAS  Google Scholar 

  1113. Todaka, T., C. Yokoyama, H. Yanamoto, N. Hashimoto, I. Nagata, T. Tsukahara et al. (1999). Gene transfer of human prostacyclin synthase prevents neointimal formation after carotid balloon injury in rats. Stroke 30, 419–426.

    PubMed  CAS  Google Scholar 

  1114. Pradono, P., R. Tazawa, M. Maemondo, M. Tanaka, K. Usui, Y. Saijo et al. (2002). Gene transfer of thromboxane A2 synthase and prostaglandin I2 synthase antithetically altered tumor angiogenesis and tumor growth. Cancer Res 62, 63–66.

    PubMed  CAS  Google Scholar 

  1115. Leeder, J.S., X. Lu, Y. Timsit, and A. Gaedigk (1998). Non-monooxygenase cytochromes P450 as potential human auto antigens in anticonvulsant hypersensitivity reactions. Pharmacogenetics 8, 211–225.

    Article  PubMed  CAS  Google Scholar 

  1116. Gafvels, M., M. Olin, B.P. Chowdhary, T. Raudsepp, U. Andersson, B. Persson et al. (1999). Structure and chromosomal assignment of the sterol 12α-hydroxylase gene (CYP8B1) in human and mouse: Eukaryotic cytochrome P-450 gene devoid of introns. Genomics 56, 184–196.

    Article  PubMed  CAS  Google Scholar 

  1117. Zhang, M. and J.Y. Chiang (2001). Transcriptional regulation of the human sterol 12α-hydroxylase gene (CYP8B1): Roles of hepatocyte nuclear factor 4α in mediating bile acid repression. J. Biol. Chem. 276, 41690–41699.

    Article  PubMed  CAS  Google Scholar 

  1118. Gerbod-Giannone, M.C., A. Del Castillo-Olivares, S. Janciauskiene, G. Gil, and P.B. Hylemon (2002). Suppression of cholesterol 7α-hydroxylase transcription and bile acid synthesis by an α1-antitrypsin peptide via interaction with α1-fetoprotein transcription factor. J. Biol. Chem. 277, 42973–42980.

    Article  PubMed  CAS  Google Scholar 

  1119. Yang, Y., M. Zhang, G. Eggertsen, and J.Y. Chiang (2002). On the mechanism of bile acid inhibition of rat sterol 12α-hydroxylase gene (CYP8B1) transcription: Roles of α-fetoprotein transcription factor and hepatocyte nuclear factor 4α. Biochim. Biophys. Acta 1583, 63–73.

    PubMed  CAS  Google Scholar 

  1120. Wang, H.P. and T. Kimura (1976). Purification and characterization of adrenal cortex mitochondrial cytochrome P-450 specific for cholesterol side chain cleavage activity. J. Biol. Chem. 251, 6068–6074.

    PubMed  CAS  Google Scholar 

  1121. Morohashi, K., K. Sogawa, T. Omura, and Y. Fujii-Kuriyama (1987). Gene structure of human cytochrome P-450(SCC), cholesterol desmolase. J. Biochem. (Tokyo) 101, 8879–8887.

    Google Scholar 

  1122. Poulos, T.L., B.C. Finzel, I.C. Gunsalus, G.C. Wagner, and J. Kraut (1985). The 2.6-Å crystal structure of Pseudomonas putida cytochrome P-450. J. Biol. Chem. 260, 16122–16130.

    PubMed  CAS  Google Scholar 

  1123. Belfiore, C.J., D.E. Hawkins, M.C. Wiltbank, and G.D. Niswender (1994). Regulation of cytochrome P450scc synthesis and activity in the ovine corpus luteum. J. Steroid Biochem. Mol. Biol. 51, 283–290.

    Article  PubMed  CAS  Google Scholar 

  1124. Matocha, M.F. and M.R. Waterman (1986). Import and processing of P-450scc and P-45011β precursors by corpus luteal mitochondria: A processing pathway recognizing homologous and heterologous precursors. Arch. Biochem. Biophys. 250, 456–460.

    Article  PubMed  CAS  Google Scholar 

  1125. Sasano, H., M. Okamoto, J.I. Mason, E.R. Simpson, C.R. Mendelson, N. Sasano et al. (1989). Immunolocalization of aromatase, 17α-hydroxylase and side-chain-cleavage cytochromes P-450 in the human ovary. J. Reprod. Fertil. 85, 163–169.

    PubMed  CAS  Google Scholar 

  1126. Chung, B.C., I.C. Guo, and S.J. Chou (1997). Transcriptional regulation of the CYP11A1 and ferredoxin genes. Steroids 62, 37–42.

    Article  PubMed  CAS  Google Scholar 

  1127. Walther, B., J.F. Ghersi-Egea, A. Minn, and G. Siest (1987). Brain mitochondrial cytochrome P-450scc: Spectral and catalytic properties. Arch. Biochem. Biophys. 254, 592–596.

    Article  PubMed  CAS  Google Scholar 

  1128. Warner, M. and J.A. Gustafsson (1995). Cytochrome P450 in the brain: Neuroendocrine functions. Front. Neuroendocrinol. 16, 224–236.

    Article  PubMed  CAS  Google Scholar 

  1129. Beyenburg, S., B. Stoffel-Wagner, M. Watzka, I. Blumcke, J. Bauer, J. Schramm et al. (1999). Expression of cytochrome P450scc mRNA in the hippocampus of patients with temporal lobe epilepsy. Neuroreport 10, 3067–3070.

    Article  PubMed  CAS  Google Scholar 

  1130. Watzka, M., F. Bidlingmaier, J. Schramm, D. Klingmuller, and B. Stoffel-Wagner (1999). Sex-and age-specific differences in human brain CYP11A1 mRNA expression. J. Neuroendocrinol. 11, 901–905.

    Article  PubMed  CAS  Google Scholar 

  1131. Morales, A., A. Cuellar, J. Ramirez, F. Vilchis, and V. Diaz-Sanchez (1999). Synthesis of steroids in pancreas: Evidence of cytochrome P-450scc activity. Pancreas 19, 39–44.

    Article  PubMed  CAS  Google Scholar 

  1132. Ou, W., A. Ito, K. Morohashi, Y. Fujii-Kuriyama, and T. Omura (1986). Processing-independent in vitro translocation of cytochrome P-450SCC precursor across mitochondrial membranes. J. Biochem. (Tokyo) 100, 1287–1296.

    CAS  Google Scholar 

  1133. Kumamoto, T., K. Morohashi, A. Ito, and T. Omura (1987). Site-directed mutagenesis of basic amino acid residues in the extension peptide of P-450SCC precursor: Effects on the import of the precursor into mitochondria. J. Biochem. (Tokyo) 102, 833–838.

    CAS  Google Scholar 

  1134. Black, S.M., J.A. Harikrishna, G.D. Szklarz, and W.L. Miller (1994). The mitochondrial environment is required for activity of the cholesterol side-chain cleavage enzyme, cytochrome P450scc. Proc. Natl. Acad. Sci. USA 91, 7247–7251.

    Article  PubMed  CAS  Google Scholar 

  1135. Venepally, P. and M.R. Waterman (1995). Two Sp1-binding site mediate cAMP-induced transcription of the bovine CYP11A gene through the protein kinase A signaling pathway. J. Biol. Chem. 270, 25402–25410.

    Article  PubMed  CAS  Google Scholar 

  1136. Ahlgren, R., G. Suske, M.R. Waterman, and J. Lund (1999). Role of Sp1 in cAMP-dependent transcriptional regulation of the bovine CYP11A gene. J. Biol. Chem. 274, 19422–19428.

    Article  PubMed  CAS  Google Scholar 

  1137. Guo, I.C. and B.C. Chung (1999). Cell-type specificity of human CYP11A1 TATA box. J. Steroid Biochem. Mol. Biol. 69, 329–334.

    Article  PubMed  CAS  Google Scholar 

  1138. Huang, Y., M. Hu, N. Hsu, C.L. Wang, and B. Chung (2001). Action of hormone responsive sequence in 2.3 kb promoter of CYP11A1. Mol. Cell Endocrinol. 175, 205–210.

    Article  PubMed  CAS  Google Scholar 

  1139. Hu, M.C., N.C. Hsu, C.I. Pai, C.K. Wang, and B. Chung (2001). Functions of the upstream and proximal steroidogenic factor 1 (SF-1)-binding sites in the CYP11A1 promoter in basal transcription and hormonal response. Mol. Endocrinol. 15, 812–818.

    Article  PubMed  CAS  Google Scholar 

  1140. Liu, Z. and E.R. Simpson (1999). Molecular mechanism for cooperation between Sp1 and steroidogenic factor-1 (SF-1) to regulate bovine CYP11A gene expression. Mol. Cell Endocrinol. 153, 183–196.

    Article  PubMed  CAS  Google Scholar 

  1141. Gizard, F., B. Lavallee, F. DeWitte, and D.W. Hum (2001). A novel zinc finger protein TReP-132 interacts with CBP/p300 to regulate human CYP11A1 gene expression. J. Biol. Chem. 276, 33881–33892.

    Article  PubMed  CAS  Google Scholar 

  1142. Gizard, F., B. Lavallee, F. DeWitte, E. Teissier, B. Staels, and D.W. Hum (2002). The transcriptional regulating protein of 132 kDa (TReP-132) enhances P450scc gene transcription through interaction with steroidogenic factor-1 in human adrenal cells. J. Biol. Chem. 277, 39144–39155.

    Article  PubMed  CAS  Google Scholar 

  1143. Doi, J., H. Takemori, X.Z. Lin, N. Horike, Y. Katoh, and M. Okamoto (2002). Salt-inducible kinase represses cAMP-dependent protein kinase-mediated activation of human cholesterol side chain cleavage cytochrome P450 promoter through the CREB basic leucine zipper domain. J. Biol. Chem. 277, 15629–15637.

    Article  PubMed  CAS  Google Scholar 

  1144. Ben-Zimra, M., M. Koler, and J. Orly (2002). Transcription of cholesterol side-chain cleavage cytochrome P450 in the placenta: Activating protein-2 assumes the role of steroidogenic factor-1 by binding to an overlapping promoter element. Mol. Endocrinol. 16, 1864–1880.

    Article  PubMed  CAS  Google Scholar 

  1145. Katsumata, N., M. Ohtake, T. Hojo, E. Ogawa, T. Hara, N. Sato et al. (2002). Compound heterozygous mutations in the cholesterol side-chain cleavage enzyme gene (CYP11A) cause congenital adrenal insufficiency in humans. J. Clin. Endocrinol. Metab. 87, 3808–3813.

    Article  PubMed  CAS  Google Scholar 

  1146. Tuckey, R.C. and K.J. Cameron (1993). Human placental cholesterol side-chain cleavage: Enzymatic synthesis of (22R)-20α,22-dihydroxycholesterol. Steroids 58, 230–233.

    Article  PubMed  CAS  Google Scholar 

  1147. Murray, R.I. and S.G. Sligar (1985). Oxidative cleavage of 1-phenyl-1,2-ethanediol by 4-cyano-N,N-dimethylaniline N-oxide and chloro (5,10,15,20-tetraphenylporphinato) chromium (III): A model for cholesterol side-chain cleavage by cytochrome P-450scc. J. Am. Chem. Soc. 107, 2186–2187.

    Article  CAS  Google Scholar 

  1148. Okamoto, T., K. Sasaki, and S. Oka (1988). Biomimetic oxidation with molecular oxygen. Selective carbon-carbon bond cleavage of 1,2-diols by molecular oxygen and dihydropyridine in the presence of iron-porphyrin catalysts. J. Am. Chem. Soc. 110, 1187–1196.

    Article  CAS  Google Scholar 

  1149. Ortiz de Montellano, P.R. (1995). Oxygen activation and reactivity. In P.R. Ortiz de Montellano (ed.), Cytochrome P450: Structure, Mechanism, and Biochemistry. Plenum Press, New York, pp. 245–303.

    Google Scholar 

  1150. Tuckey, R.C., S.T. Woods, and M. Tajbakhsh (1997). Electron transfer to cytochrome P-450scc limits cholesterol-side-chain-cleavage activity in the human placenta. Eur. J. Biochem. 244, 835–839.

    Article  PubMed  CAS  Google Scholar 

  1151. Beckert, V. and R. Bernhardt (1997). Specific aspects of electron transfer from adrenodoxin to cytochromes P450scc and P45011β. J. Biol. Chem. 272, 4883–4888.

    Article  PubMed  CAS  Google Scholar 

  1152. Cao, P. and R. Bernhardt (1999). Interaction of CYP11B1 (cytochrome P-45011β) with CYP11A1 (cytochrome P-450scc) in COS-1 cells. Eur. J. Biochem. 262, 720–726.

    Article  PubMed  CAS  Google Scholar 

  1153. Usanov, S.A. and V.L. Chashchin (1991). Interaction of cytochrome P-450scc with cytochrome b 5. FEBS Lett. 278, 279–282.

    Article  PubMed  CAS  Google Scholar 

  1154. Wada, A. and M.R. Waterman (1992). Identification by site-directed mutagenesis of two lysine residues in cholesterol side chain cleavage cytochrome P450 that are essential for adrenodoxin binding. J. Biol. Chem. 267, 22877–22882.

    PubMed  CAS  Google Scholar 

  1155. Woods, S.T., J. Sadleir, T. Downs, T. Triantopoulos, M.J. Headlam, and R.C. Tuckey (1998). Expression of catalytically active human cytochrome P450scc in Escherichia coli and mutagenesis of isoleucine-462. Arch. Biochem. Biophys. 353, 109–115.

    Article  PubMed  CAS  Google Scholar 

  1156. Vickery, L.E. and J.T. Kellis (1983). Inhibition of adrenocortical cytochrome P-450scc by (20R)-20-phenyl-5-pregnene-3β,20-diol: Mechanism and implications for the structure of the active site. J. Biol. Chem. 258, 3832–3836.

    PubMed  CAS  Google Scholar 

  1157. Vickery, L.E. and J. Singh (1988). 22-Thio-23,24-bisnor-5-cholen-3 β-ol: An active site-directed inhibitor of cytochrome P450scc. J. Steroid Biochem. 29, 539–543.

    Article  PubMed  CAS  Google Scholar 

  1158. Olakanmi, O. and D.W. Seybert (1990). Modified acetylenic steroids as potent mechanism-based inhibitors of cytochrome P-450scc. J. Steroid Biochem. 36, 273–280.

    Article  PubMed  CAS  Google Scholar 

  1159. Jarman, M., S.E. Barrie, C.S. Leung, and M.G. Rowlands (1988). Selective inhibition of cholesterol side-chain cleavage by potential pro-drug forms of aminoglutethimide. Anticancer Drug Design 3, 185–190.

    CAS  Google Scholar 

  1160. Ohnishi, T. and Y. Ichikawa (1997). Direct inhibitions of the activities of steroidogenic cytochrome P-450 mono-oxygenase systems by anticonvulsants. J. Steroid Biochem. Mol. Biol. 60, 77–85.

    Article  PubMed  CAS  Google Scholar 

  1161. Yang, X., K. Iwamoto, M. Wang, J. Artwohl, J.I. Mason, and S. Pang (1993). Inherited congenital adrenal hyperplasia in the rabbit is caused by a deletion in the gene encoding cytochrome P450 cholesterol side-chain cleavage enzyme. Endocrinology 132, 1977–1982.

    Article  PubMed  CAS  Google Scholar 

  1162. Hu, M.C., N.C. Hsu, N.B. El Hadj, C.I. Pai, H.P. Chu, C.K. Wang et al. (2002). Steroid deficiency syndromes in mice with targeted disruption of Cyp11a1. Mol. Endocrinol. 16, 1943–1950.

    Article  PubMed  CAS  Google Scholar 

  1163. Chen, S., J. Sawicka, C. Betterle, M. Powell, L. Prentice, M. Volpato et al. (1996). Autoantibodies to steroidogenic enzymes in autoimmune polyglandular syndrome, Addison’s disease, and premature ovarian failure. J. Clin. Endocrinol. Metab. 81, 1871–1876.

    Article  PubMed  CAS  Google Scholar 

  1164. Seissler, J., M. Schott, H. Steinbrenner, P. Peterson, and W.A. Scherbaum (1999). Autoantibodies to adrenal cytochrome P450 antigens in isolated Addison’s disease and autoimmune polyendocrine syndrome type II. Exp. Clin. Endocrinol. Diabetes 107, 208–213.

    PubMed  CAS  Google Scholar 

  1165. Bureik, M., M. Lisurek, and R. Bernhardt (2002). The human steroid hydroxylases CYP11B1 and CYP11B2. Biol. Chem. 383, 1537–1551.

    Article  PubMed  CAS  Google Scholar 

  1166. Watanuki, M., B.E. Tilley, and P.F. Hall (1978). Cytochrome P-450 for 11β-and 18-hydroxylase activities of bovine adrenocortical mitochondria: One enzyme or two?. Biochemistry 17, 127–130.

    Article  PubMed  CAS  Google Scholar 

  1167. Mornet, E., J. Dupont, A. Vitek, and P.C. White (1989). Characterization of two genes encoding human steroid 11 beta-hydroxylase (P-450(11)β). J. Biol. Chem. 264, 20961–20967.

    PubMed  CAS  Google Scholar 

  1168. Kawamoto, T., Y. Mitsuuchi, K. Toda, K. Miyahara, Y. Yokoyama, K. Nakao et al. (1990). Cloning of cDNA and genomic DNA for human cytochrome P-45011α. FEBS Lett. 269, 345–349.

    Article  PubMed  CAS  Google Scholar 

  1169. Zhang, G. and W.L. Miller (1996). The human genome contains only two CYP11B (P450c11) genes. J. Clin. Endocrinol. Metab. 81, 3254–3256.

    Article  PubMed  CAS  Google Scholar 

  1170. Kawamoto, T., Y. Mitsuuchi, K. Toda, Y. Yokoyama, K. Miyahara, S. Miura et al. (1992). Role of steroid 11β-hydroxylase and steroid 18-hydroxylase in the biosynthesis of glucocorticoids and mineralocorticoids in humans. Proc. Natl. Acad. Sci. USA 89, 1458–1462.

    Article  PubMed  CAS  Google Scholar 

  1171. Freije, W.A., V. Pezzi, A. Arici, B.R. Carr, and W.E. Rainey (1997). Expression of 11 beta-hydroxylase (CYP11B1) and aldosterone synthase (CYP11B2) in the human fetal adrenal. J. Soc. Gynecol. Investig. 4, 305–309.

    Article  PubMed  CAS  Google Scholar 

  1172. Morohashi, K., U.M. Zanger, S. Honda, M. Hara, M.R. Waterman, and T. Omura (1993). Activation of CYP11A and CYP11B gene promoters by the steroidogenic cell-specific transcription factor, Ad4BP. Mol. Endocrinol. 7, 1196–1204.

    Article  PubMed  CAS  Google Scholar 

  1173. Honda, S., K. Morohashi, M. Nomura, H. Takeya, M. Kitajima, and T. Omura (1993). Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J. Biol. Chem. 268, 7494–7502.

    PubMed  CAS  Google Scholar 

  1174. Hashimoto, T., K. Morohashi, K. Takayama, S. Honda, T. Wada, H. Handa et al. (1992). Cooperative transcription activation between Ad1, a CRE-like element, and other elements in the CYP11B gene promoter. J. Biochem. (Tokyo) 112, 573–575.

    CAS  Google Scholar 

  1175. Mukai, K., F. Mitani, R. Agake, and Y. Ishimura (1998). Adrenocorticotropic hormone stimulates CYP11B1 gene transcription through a mechanism involving AP-1 factors. Eur. J. Biochem. 256, 190–200.

    Article  PubMed  CAS  Google Scholar 

  1176. Wang, X.L., M. Bassett, Y. Zhang, S. Yin, C. Clyne, P.C. White et al. (2000). Transcriptional regulation of human 11β-hydroxylase (hCYP11B1). Endocrinology 141, 3587–3594.

    Article  PubMed  CAS  Google Scholar 

  1177. Bassett, M.H., Y. Zhang, C. Clyne, P.C. White, and W.E. Rainey (2002). Differential regulation of aldosterone synthase and 11β-hydroxylase transcription by steroidogenic factor-1. J. Mol. Endocrinol. 28, 125–135.

    Article  PubMed  CAS  Google Scholar 

  1178. Skinner, C.A. and G. Rumsby (1994). Steroid 11 beta-hydroxylase deficiency caused by a five base pair duplication in the CYP11B1 gene. Hum. Mol. Genet. 3, 377–378.

    Article  PubMed  CAS  Google Scholar 

  1179. Curnow, K.M., L. Slutsker, J. Vitek, T. Cole, P.W. Speiser, M.I. New et al. (1993). Mutations in the CYP11B1 gene causing congenital adrenal hyperplasia and hypertension cluster in exons 6, 7, and 8. Proc. Natl. Acad. Sci. USA 90, 4552–4556.

    Article  PubMed  CAS  Google Scholar 

  1180. Lifton, R.P., R.G. Dluhy, M. Powers, G.M. Rich, S. Cook, S. Ulick et al. (1992). A chimaeric 11β-hydroxylase/aldosterone synthase gene causes glucocorticoid-remediable aldosteronism and human hypertension. Nature 355, 262–265.

    Article  PubMed  CAS  Google Scholar 

  1181. Pascoe, L., K.M. Curnow, L. Slutsker, J.M. Connell, P.W. Speiser, M.I. New et al. (1992). Glucocorticoid-suppressible hyperaldosteronism results from hybrid genes created by unequal crossovers between CYP11B1 and CYP11B2, Proc. Natl. Acad. Sci. USA 89, 8327–8331.

    Article  PubMed  CAS  Google Scholar 

  1182. Hampf, M., N.T. Dao, N.T. Hoan, and R. Bernhardt (2001). Unequal crossing-over between aldosterone synthase and 11β-hydroxylase genes causes congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 86, 4445–4452.

    Article  PubMed  CAS  Google Scholar 

  1183. Portrat, S., P. Mulatero, K.M. Curnow, J.L. Chaussain, Y. Morel, and L. Pascoe (2001). Deletion hybrid genes, due to unequal crossing over between CYP11B1 (11β-hydroxylase) and CYP11B2 (aldosterone synthase) cause steroid 11β-hydroxylase deficiency and congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 86, 3197–3201.

    Article  PubMed  CAS  Google Scholar 

  1184. Chabre, O., S. Portrat-Doyen, J. Vivier, Y. Morel, and G. Defaye (2000). Two novel mutations in splice donor sites of CYP11B1 in congenital adrenal hyperplasia due to 11β-hydroxylase deficiency. Endocrinol. Res. 26, 797–801.

    CAS  Google Scholar 

  1185. Mulatero, P., K.M. Curnow, B. Aupetit-Faisant, M. Foekling, C. Gomez-Sanchez, F. Veglio, X. Jeunemaitre et al. (1998). Recombinant CYP11B genes encode enzymes that can catalyze conversion of 11-deoxycortisol to cortisol, 18-hydroxycortisol, and 18-oxocortisol. J. Clin. Endocrinol. Metab. 83, 3996–4001.

    Article  PubMed  CAS  Google Scholar 

  1186. Fisher, A., E. Davies, R. Fraser, and J.M. Connell (1998). Structure-function relationships of aldosterone synthase and 11β-hydroxylase enzymes: Implications for human hypertension. Clin. Exp. Pharmacol. Physiol. Suppl. 25, S42–S46.

    PubMed  CAS  Google Scholar 

  1187. Fisher, A., R. Fraser, J. McConnell, and E. Davies (2000). Amino acid residue 147 of human aldosterone synthase and 11β-hydroxylase plays a key role in 11β-hydroxylation. J. Clin. Endocrinol. Metab. 85, 1261–1266.

    Article  PubMed  CAS  Google Scholar 

  1188. Böttner, B., K. Denner, and R. Bernhardt (1998). Conferring aldosterone synthesis to human CYP11B1 by replacing key amino acid residues with CYP11B2-specific ones. Eur. J. Biochem. 252, 458–466.

    Article  PubMed  Google Scholar 

  1189. Lewis, D.F. and P. Lee-Robichaud (1998). Molecular modelling of steroidogenic cyto-chromes P450 from families CYP11, CYP17, CYP19 and CYP21 based on the CYP102 crystal structure. J. Steroid Biochem. Mol. Biol. 66, 217–233.

    Article  PubMed  CAS  Google Scholar 

  1190. Belkina, N.V., M. Lisurek, A.S. Ivanov, and R. Bernhardt (2001). Modelling of three-dimensional structures of cytochromes P450 11B1 and 11B2. J. Inorg. Biochem. 87, 197–207.

    Article  PubMed  CAS  Google Scholar 

  1191. Denner, K., R. Vogel, W. Schmalix, J. Doehmer, and R. Bernhardt (1995). Cloning and stable expression of the human mitochondrial cytochrome P45011B1 cDNA in V79 Chinese hamster cells and their application for testing of potential inhibitors. Pharmacogenetics 5, 89–96.

    Article  PubMed  CAS  Google Scholar 

  1192. Johnston, J.O., C.L. Wright, and G.W. Holbert (1995). Enzyme-activated inhibitors of steroidal hydroxylases. J. Steroid Biochem. Mol. Biol. 52, 17–34.

    Article  PubMed  CAS  Google Scholar 

  1193. Delorme, C., A. Piffeteau, F. Sobrio, and A. Marquet (1997). Mechanism-based inactivation of bovine cytochrome P45011β by 18-unsaturated progesterone derivatives. Eur. J. Biochem. 248, 252–260.

    Article  PubMed  CAS  Google Scholar 

  1194. White, P.C. (2001). Steroid 11β-hydroxylase deficiency and related disorders. Endocrinol. Metab. Clin. North Am. 30, 61–79.

    PubMed  CAS  Google Scholar 

  1195. Peter, M., J.M. Dubuis, and W.G. Sippell (1999). Disorders of the aldosterone synthase and steroid 11β-hydroxylase deficiencies. Horm. Res. 51, 211–222.

    Article  PubMed  CAS  Google Scholar 

  1196. Pascoe, L., K.M. Curnow, L. Slutsker, A. Rösler, and P.C. White (1992). Mutations in the human CYP11B2 (aldosterone synthase) gene causing corticosterone methyloxidase II deficiency. Proc. Natl. Acad. Sci. USA 89, 4996–5000.

    Article  PubMed  CAS  Google Scholar 

  1197. Mitsuuchi, Y., T. Kawamoto, K. Miyahara, S. Ulick, D.H. Morton, Y. Naiki et al. (1993). Congenitally defective aldosterone biosynthesis in humans: Inactivation of the P-450C18 gene (CYP11B2) due to nucleotide deletion in CMO I deficient patients. Biochem. Biophys. Res. Commun. 190, 864–869.

    Article  PubMed  CAS  Google Scholar 

  1198. Kawamoto, T., Y. Mitsuuchi, T. Ohnishi, Y. Ichikawa, Y. Yokoyama, H. Sumimoto et al. (1990). Cloning and expression of a cDNA for human cytochrome P-450aldo as related to primary aldosteronism. Biochem. Biophys. Res. Commun. 173, 309–316.

    Article  CAS  Google Scholar 

  1199. Curnow, K.M., M.T. Tusie-Luna, L. Pascoe, R. Natarajan, J.L. Gu, J.L. Nadler et al. (1991). The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol. Endocrinol. 5, 1513–1522.

    PubMed  CAS  Google Scholar 

  1200. Li, X., Y. Meng, X.S. Yang, P.S. Wu, S.M. Li, and W.Y. Lai (2000). CYP11B2 expression in HSCs and its effect on hepatic fibrogenesis. World J. Gastroenterol. 6, 885–887.

    PubMed  CAS  Google Scholar 

  1201. Bassett, M.H., Y. Zhang, P.C. White, and W.E. Rainey (2000). Regulation of human CYP11B2 and CYP11B1: Comparing the role of the common CRE/Ad1 element. Endocrinol. Res. 26, 941–951.

    CAS  Google Scholar 

  1202. Clyne, C.D., P.C. White, and W.E. Rainey (1996). Calcium regulates human CYP11B2 transcription. Endocrinol. Res. 22, 485–492.

    CAS  Google Scholar 

  1203. Bureik, M., A. Zeeh, and R. Bernhardt (2002). Modulation of steroid hydroxylase activity in stably transfected V79MZh11B1 and V79MZh11B2 cells by PKC and PKD inhibitors. Endocrinol. Res. 28, 351–355.

    Article  CAS  Google Scholar 

  1204. J.G. LeHoux, G. Dupuis, and A. Lefebvre (2000). Regulation of CYP11B2 gene expression by protein kinase C. Endocrinol. Res. 26, 1027–1031.

    CAS  Google Scholar 

  1205. Ise, T., A. Shimoda, H. Takakuwa, T. Kato, Y. Izumiya, K. Shimizu et al. (2001). A chimeric CYP11B1/CYP11B2 gene in glucocorticoid-insuppressible familial hyperaldosteronism. Clin. Endocrinol. (Oxford) 55, 131–134.

    Article  CAS  Google Scholar 

  1206. Jackson, R.V., A. Lafferty, D.J. Torpy, and C. Stratakis (2002). New genetic insights in familial hyperaldosteronism. Ann. N. Y. Acad. Sci. 970, 77–88.

    PubMed  CAS  Google Scholar 

  1207. Zhang, G., H. Rodriguez, C.E. Fardella, D.A. Harris, and W.L. Miller (1995). Mutation T318M in the CYP11B2 gene encoding P450c11AS (aldosterone synthase) causes corticosterone methyl oxidase II deficiency. Am. J. Hum. Genet. 57, 1037–1043.

    PubMed  CAS  Google Scholar 

  1208. Mulatero, P., D. Schiavone, F. Fallo, F. Rabbia, C. Pilon, L. Chiandussi et al. (2000). CYP11B2 gene polymorphisms in idiopathic hyperaldosteronism. Hypertension 35, 694–698.

    PubMed  CAS  Google Scholar 

  1209. Tsukada, K., T. Ishimitsu, M. Teranishi, M. Saitoh, M. Yoshii, H. Inada et al. (2002). Positive association of CYP11B2 gene polymorphism with genetic predisposition to essential hypertension. J. Hum. Hypertens. 16, 789–793.

    Article  PubMed  CAS  Google Scholar 

  1210. Bechtel, S., N. Belkina, and R. Bernhardt (2002). The effect of amino-acid substitutions I112P, D147E and K152N in CYP11B2 on the catalytic activities of the enzyme. Eur. J. Biochem. 269, 1118–1127.

    Article  PubMed  CAS  Google Scholar 

  1211. Ehmer, P.B., M. Bureik, R. Bernhardt, U. Muller, and R.W. Hartmann (2002). Development of a test system for inhibitors of human aldosterone synthase (CYP11B2): Screening in fission yeast and evaluation of selectivity in V79 cells. J. Steroid Biochem. Mol. Biol. 81, 173–179.

    Article  PubMed  CAS  Google Scholar 

  1212. Griffing, G.T., M. Holbrook, J.C. Melby, J. Alberta, and N.R. Orme-Johnson (1989). 19-Hydroxylase inhibition of adrenal mitochondrial P450 11β/18/19-hydroxylase by a suicide inhibitor. Am. J. Med. Sci. 298, 83–88.

    Article  PubMed  CAS  Google Scholar 

  1213. Davies, E., C.D. Holloway, M.C. Ingram, G.C. Inglis, E.C. Friel, C. Morrison et al. (1999). Aldosterone excretion rate and blood pressure in essential hypertension are related to polymorphic differences in the aldosterone synthase gene CYP11B2. Hypertension 33, 703–707.

    PubMed  CAS  Google Scholar 

  1214. White, P.C., A. Hautanen, and M. Kupari (1999). Aldosterone synthase (CYP11B2) polymorphisms and cardiovascular function. J. Steroid Biochem. Mol. Biol. 69, 409–412.

    Article  PubMed  CAS  Google Scholar 

  1215. Kupari, M., A. Hautanen, L. Lankinen, P. Koskinen, J. Virolainen, H. Nikkila et al. (1998). Associations between human aldosterone synthase (CYP11B2) gene polymorphisms and left ventricular size, mass, and function. Circulation 97, 569–575.

    PubMed  CAS  Google Scholar 

  1216. Satoh, M., M. Nakamura, H. Saitoh, H. Satoh, T. Akatsu, J. Iwasaka et al. (2002). Aldosterone synthase (CYP11B2) expression and myocardial fibrosis in the failing human heart. Clin. Sci. (London) 102, 381–386.

    CAS  Google Scholar 

  1217. Russo, P., A. Siani, A. Venezia, R. Iacone, O. Russo, G. Barba et al. (2002). Interaction between the C(-344)T polymorphism of CYP11B2 and age in the regulation of blood pressure and plasma aldosterone levels: Cross-sectional and longitudinal findings of the Olivetti Prospective Heart Study. J. Hypertens. 20, 1785–1792.

    Article  PubMed  CAS  Google Scholar 

  1218. Lim, P.O., T.M. Macdonald, C. Holloway, E. Friel, N.H. Anderson, E. Dow et al. (2002). Variation at the aldosterone synthase (CYP11B2) locus contributes to hypertension in subjects with a raised aldosterone-to-renin ratio. J. Clin. Endocrinol. Metab. 87, 4398–4402.

    Article  PubMed  CAS  Google Scholar 

  1219. Tsujita, Y., N. Iwai, T. Katsuya, J. Higaki, T. Ogihara, S. Tamaki et al. (2001). Lack of association between genetic polymorphism of CYP11B2 and hypertension in Japanese: The Suita Study. Hypertens. Res. 24, 105–109.

    Article  PubMed  CAS  Google Scholar 

  1220. Chung, B., J. Picado-Leonard, M. Haniu, M. Bienkowski, P.F. Hall, J.E. Shively et al. (1987). Cytochrome P450c17 (steroid 17α-hydroxylase/17, 20 lyase): Cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues. Proc. Natl. Acad. Sci. USA 84, 407–411.

    Article  PubMed  CAS  Google Scholar 

  1221. Picado-Leonard, J. and W.L. Miller (1987). Cloning and sequence of the human gene for P450c17 (steroid 17 α-hydroxylase/17, 20 lyase): Similarity with the gene for P450c21. DNA 6, 439–448.

    PubMed  CAS  Google Scholar 

  1222. Nakajin, S., J.E. Shively, P.M. Yuan, and P.F. Hall (1981). Microsomal cytochrome P-450 from neonatal pig testis: Two enzymatic activities (17α-hydroxylase and C17,20-lyase) associated with one protein. Biochemistry 20, 4037–4042.

    Article  PubMed  CAS  Google Scholar 

  1223. Katagiri, M., K. Suhara, M. Shiroo, and Y. Fujimura (1982). Role of cytochrome b 5 in the cytochrome P-450-mediated C21-steroid 17,20-lyase reaction. Biochem. Biophys. Res. Commun. 108, 379–384.

    Article  PubMed  CAS  Google Scholar 

  1224. Shinzawa, K., S. Kominami, and S. Takemori (1985). Studies on cytochrome P-450 (P-45017α, lyase) from guinea pig adrenal microsomes. Dual function of a single enzyme and effect of cytochrome b 5. Biochim. Biophys. Acta 833, 151–160.

    PubMed  CAS  Google Scholar 

  1225. Casey, M.L. and P.C. MacDonald (1982). Demonstration of steroid 17α-hydroxylase activity in human fetal kidney, thymus, and spleen. Steroids 40, 91–97.

    Article  PubMed  CAS  Google Scholar 

  1226. Kayes-Wandover, K.M. and P.C. White (2000). Steroidogenic enzyme gene expression in the human heart. J. Clin. Endocrinol. Metab. 85, 2519–2525.

    Article  PubMed  CAS  Google Scholar 

  1227. Puche, C., M. Jose, A. Cabero, and A. Meseguer (2002). Expression and enzymatic activity of the P450c17 gene in human adipose tissue. Eur. J. Endorinol. 146, 223–229.

    Article  CAS  Google Scholar 

  1228. Kusano, K., M. Sakaguchi, N. Kagawa, M.R. Waterman, and T. Omura (2001). Microsomal P450s use specific proline-rich sequences for efficient folding, but not for maintenance of the folded structure. J. Biochem. (Tokyo) 129, 259–269.

    CAS  Google Scholar 

  1229. Hales, D.B., L.L. Sha, and A.H. Payne (1987). Testosterone inhibits cAMP-induced de novo synthesis of Leydig cell cytochrome P-450(17α) by an androgen receptor-mediated mechanism. J. Biol. Chem. 262, 11200–11206.

    PubMed  CAS  Google Scholar 

  1230. Zhang, P., X.G. Han, S.H. Mellon, and P.F. Hall (1996). Expression of the gene for cytochrome P-450 17α-hydroxylase/C17-20 lyase (CYP17) in porcine Leydig cells: Identification of a DNA sequence that mediates cAMP response. Biochim. Biophys. Acta 1307, 73–82.

    PubMed  Google Scholar 

  1231. Ogo, A., M.R. Waterman, J.M. McAllister, and N. Kagawa (1997). The homeodomain protein Pbx1 is involved in cAMP-dependent transcription of human CYP17. Arch. Biochem. Biophys. 348, 226–231.

    Article  PubMed  CAS  Google Scholar 

  1232. Bischof, L.J., N. Kagawa, and M.R. Waterman (1998). The bovine CYP17 promoter contains a transcriptional regulatory element cooperatively bound by tale homeodomain proteins. Endocrinol. Res. 24, 489–495.

    CAS  Google Scholar 

  1233. Lin, C.J., J.W. Martens, and W.L. Miller (2001). NF-1C, Sp1, and Sp3 are essential for transcription of the human gene for P450c17 (steroid 17α-hydroxylase/17, 20 lyase) in human adrenal NCI-H295A cells. Mol. Endocrinol. 15, 1277–1293.

    Article  PubMed  CAS  Google Scholar 

  1234. Sewer, M.B., V.Q. Nguyen, C.J. Huang, P.W. Tucker, N. Kagawa, and M.R. Waterman (2002). Transcriptional activation of human CYP17 in H295R adrenocortical cells depends on complex formation among p54nrb/NonO, protein-associated splicing factor, and SF-1, a complex that also participates in repression of transcription. Endocrinology 143, 1280–1290.

    Article  PubMed  CAS  Google Scholar 

  1235. Sewer, M.B. and M.R. Waterman (2002). Adrenocorticotropin/cyclic adenosine 3′,5′-monophosphate-mediated transcription of the human CYP17 gene in the adrenal cortex is dependent on phosphatase activity. Endocrinology 143, 1769–1777.

    Article  PubMed  CAS  Google Scholar 

  1236. Sewer, M.B. and M.R. Waterman (2002). cAMP-dependent transcription of steroidogenic genes in the human adrenal cortex requires a dual-specificity phosphatase in addition to protein kinase A. J. Mol. Endocrinol. 29, 163–174.

    Article  PubMed  CAS  Google Scholar 

  1237. Sewer, M.B. and M.R. Waterman (2003). cAMP-dependent protein kinase enhances CYP17 transcription via MKP-1 activation in H295R human adrenocortical cells. J. Biol. Chem. 278, 8106–8111.

    Article  PubMed  CAS  Google Scholar 

  1238. Yanase, T. (1995). 17α-Hydroxylase/17,20-lyase defects. J. Steroid Biochem. Mol. Biol. 53, 153–157.

    Article  PubMed  CAS  Google Scholar 

  1239. Fardella, C.E., D.W. Hum, J. Homoki, and W.L. Miller (1994). Point mutation of Arg440 to His in cytochrome P450c17 causes severe 17α-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 79, 160–164.

    Article  PubMed  CAS  Google Scholar 

  1240. Imai, T., H. Globerman, J.M. Gertner, N. Kagawa, and M.R. Waterman (1993). Expression and purification of functional human 17α-hydroxylase/17,20-lyase (P450c17) in Escherichia coli. Use of this system for study of a novel form of combined 17α-hydroxylase/17,20-lyase deficiency. J. Biol. Chem. 268, 19681–19689.

    PubMed  CAS  Google Scholar 

  1241. Monno, S., Y. Mizushima, N. Toyoda, T. Kashii, and M. Kobayashi (1997). A new variant of the cytochrome P450c17 (CYP17) gene mutation in three patients with 17α-hydroxylase deficiency. Ann. Hum. Genet. 61, 275–279.

    Article  PubMed  CAS  Google Scholar 

  1242. Kagimoto, K., M.R. Waterman, M. Kagimoto, P. Ferreira, E.R. Simpson, and J.S. Winter (1989). Identification of a common molecular basis for combined 17α-hydroxylase/17,20-lyase deficiency in two Mennonite families. Hum. Genet. 82, 285–286.

    Article  PubMed  CAS  Google Scholar 

  1243. Yamaguchi, H., M. Nakazato, M. Miyazato, K. Kangawa, and S. Matsukura (1997). A 5′-splice site mutation in the cytochrome P450 steroid 17α-hydroxylase gene in 17α-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 82, 1934–1938.

    Article  PubMed  CAS  Google Scholar 

  1244. Geller, D.H., R.J. Auchus, B.B. Mendonça, and W.L. Miller (1997). The genetic and functional basis of isolated 17,20-lyase deficiency. Nat. Genet. 17, 201–205.

    Article  PubMed  CAS  Google Scholar 

  1245. Miller, W.L., D.H. Geller, and R.J. Auchus (1998). The molecular basis of isolated 17, 20 lyase deficiency. Endocrinol. Res. 24, 817–825.

    CAS  Google Scholar 

  1246. Auchus, R.J. and M.K. Gupta (2002). Towards a unifying mechanism for CYP17 mutations that cause isolated 17,20-lyase deficiency. Endocrinol. Res. 28, 443–447.

    Article  CAS  Google Scholar 

  1247. Kagawa, N. and M.R. Waterman (1995). Regulation of steroidogenic and related P450s. In P.R. Ortiz de Montellano (ed.), Cytochrome P450-Structure, Mechanism, and Biochemistry, 2nd edn. Plenum Press, New York, pp. 419–442.

    Google Scholar 

  1248. P. Lee-Robichaud, A.Z. Shyadehi, J.N. Wright, M.E. Akhtar, and M. Akhtar (1995). Mechanistic kinship between hydroxylation and desaturation reactions: Acyl-carbon bond cleavage promoted by pig and human CYP17 (P-45017a; 17α-hydroxylase-17,20-lyase). Biochemistry 34, 14104–14113.

    Article  PubMed  CAS  Google Scholar 

  1249. Lieberman, S. and P.A. Warne (2001). 17-Hydroxylase: An evaluation of the present view of its catalytic role in steroidogenesis. J. Steroid Biochem. Mol. Biol. 78, 299–312.

    Article  PubMed  CAS  Google Scholar 

  1250. Soucy, P., L. Lacoste, and V. Luu-The (2003). Assessment of porcine and human 16-enesynthase, a third activity of P450c17, in the formation of an androstenol precursor. Eur. J. Biochem. 270, 1349–1355.

    Article  PubMed  CAS  Google Scholar 

  1251. Katagiri, M., N. Kagawa, and M.R. Waterman (1995). The role of cytochrome b 5 in the biosynthesis of androgens by human P450c17. Arch. Biochem. Biophys. 317, 343–347.

    Article  PubMed  CAS  Google Scholar 

  1252. Miller, W.L., R.J. Auchus, and D.H. Geller (1997). The regulation of 17, 20 lyase activity. Steroids 62, 133–142.

    Article  PubMed  CAS  Google Scholar 

  1253. Biason-Lauber, A., B. Kempken, E. Werder, M.G. Forest, S. Einaudi, M.B. Ranke et al. (2000). 17α-hydroxylase/17,20-lyase deficiency as a model to study enzymatic activity regulation: Role of phosphorylation. J. Clin. Endocrinol. Metab. 85, 1226–1231.

    Article  PubMed  CAS  Google Scholar 

  1254. Soucy, P. and V. Luu-The (2002). Assessment of the ability of type 2 cytochrome b 5 to modulate 17,20-lyase activity of human P450c17. J. Steroid Biochem. Mol. Biol. 80, 71–75.

    Article  PubMed  CAS  Google Scholar 

  1255. Brock, B.J. and M.R. Waterman (1999). Biochemical differences between rat and human cytochrome P450c17 support the different steroidogenic needs of these two species. Biochemistry 38, 1598–1606.

    Article  PubMed  CAS  Google Scholar 

  1256. Yamazaki, T., T. Ohno, T. Sakaki, M. Akiyoshi-Shibata, Y. Yabusaki, T. Imai et al. (1998). Kinetic analysis of successive reactions catalyzed by bovine cytochrome P45017α,lyase. Biochemistry 37, 2800–2806.

    Article  PubMed  CAS  Google Scholar 

  1257. Soucy, P. and V. Luu-The (2000). Conversion of pregnenolone to DHEA by human 17α-hydroxylase/17,20-lyase (P450c17). Evidence that DHEA is produced from the released intermediate, 17α-hydroxypregnenolone. Eur. J. Biochem. 267, 3243–3247.

    Article  PubMed  CAS  Google Scholar 

  1258. Monno, S., H. Ogawa, T. Date, M. Fujioka, W.L. Miller, and M. Kobayashi (1993). Mutation of histidine 373 to leucine in cytochrome P450c17 causes 17α-hydroxylase deficiency. J. Biol. Chem. 268, 25811–25817.

    PubMed  CAS  Google Scholar 

  1259. Lam, C.W., W. Arlt, C.K. Chan, J.W. Honour, C.J. Lin, S.F. Tong et al. (2001). Mutation of proline 409 to arginine in the meander region of cytochrome p450c17 causes severe 17α-hydroxylase deficiency. Mol. Genet. Metab. 72, 254–259.

    Article  PubMed  CAS  Google Scholar 

  1260. Lee-Robichaud, P., M.E. Akhtar, and M. Akhtar (1998). An analysis of the role of active site protic residues of cytochrome P-450s: Mechanistic and mutational studies on 17α-hydroxylase-17,20-lyase (P-45017α also CYP17). Biochem. J. 330, 967–974.

    PubMed  CAS  Google Scholar 

  1261. Kitamura, M., E. Buczko, and M.L. Dufau (1991). Dissociation of hydroxylase and lyase activities by site-directed mutagenesis of the rat P45017α. Mol. Endocrinol. 5, 1373–1380.

    PubMed  CAS  Google Scholar 

  1262. Biason-Lauber, A., E. Leiberman, and M. Zachmann (1997). A single amino acid substitution in the putative redox partner-binding site of P450c17 as cause of iolated 17,20-lyase deficiency. J. Clin. Endocrinol. Metab. 82, 3807–3812.

    Article  PubMed  CAS  Google Scholar 

  1263. Lee-Robichaud, P., M.E. Akhtar, and M. Akhtar (1998). Control of androgen biosynthesis in the human through the interaction of Arg347 and Arg358 of CYP17 with cytochrome b 5. Biochem. J. 332, 293–296.

    PubMed  CAS  Google Scholar 

  1264. LeeRobichaud, P., M.E. Akhtar, and M. Akhtar (1999). Lysine mutagenesis identifies cationic charges of human CYP17 that interact with cytochrome b 5 to promote male sex-hormone biosynthesis. Biochem. J. 342, 309–312.

    Article  CAS  Google Scholar 

  1265. Auchus, R.J., K. Worthy, D.H. Geller, and W.L. Miller (2000). Probing structural and functional domains of human P450c17. Endocrinol. Res. 26, 695–703.

    CAS  Google Scholar 

  1266. Gupta, M.K., D.H. Geller, and R.J. Auchus (2001). Pitfalls in characterizing P450c17 mutations associated with isolated 17,20-lyase deficiency. J. Clin. Endocrinol. Metab. 86, 4416–4423.

    Article  PubMed  CAS  Google Scholar 

  1267. Di Cerbo, A., A. Biason-Lauber, M. Savino, M.R. Piemontese, A. Di Giorgio, M. Perona et al. (2002). Combined 17α-hydroxylase/17,20-lyase deficiency caused by Phe93Cys mutation in the CYP17 gene. J. Clin. Endocrinol. Metab. 87, 898–905.

    Article  PubMed  Google Scholar 

  1268. Katsumata, N., M. Satoh, A. Mikami, S. Mikami, A. Nagashima-Miyokawa, N. Sato et al. (2001). New compound heterozygous mutation in the CYP17 gene in a 46,XY girl with 17α-hydroxylase/17,20-lyase deficiency. Horm. Res. 55, 141–146.

    Article  PubMed  CAS  Google Scholar 

  1269. Brock, B.J. and M.R. Waterman (2000). The use of random chimeragenesis to study structure/function properties of rat and human P450c17. Arch. Biochem. Biophys. 373, 401–408.

    Article  PubMed  CAS  Google Scholar 

  1270. Mathieu, A.P., R.J. Auchus, and J.G. LeHoux (2002). Comparison of the hamster and human adrenal P450c17 (17α-hydroxylase/17,20-lyase) using site-directed mutagenesis and molecular modeling. J. Steroid Biochem. Mol. Biol. 80, 99–107.

    Article  PubMed  CAS  Google Scholar 

  1271. Lin, D., L.H. Zhang, E. Chiao, and W.L. Miller (1994). Modeling and mutagenesis of the active site of human P450c17. Mol. Endocrinol. 8, 392–402.

    Article  PubMed  CAS  Google Scholar 

  1272. Burke, D.F., C.A. Laughton, and S. Neidle (1997). Homology modelling of the enzyme P450 17α-hydroxylase/17,20-lyase—a target for prostate cancer chemotherapy—from the crystal structure of P450BM-3. Anticancer Drug Des. 12, 113–123.

    PubMed  CAS  Google Scholar 

  1273. Auchus, R.J. and W.L. Miller (1999). Molecular modeling of human P450c17 (17α-hydroxylase/17,20-lyase): Insights into reaction mechanisms and effects of mutations. Mol. Endocrinol. 13, 1169–1182.

    Article  PubMed  CAS  Google Scholar 

  1274. Ahmed, S. (1999). A novel molecular modelling study of inhibitors of the 17α-hydroxylase component of the enzyme system 17α-hydroxylase/17,20-lyase (P-45017α). Bioorg. Med. Chem. 7, 1487–1496.

    Article  PubMed  CAS  Google Scholar 

  1275. Schappach, A. and H.D. Holtje (2001). Molecular modelling of 17α-hydroxylase-17,20-lyase. Pharmazie 56, 435–442.

    PubMed  CAS  Google Scholar 

  1276. Kan, P.B., M.A. Hirst, and D. Feldman (1985). Inhibition of steroidogenic cytochrome P-450 enzymes in rat testis by ketoconazole and related imidazole anti-fungal drugs. J. Steroid Biochem. 23, 1023–1029.

    Article  PubMed  CAS  Google Scholar 

  1277. Kossor, D.C., S. Kominami, S. Takemori, and H.D. Colby (1992). Destruction of testicular cytochrome P-450 by 7α-thiospironolactone is catalyzed by the 17α-hydroxylase. J. Steroid Biochem. Mol. Biol. 42, 421–424.

    Article  PubMed  CAS  Google Scholar 

  1278. Potter, G.A., S.E. Barrie, M. Jarman, and M.G. Rowlands (1995). Novel steroidal inhibitors of human cytochrome P45017α (17α-hydroxylase-C17,20-lyase): Potential agents for the treatment of prostatic cancer. J. Med. Chem. 38, 2463–2471.

    Article  PubMed  CAS  Google Scholar 

  1279. Li, J.S., Y. Li, C. Son, and A.M. Brodie (1996). Synthesis and evaluation of pregnane derivatives as inhibitors of human testicular 17α-hydroxylase/C17,20-lyase. J. Med. Chem. 39, 4335–4339.

    Article  PubMed  CAS  Google Scholar 

  1280. Njar, V.C. and A.M. Brodie (1999). Inhibitors of 17α-hydroxylase/17,20-lyase (CYP17): Potential agents for the treatment of prostate cancer. Curr. Pharm. Des. 5, 163–180.

    PubMed  CAS  Google Scholar 

  1281. Hartmann, R.W., M. Hector, B.G. Wachall, A. Palusczak, M. Palzer, V. Huch et al. (2000). Synthesis and evaluation of 17-aliphatic heterocycle-substituted steroidal inhibitors of 17α-hydroxylase/C17-20-lyase (P450 17). J. Med. Chem. 43, 4437–4445.

    Article  PubMed  CAS  Google Scholar 

  1282. Burkhart, J.P., P.M. Weintraub, C.A. Gates, R.J. Resvick, R.J. Vaz, D. Friedrich et al. (2002). Novel steroidal vinyl fluorides as inhibitors of steroid C17 (20) lyase. Bioorg. Med. Chem. 10, 929–934.

    Article  PubMed  CAS  Google Scholar 

  1283. Auchus, R.J., A. Sampath Kumar, C. Andrew Boswell, M.K. Gupta, K. Bruce, N.P. Rath et al. (2003). The enantiomer of progesterone (ent-progesterone) is a competitive inhibitor of human cytochromes P450c17 and P450c21. Arch. Biochem. Biophys. 409, 134–144.

    Article  PubMed  CAS  Google Scholar 

  1284. Owen, C.P., P.J. Nicholls, H.J. Smith, and R. Whomsley (1999). Inhibition of aromatase (P450Arom) by some 1-(benzofuran-2-ylmethyl) imidazoles. J. Pharm. Pharmacol. 51, 427–433.

    Article  PubMed  CAS  Google Scholar 

  1285. Recanatini, M., A. Bisi, A. Cavalli, F. Belluti, S. Gobbi, A. Rampa et al. (2001). A new class of nonsteroidal aromatase inhibitors: Design and synthesis of chromone and xanthone derivatives and inhibition of the P450 enzymes aromatase and 17α-hydroxylase/C17,20-lyase. J. Med. Chem. 44, 672–680.

    Article  PubMed  CAS  Google Scholar 

  1286. Cavalli, A. and M. Recanatini (2002). Looking for selectivity among cytochrome P450 inhibitors. J. Med. Chem. 45, 251–254.

    Article  PubMed  CAS  Google Scholar 

  1287. Ehmer, P.B., J. Jose, and R.W. Hartmann (2000). Development of a simple and rapid assay for the evaluation of inhibitors of human 17α-hydroxylase-C17,20-lyase (P450c17) by coexpression of P450c17 with NADPH-cytochrome-P450-reductase in Escherichia coli. J. Steroid Biochem. Mol. Biol. 75, 57–63.

    Article  PubMed  CAS  Google Scholar 

  1288. Grigoryev, D.N., K. Kato, V.C. Njar, B.J. Long, Y.Z. Ling, X. Wang et al. (1999). Cytochrome P450c17-expressing Escherichia coli as a first-step screening system for 17α-hydroxylase-C17,20-lyase inhibitors. Anal. Biochem. 267, 319–330.

    Article  PubMed  CAS  Google Scholar 

  1289. Auchus, R.J. (2001). The genetics, pathophysiology, and management of human deficiencies of P450c17. Endocrinol. Metab. Clin. North Am. 30, 101–119, vii.

    PubMed  CAS  Google Scholar 

  1290. Kaufman, F.R., G. Costin, U. Goebelsmann, F.Z. Stanczyk, and M. Zachmann (1983). Male pseudohermaphroditism due to 17,20-desmolase deficiency. J. Clin. Endocrinol. Metab. 57, 32–36.

    PubMed  CAS  Google Scholar 

  1291. Huang, J., T. Ushiyama, K. Inoue, K. Mori, and S. Hukuda (1999). Possible association of CYP17 gene polymorphisms with the onset of rheumatoid arthritis. Clin. Exp. Rheumatol. 17, 721–724.

    PubMed  CAS  Google Scholar 

  1292. Lai, J., D. Vesprini, W. Chu, H. Jernstrom, and S.A. Narod (2001). CYP gene polymorphisms and early menarche. Mol. Genet. Metab. 74, 449–457.

    Article  PubMed  CAS  Google Scholar 

  1293. Feigelson, H.S., R. McKean-Cowdin, M.C. Pike, G.A. Coetzee, L.N. Kolonel, A.M. Nomura et al. (1999). Cytochrome P450c17alpha gene (CYP17) polymorphism predicts use of hormone replacement therapy. Cancer Res 59, 3908–3910.

    PubMed  CAS  Google Scholar 

  1294. Marszalek, B., M. Lacinski, N. Babych, E. Capla, J. Biernacka-Lukanty, A. Warenik-Szymankiewicz et al. (2001). Investigations on the genetic polymorphism in the region of CYP17 gene encoding 5′-UTR in patients with polycystic ovarian syndrome. Gynecol. Endocrinol. 15, 123–128.

    PubMed  CAS  Google Scholar 

  1295. Kristensen, V.N., E.H. Kure, B. Erikstein, N. Harada, and A. Borresen-Dale (2001). Genetic susceptibility and environmental estrogen-like compounds. Mutat. Res. 482, 77–82.

    PubMed  CAS  Google Scholar 

  1296. Feigelson, H.S., G.A. Coetzee, L.N. Kolonel, R.K. Ross, and B.E. Henderson (1997). A polymorphism in the CYP17 gene increases the risk of breast cancer. Cancer Res. 57, 1063–1065.

    PubMed  CAS  Google Scholar 

  1297. Feigelson, H.S., R. McKean-Cowdin, G.A. Coetzee, D.O. Stram, L.N. Kolonel, and B.E. Henderson (2001). Building a multigenic model of breast cancer susceptibility: CYP17 and HSD17B1 are two important candidates. Cancer Res. 61, 785–789.

    PubMed  CAS  Google Scholar 

  1298. Thompson, P.A. and C. Ambrosone (2000). Molecular epidemiology of genetic polymorphisms in estrogen metabolizing enzymes in human breast cancer. J. Natl. Cancer Inst. Monogr., 125–134.

    Google Scholar 

  1299. Mitrunen, K., N. Jourenkova, V. Kataja, M. Eskelinen, V.M. Kosma, S. Benhamou et al. (2000). Steroid metabolism gene CYP17 polymorphism and the development of breast cancer. Cancer Epidemiol. Biomarkers Prev. 9, 1343–1348.

    PubMed  CAS  Google Scholar 

  1300. Ye, Z. and J.M. Parry (2002). The CYP17 MspA1 polymorphism and breast cancer risk: A metanalysis. Mutagenesis 17, 119–126.

    Article  PubMed  CAS  Google Scholar 

  1301. Feigelson, H.S., R. McKean-Cowdin, and B.E. Henderson (2002). Concerning the CYP17 MspA1 polymorphism and breast cancer risk: A meta-analysis. Mutagenesis 17, 445–446.

    Article  PubMed  CAS  Google Scholar 

  1302. Ambrosone, C.B., K.B. Moysich, H. Furberg, J.L. Freudenheim, E.D. Bowman, S. Ahmed et al. (2003). CYP17 genetic polymorphism, breast cancer, and breast cancer risk factors. Breast Cancer Res. 5, R45–51.

    Article  PubMed  CAS  Google Scholar 

  1303. Stanford, J.L., E.A. Noonan, L. Iwasaki, S. Kolb, R.B. Chadwick, Z. Feng et al. (2002). A polymorphism in the CYP17 gene and risk of prostate cancer. Cancer Epidemiol. Biomarkers Prev. 11, 243–247.

    PubMed  CAS  Google Scholar 

  1304. Haiman, C.A., M.J. Stampfer, E. Giovannucci, J. Ma, N.E. Decalo, P.W. Kantoff et al. (2001). The relationship between a polymorphism in CYP17 with plasma hormone levels and prostate cancer. Cancer Epidemiol. Biomarkers Prev. 10, 743–748.

    PubMed  CAS  Google Scholar 

  1305. McKean-Cowdin, R., H.S. Feigelson, M.C. Pike, G.A. Coetzee, L.N. Kolonel, and B.E. Henderson (2001). Risk of endometrial cancer and estrogen replacement therapy history by CYP17 genotype. Cancer Res. 61, 848–849.

    PubMed  CAS  Google Scholar 

  1306. de Carmo Silva, R., C.E. Kater, S.A. Dib, S. Laureti, F. Forini, A. Cosentino et al. (2000). Autoantibodies against recombinant human steroidogenic enzymes 21-hydroxylase, sidechain cleavage and 17α-hydroxylase in Addison’s disease and autoimmune polyendocrine syndrome type III. Eur. J. Endocrinol. 142, 187–194.

    Article  PubMed  Google Scholar 

  1307. Simpson, E.R., C. Clyne, G. Rubin, W.C. Boon, K. Robertson, K. Britt et al. (2002). Aromatase—a brief overview. Annu. Rev. Physiol. 64, 93–127.

    Article  PubMed  CAS  Google Scholar 

  1308. Roselli, C.E. and J.A. Resko (2001). Cytochrome P450 aromatase (CYP19) in the non-human primate brain: Distribution, regulation, and functional significance. J. Steroid Biochem. Mol. Biol. 79, 247–253.

    Article  PubMed  CAS  Google Scholar 

  1309. Harada, N. (1992). A unique aromatase (P-450AROM) mRNA formed by alternative use of tissue-specific exons 1 in human skin fibroblasts. Biochem. Biophys. Res. Commun. 189, 1001–1007.

    Article  PubMed  CAS  Google Scholar 

  1310. Hinshelwood, M.M. and C.R. Mendelson (2001). Tissue-specific expression of the human CYP19 (aromatase) gene in ovary and adipose tissue of transgenic mice. J. Steroid Biochem. Mol. Biol. 79, 193–201.

    Article  PubMed  CAS  Google Scholar 

  1311. Shozu, M., H. Sumitani, T. Segawa, H.J. Yang, K. Murakami, T. Kasai et al. (2002). Over-expression of aromatase P450 in leiomyoma tissue is driven primarily through promoter I.4 of the aromatase P450 gene (CYP19). J. Clin. Endocrinol. Metab. 87, 2540–2548.

    Article  PubMed  CAS  Google Scholar 

  1312. Rubin, G.L., J.H. Duong, C.D. Clyne, C.J. Speed, Y. Murata, C. Gong et al. (2002). Ligands for the peroxisomal proliferator-activated receptor gamma and the retinoid X receptor inhibit aromatase cytochrome P450 (CYP19) expression mediated by promoter II in human breast adipose. Endocrinology 143, 2863–2871.

    Article  PubMed  CAS  Google Scholar 

  1313. Clyne, C.D., C.J. Speed, J. Zhou, and E.R. Simpson (2002). Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes. J. Biol. Chem. 277, 20591–20597.

    Article  PubMed  CAS  Google Scholar 

  1314. Kamat, A. and C.R. Mendelson (2001). Identification of the regulatory regions of the human aromatase P450 (CYP19) gene involved in placenta-specific expression. J. Steroid Biochem. Mol. Biol. 79, 173–180.

    Article  PubMed  CAS  Google Scholar 

  1315. Haiman, C.A., S.E. Hankinson, I. De Vivo, C. Guillemette, N. Ishibe, D.J. Hunter et al. (2003). Polymorphisms in steroid hormone pathway genes and mammographic density. Breast Cancer Res. Treat. 77, 27–36.

    Article  PubMed  CAS  Google Scholar 

  1316. Cole, P.A. and C.H. Robinson (1988). A peroxide model reaction for placental aromatase. J. Am. Chem. Soc. 110, 1284–1285.

    Article  CAS  Google Scholar 

  1317. Akhtar, M., D. Corina, S. Miller, A.Z. Shyadehi, and J.N. Wright (1994). Mechanism of the acyl-carbon cleavage and related reactions catalyzed by multifunctional P-450s: Studies on cytochrome P45017α. Biochemistry 33, 4410–4418.

    Article  PubMed  CAS  Google Scholar 

  1318. Roberts, E.S., A.D.N. Vaz, and M.J. Coon (1991). Catalysis by cytochrome P-450 of an oxidative reaction in xenobiotic aldehyde metabolism: Deformylation with olefin formation. Proc. Natl. Acad. Sci. USA 88, 8963–8966.

    Article  PubMed  CAS  Google Scholar 

  1319. Takayanagi, R., K. Goto, S. Suzuki, S. Tanaka, S. Shimoda, and H. Nawata (2002). Dehydroepiandrosterone (DHEA) as a possible source for estrogen formation in bone cells: Correlation between bone mineral density and serum DHEA-sulfate concentration in postmenopausal women, and the presence of aromatase to be enhanced by 1,25-dihydroxyvitamin D3 in human osteoblasts. Mech. Ageing Dev. 123, 1107–1114.

    Article  PubMed  CAS  Google Scholar 

  1320. Zhang, F., D. Zhou, Y.C. Kao, J. Ye, and S. Chen (2002). Expression and purification of a recombinant form of human aromatase from Escherichia coli. Biochem. Pharmacol. 64, 1317–1324.

    Article  PubMed  CAS  Google Scholar 

  1321. Kagawa, N., Q. Cao, and K. Kusano (2003). Expression of human aromatase (CYP19) in Escherichia coli by N-terminal replacement and induction of cold stress response. Steroids 68, 205–209.

    Article  PubMed  CAS  Google Scholar 

  1322. Graham-Lorence, S., M.W. Khalil, M.C. Lorence, C.R. Mendelson, and E.R. Simpson (1991). Structure-function relationships of human aromatase cytochrome P-450 using molecular modeling and site-directed mutagenesis. J. Biol. Chem. 266, 11939–11946.

    PubMed  CAS  Google Scholar 

  1323. Conley, A., S. Mapes, C.J. Corbin, D. Greger, and S. Graham (2002). Structural determinants of aromatase cytochrome P450 inhibition in substrate recognition site-1. Mol. Endocrinol. 16, 1456–1468.

    Article  PubMed  CAS  Google Scholar 

  1324. Marcotte, P.A. and C.H. Robinson (1982). Design of mechanism-based inactivators of human placental aromatase. Cancer Res. 42, 3322s–3326s.

    PubMed  CAS  Google Scholar 

  1325. Brueggemeier, R.W. (2002). Aromatase inhibitors in breast cancer therapy. Expert Rev. Anticancer Ther. 2, 181–191.

    Article  PubMed  CAS  Google Scholar 

  1326. Lombardi, P. (2002). Exemestane, a new steroidal aromatase inhibitor of clinical relevance. Biochim. Biophys. Acta 1587, 326–337.

    PubMed  CAS  Google Scholar 

  1327. Lonning, P.E. (2002). The role of aromatase inactivators in the treatment of breast cancer. Int. J. Clin. Oncol. 7, 265–270.

    Article  PubMed  CAS  Google Scholar 

  1328. Lonning, P.E. (2002). Aromatase inhibitors and inactivators for breast cancer treatment. Eur. J. Cancer 38(Suppl 6), S47–S48.

    Article  PubMed  CAS  Google Scholar 

  1329. Jones, S.A. and S.E. Jones (2000). Exemestane: A novel aromatase inactivator for breast cancer. Clin. Breast Cancer 1, 211–216.

    PubMed  CAS  Google Scholar 

  1330. Winnett, G., D. van Hagen, and M. Schrey (2003). Prostaglandin J2 metabolites inhibit aromatase activity by redox-sensitive mechanisms: Potential implications for breast cancer therapy. Int. J. Cancer 103, 600–605.

    Article  PubMed  CAS  Google Scholar 

  1331. Pouget, C., C. Fagnere, J.P. Basly, G. Habrioux, and A.J. Chulia (2002). Design, synthesis and evaluation of 4-imidazolylflavans as new leads for aromatase inhibition. Bioorg. Med. Chem. Lett. 12, 2859–2861.

    Article  PubMed  CAS  Google Scholar 

  1332. Smith, M.R., D. Kaufman, D. George, W.K. Oh, M. Kazanis, J. Manola et al. (2002). Selective aromatase inhibition for patients with androgen-independent prostate carcinoma. Cancer 95, 1864–1868.

    Article  PubMed  CAS  Google Scholar 

  1333. Murata, Y., K.M. Robertson, M.E. Jones, and E.R. Simpson (2002). Effect of estrogen deficiency in the male: The ArKO mouse model. Mol. Cell Endocrinol. 193, 7–12.

    Article  PubMed  CAS  Google Scholar 

  1334. Herrmann, B.L., B. Saller, O.E. Janssen, P. Gocke, A. Bockisch, H. Sperling et al. (2002). Impact of estrogen replacement therapy in a male with congenital aromatase deficiency caused by a novel mutation in the CYP19 gene. J. Clin. Endocrinol. Metab. 87, 5476–5484.

    Article  PubMed  CAS  Google Scholar 

  1335. Meinhardt, U. and P.E. Mullis (2002). The aromatase cytochrome P-450 and its clinical impact. Horm. Res. 57, 145–152.

    Article  PubMed  CAS  Google Scholar 

  1336. Britt, K.L., A.E. Drummond, M. Dyson, N.G. Wreford, M.E. Jones, E.R. Simpson et al. (2001). The ovarian phenotype of the aromatase knockout (ArKO) mouse. J. Steroid Biochem. Mol. Biol. 79, 181–185.

    Article  PubMed  CAS  Google Scholar 

  1337. Bakker, J., S. Honda, N. Harada, and J. Balthazart (2002). The aromatase knock-out mouse provides new evidence that estradiol is required during development in the female for the expression of sociosexual behaviors in adulthood. J. Neurosci. 22, 9104–9112.

    PubMed  CAS  Google Scholar 

  1338. Lonning, P.E., L.E. Kragh, B. Erikstein, A. Hagen, T. Risberg, E. Schlichting et al. (2001). The potential for aromatase inhibition in breast cancer prevention. Clin. Cancer Res. 7, 4423s–4428s; discussion 4411s–4412s.

    PubMed  CAS  Google Scholar 

  1339. Suspitsin, E.N., M.Y. Grigoriev, A.V. Togo, E.S. Kuligina, E.V. Belogubova, K.M. Pozharisski et al. (2002). Distinct prevalence of the CYP19 Δ3 (TTTA)7 allele in premenopausal versus postmenopausal breast cancer patients, but not in control individuals. Eur. J. Cancer 38, 1911–1916.

    Article  PubMed  CAS  Google Scholar 

  1340. Kado, N., J. Kitawaki, H. Obayashi, H. Ishihara, H. Koshiba, I. Kusuki et al. (2002). Association of the CYP17 gene and CYP19 gene polymorphisms with risk of endometriosis in Japanese women. Hum. Reprod. 17, 897–902.

    Article  PubMed  CAS  Google Scholar 

  1341. Bryan, G.T., A.M. Lewis, J.B. Harkins, S.F. Micheletti, and G.S. Boyd (1974). Cytochrome P450 and steroid 21-hydroxylation in microsomes from beef adrenal cortex. Steroids 23, 185–201.

    Article  PubMed  CAS  Google Scholar 

  1342. Zhou, Z., V.R. Agarwal, N. Dixit, P. White, and P.W. Speiser (1997). Steroid 21-hydroxylase expression and activity in human lymphocytes. Mol. Cell Endocrinol. 127, 11–18.

    Article  PubMed  CAS  Google Scholar 

  1343. Yu, L., D.G. Romero, C.E. Gomez-Sanchez, and E.P. Gomez-Sanchez (2002). Steroidogenic enzyme gene expression in the human brain. Mol. Cell Endocrinol. 190, 9–17.

    Article  PubMed  CAS  Google Scholar 

  1344. Zanger, U.M., N. Kagawa, J. Lund, and M.R. Waterman (1992). Distinct biochemical mechanisms for cAMP-dependent transcription of CYP17 and CYP21. FASEB J. 6, 719–723.

    PubMed  CAS  Google Scholar 

  1345. Watanabe, N., M. Kitazume, J. Fujisawa, M. Yoshida, and Y. Fujii-Kuriyama (1993). A novel cAMP-dependent regulatory region including a sequence like the cAMP-responsive element, far upstream of the human CYP21A2 gene. Eur. J. Biochem. 214, 521–531.

    Article  PubMed  CAS  Google Scholar 

  1346. Chang, S.F. and B.C. Chung (1995). Difference in transcriptional activity of two homologous CYP21A genes. Mol. Endocrinol. 9, 1330–1336.

    Article  PubMed  CAS  Google Scholar 

  1347. Bird, I.M., J.I. Mason, and W.E. Rainey (1998). Protein kinase A, protein kinase C, and Ca2+-regulated expression of 21-hydroxylase cytochrome P450 in H295R human adrenocortical cells. J. Clin. Endocrinol. Metab. 83, 1592–1597.

    Article  PubMed  CAS  Google Scholar 

  1348. Wijesuriya, S.D., G. Zhang, A. Dardis, and W.L. Miller (1999). Transcriptional regulatory elements of the human gene for cytochrome P450c21 (steroid 21-hydroxylase) lie within intron 35 of the linked C4B gene. J. Biol. Chem. 274, 38097–38106.

    Article  PubMed  CAS  Google Scholar 

  1349. White, P.C., M.T. Tusie-Luna, M.I. New, and P.W. Speiser (1994). Mutations in steroid 21-hydroxylase (CYP21). Hum. Mutat. 3, 373–378.

    Article  PubMed  CAS  Google Scholar 

  1350. M.T. Tusie-Luna, P.W. Speiser, M. Dumic, M.I. New, and P.C. White (1991). A mutation (Pro-30 to Leu) in CYP21 represents a potential nonclassic steroid 21-hydroxylase deficiency allele. Mol. Endocrinol. 5, 685–692.

    PubMed  CAS  Google Scholar 

  1351. Amor, M., K.L. Parker, H. Globerman, M.I. New, and P.C. White (1988). Mutation in the CYP21B gene (Ile-172→Asn) causes steroid 21-hydroxylase deficiency. Proc. Natl. Acad. Sci. USA 85, 1600–1604.

    Article  PubMed  CAS  Google Scholar 

  1352. Owerbach, D., L. Sherman, A.L. Ballard, and R. Azziz (1992). Pro-453 to Ser mutation in CYP21 is associated with nonclassic steroid 21-hydroxylase deficiency. Mol. Endocrinol. 6, 1211–1215.

    Article  PubMed  CAS  Google Scholar 

  1353. Bobba, A., E. Marra, P. Lattanzio, A. Iolascon, and S. Giannattasio (2000). Characterization of the CYP21 gene 5′ flanking region in patients affected by 21-OH deficiency. Hum. Mutat. 15, 481.

    Article  PubMed  CAS  Google Scholar 

  1354. White, P.C. and P.W. Speiser (2000). Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocrinol. Rev. 21, 245–291.

    Article  CAS  Google Scholar 

  1355. Lee, H. (2001). CYP21 mutations and congenital adrenal hyperplasia. Clin. Genet. 59, 293–301.

    Article  PubMed  CAS  Google Scholar 

  1356. Krone, N., A. Braun, A.A. Roscher, D. Knorr, and H.P. Schwarz (2000). Predicting phenotype in steroid 21-hydroxylase deficiency? Comprehensive genotyping in 155 unrelated, well defined patients from southern Germany. J. Clin. Endocrinol. Metab. 85, 1059–1065.

    Article  PubMed  CAS  Google Scholar 

  1357. Levo, A. and J. Partanen (2001). Novel mutations in the human CYP21 gene. Prenat. Diagn. 21, 885–889.

    Article  PubMed  CAS  Google Scholar 

  1358. Koyama, S., T. Toyoura, S. Saisho, K. Shimozawa, and J. Yata (2002). Genetic analysis of Japanese patients with 21-hydroxylase deficiency: Identification of a patient with a new mutation of a homozygous deletion of adenine at codon 246 and patients without demonstrable mutations within the structural gene for CYP21. J. Clin. Endocrinol. Metab. 87, 2668–2673.

    Article  PubMed  CAS  Google Scholar 

  1359. Lee, H.H., D.M. Niu, R.W. Lin, P. Chan, and C.Y. Lin (2002). Structural analysis of the chimeric CYP21P/CYP21 gene in steroid 21-hydroxylase deficiency. J. Hum. Genet. 47, 517–522.

    Article  PubMed  CAS  Google Scholar 

  1360. Koppens, P.F., T. Hoogenboezem, and H.J. Degenhart (2002). Duplication of the CYP21A2 gene complicates mutation analysis of steroid 21-hydroxylase deficiency: Characteristics of three unusual haplotypes. Hum. Genet. 111, 405–410.

    Article  PubMed  CAS  Google Scholar 

  1361. Dain, L.B., N.D. Buzzalino, A. Oneto, S. Belli, M. Stivel, T. Pasqualini et al. (2002). Classical and nonclassical 21-hydroxylase deficiency: A molecular study of Argentine patients. Clin. Endocrinol. (Oxford) 56, 239–245.

    Article  CAS  Google Scholar 

  1362. Mornet, E. and J.F. Gibrat (2000). A 3D model of human P450c21: Study of the putative effects of steroid 21-hydroxylase gene mutations. Hum. Genet. 106, 330–339.

    Article  PubMed  CAS  Google Scholar 

  1363. Menard, R.H., F.C. Bartter, and J.R. Gillette (1976). Spironolactone and cytochrome P-450: Impairment of steroid 21-hydroxylation in the adrenal cortex. Arch. Biochem. Biophys. 173, 395–402.

    Article  PubMed  CAS  Google Scholar 

  1364. Tajima, T., T. Okada, X.M. Ma, W. Ramsey, S. Bornstein, and G. Aguilera (1999). Restoration of adrenal steroidogenesis by adenovirus-mediated transfer of human cytochrome P450 21-hydroxylase into the adrenal gland of 21-hydroxylase-deficient mice. Gene Ther. 6, 1898–1903.

    Article  PubMed  CAS  Google Scholar 

  1365. Pedersen, J.I., H.H. Shobaki, I. Holmberg, S. Bergseth, and I. Björkhem (1983). 25-Hydroxyvitamin D3-24-hydroxylase in rat kidney mitochondria. J. Biol. Chem. 258, 742–746.

    PubMed  CAS  Google Scholar 

  1366. Ohyama, Y., S. Hayashi, and K. Okuda (1989). Purification of 25-hydroxyvitamin D3 24-hydroxylase from rat kidney mitochondria. FEBS Lett. 255, 405–408.

    Article  PubMed  CAS  Google Scholar 

  1367. Ettinger, R.A., R. Ismail, and H.F. DeLuca (1994). cDNA cloning and characterization of a vitamin D3 hydroxylase-associated protein. J. Biol. Chem. 269, 176–182.

    PubMed  CAS  Google Scholar 

  1368. Chen, K.S., J.M. Prahl, and H.F. DeLuca (1993). Isolation and expression of human 1,25-dihydroxyvitamin D3 24-hydroxylase cDNA. Proc. Natl. Acad. Sci. USA 90, 4543–4547.

    Article  PubMed  CAS  Google Scholar 

  1369. Yang, W., P.A. Friedman, R. Kumar, J.L. Omdahl, B.K. May, M.L. SiuCaldera et al. (1999). Expression of 25 (OH)D3 24-hydroxylase in distal nephron: Coordinate regulation by 1, 25 (OH)2D3 and cAMP or PTH. Am. J. Physiol. 276, E793–E805.

    PubMed  CAS  Google Scholar 

  1370. Jones, G., H. Ramshaw, A. Zhang, R. Cook, V. Byford, J. White et al. (1999). Expression and activity of vitamin D-metabolizing cytochrome P450s (CYP1α and CYP24) in human nonsmall cell lung carcinomas. Endocrinology 140, 3303–3310.

    Article  PubMed  CAS  Google Scholar 

  1371. Chen, M.L., G. Heinrich, Y.I. Ohyama, K. Okuda, J.L. Omdahl, T.C. Chen et al. (1994). Expression of 25-hydroxyvitamin D3-24-hydroxylase mRNA in cultured human keratinocytes. Proc. Soc. Exp. Biol. Med. 207, 57–61.

    PubMed  CAS  Google Scholar 

  1372. Schuster, I., H. Egger, N. Astecker, G. Herzig, M. Schussler, and G. Vorisek (2001). Selective inhibitors of CYP24: Mechanistic tools to explore vitamin D metabolism in human keratinocytes. Steroids 66, 451–462.

    Article  PubMed  CAS  Google Scholar 

  1373. Bareis, P., E. Kallay, M.G. Bischof, G. Bises, H. Hofer, C. Potzi et al. (2002). Clonal differences in expression of 25-hydroxyvitamin D3-1α-hydroxylase, of 25-hydroxyvitamin D3-24-hydroxylase, and of the vitamin D receptor in human colon carcinoma cells: Effects of epidermal growth factor and 1α,25-dihydroxyvitamin D3. Exp. Cell Res. 276, 320–327.

    Article  PubMed  CAS  Google Scholar 

  1374. Farhan, H. and H.S. Cross (2002). Transcriptional inhibition of CYP24 by genistein. Ann. N. Y. Acad. Sci. 973, 459–462.

    PubMed  CAS  Google Scholar 

  1375. Zierold, C., H.M. Darwish, and H.F. DeLuca (1994). Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc. Natl. Acad. Sci. USA 91, 900–902.

    Article  PubMed  CAS  Google Scholar 

  1376. Ohyama, Y., K. Ozono, M. Uchida, T. Shinki, S. Kato, T. Suda et al. (1994). Identification of a vitamin D-responsive element in the 5′-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J. Biol. Chem. 269, 10545–10550.

    PubMed  CAS  Google Scholar 

  1377. Kerry, D.M., P.P. Dwivedi, C.N. Hahn, H.A. Morris, J.L. Omdahl, and B.K. May (1996). Transcriptional synergism between vitamin D-responsive elements in the rat 25-hydroxyvitamin D3 24-hydroxylase (CYP24) promoter. J. Biol. Chem. 271, 29715–29721.

    Article  PubMed  CAS  Google Scholar 

  1378. Dwivedi, P.P., J.L. Omdahl, I. Kola, D.K. Hume, and B.K. May (2000). Regulation of rat cytochrome P450C24 (CYP24) gene expression. Evidence for functional cooperation of Ras-activated Ets transcription factors with the vitamin D receptor in 1,25-dihydroxyvitamin D3-mediated induction. J. Biol. Chem. 275, 47–55.

    Article  PubMed  CAS  Google Scholar 

  1379. Raval-Pandya, M., P. Dhawan, F. Barletta, and S. Christakos (2001). YY1 represses vitamin D receptor-mediated 25-hydroxyvitamin D3 24-hydroxylase transcription: Relief of repression by CREB-binding protein. Mol. Endocrinol. 15, 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  1380. Dwivedi, P.P., C.S. Hii, A. Ferrante, J. Tan, C.J. Der, J.L. Omdahl et al. (2002). Role of MAP kinases in the 1,25-dihydroxyvitamin D3-induced transactivation of the rat cytochrome P450C24 (CYP24) promoter. Specific functions for ERK1/ERK2 and ERK5. J. Biol. Chem. 277, 29643–29653.

    Article  PubMed  CAS  Google Scholar 

  1381. Jones, G. and H.S. Tenenhouse (2002). 1,25(OH)2D, the preferred substrate for CYP24. J. Bone Miner. Res. 17, 179–181.

    Article  PubMed  Google Scholar 

  1382. Sakaki, T., N. Sawada, K. Komai, S. Shiozawa, S. Yamada, K. Yamamoto et al. (2000). Dual metabolic pathway of 25-hydroxyvitamin D3 catalyzed by human CYP24. Eur. J. Biochem. 267, 6158–6165.

    Article  PubMed  CAS  Google Scholar 

  1383. Beckman, M.J., P. Tadikonda, E. Werner, J. Prahl, S. Yamada, and H.F. DeLuca (1996). Human 25-hydroxyvitamin D3-24-hydroxylase, a multicatalytic enzyme. Biochemistry 35, 8465–8472.

    Article  PubMed  CAS  Google Scholar 

  1384. Miyamoto, Y., T. Shinki, K. Yamamoto, Y. Ohyama, H. Iwasaki, R. Hosotani et al. (1997). 1α,25-dihydroxyvitamin D3-24-hydroxylase (CYP24) hydroxylates the carbon at the end of the side chain (C-26) of the C-24-fluorinated analog of 1α,25-dihydroxyvitamin D3. J. Biol. Chem. 272, 14115–14119.

    Article  PubMed  CAS  Google Scholar 

  1385. Hayashi, K., M. Akiyoshi-Shibata, T. Sakaki, and Y. Tabusaki (1998). Rat CYP24 catalyses 23S-hydroxylation of 26,26,26,27,27,27-hexafluorocalcitriol in vitro. Xenobiotica 28, 457–463.

    Article  PubMed  CAS  Google Scholar 

  1386. Sakaki, T., N. Sawada, Y. Nonaka, Y. Ohyama, and K. Inouye (1999). Metabolic studies using recombinant Escherichia coli cells producing rat mitochondrial CYP24. CYP24 can convert 1α,25-dihydroxyvitamin D3 to calcitroic acid. Eur. J. Biochem. 262, 43–48.

    Article  PubMed  CAS  Google Scholar 

  1387. Inouye, K. and T. Sakaki (2001). Enzymatic studies on the key enzymes of vitamin D metabolism; 1α-hydroxylase (CYP27B1) and 24-hydroxylase (CYP24). Biotechnol. Annu. Rev. 7, 179–194.

    PubMed  CAS  Google Scholar 

  1388. Omdahl, J.L., E.V. Bobrovnikova, A. Annalora, P. Chen, and R. Serda (2003). Expression, structure-function, and molecular modeling of vitamin D P450s. J. Cell. Biochem. 88, 356–362.

    Article  PubMed  CAS  Google Scholar 

  1389. Dilworth, F.J., I. Scott, A. Green, S. Strugnell, Y.D. Guo, E.A. Roberts et al. (1995). Different mechanisms of hydroxylation site selection by liver and kidney cytochrome P450 species (CYP27 and CYP24) involved in vitamin D metabolism. J. Biol. Chem. 270, 16766–16774.

    Article  PubMed  CAS  Google Scholar 

  1390. Schuster, I., H. Egger, P. Nussbaumer, and R.T. Kroemer (2003). Inhibitors of vitamin D hydroxylases: Structure-activity relationships. J. Cell. Biochem. 88, 372–380.

    Article  PubMed  CAS  Google Scholar 

  1391. Schuster, I., H. Egger, D. Bikle, G. Herzig, G.S. Reddy, A. Stuetz et al. (2001). Selective inhibition of vitamin D hydroxylases in human keratinocytes. Steroids 66, 409–422.

    Article  PubMed  CAS  Google Scholar 

  1392. Henry, H.L. (2001). The 25(OH)D3/1α,25(OH)2D3-24R-hydroxylase: A catabolic or biosynthetic enzyme? Steroids 66, 391–398.

    Article  PubMed  CAS  Google Scholar 

  1393. Kasuga, H., N. Hosogane, K. Matsuoka, I. Mori, Y. Sakura, K. Shimakawa et al. (2002). Characterization of transgenic rats constitutively expressing vitamin D-24-hydroxylase gene. Biochem. Biophys. Res. Commun. 297, 1332–1338.

    Article  PubMed  CAS  Google Scholar 

  1394. Martini, R. and M. Murray (1993). Participation of P450 3A enzymes in rat hepatic microsomal retinoic acid 4-hydroxylation. Arch. Biochem. Biophys. 303, 57–66.

    Article  PubMed  CAS  Google Scholar 

  1395. White, J.A., B. Beckett-Jones, Y.D. Guo, F.J. Dilworth, J. Bonasoro, G. Jones et al. (1997). cDNA cloning of human retinoic acid-metabolizing enzyme (hP450RAI) identifies a novel family of cytochromes P450 (CYP26). J. Biol. Chem. 272, 18539–18541.

    Google Scholar 

  1396. White, J.A., H. Ramshaw, M. Taimi, W. Stangle, A. Zhang, S. Everingham et al. (2000). Identification of the human cytochrome P450, P450RAI-2, which is predominantly expressed in the adult cerebellum and is responsible for all-trans-retinoic acid metabolism. Proc. Natl. Acad. Sci. USA 97, 6403–6408.

    Article  PubMed  CAS  Google Scholar 

  1397. Trofimova-Griffin, M.E. and M.R. Juchau (1998). Expression of cytochrome P450RAI (CYP26) in human fetal hepatic and cephalic tissues. Biochem. Biophys. Res. Commun. 252, 487–491.

    Article  PubMed  CAS  Google Scholar 

  1398. Nelson, D.R. (1999). A second CYP26 P450 in humans and zebrafish: CYP26B1. Arch. Biochem. Biophys. 371, 345–347.

    Article  PubMed  CAS  Google Scholar 

  1399. Abu-Abed, S., G. MacLean, V. Fraulob, P. Chambon, M. Petkovich, and P. Dolle (2002). Differential expression of the retinoic acid-metabolizing enzymes CYP26A1 and CYP26B1 during murine organogenesis. Mech. Dev. 110, 173–177.

    Article  PubMed  CAS  Google Scholar 

  1400. Trofimova-Griffin, M.E. and M.R. Juchau (2002). Developmental expression of cytochrome CYP26B1 (P450RAI-2) in human cephalic tissues. Brain. Res. Develop. Brain Res. 136, 175–178.

    Article  CAS  Google Scholar 

  1401. Matsuzaki, Y., B. Bouscarel, T. Ikegami, A. Honda, M. Doy, S. Ceryak et al. (2002). Selective inhibition of CYP27A1 and of chenodeoxycholic acid synthesis in cholestatic hamster liver. Biochim. Biophys. Acta 1588, 139–148.

    PubMed  CAS  Google Scholar 

  1402. Postlind, H., E. Axén, T. Bergman, and K. Wikvall (1997). Cloning, structure, and expression of a cDNA encoding vitamin D3 25-hydroxylase. Biochem. Biophys. Res. Commun. 241, 491–497.

    Article  PubMed  CAS  Google Scholar 

  1403. Hayashi, S., M. Noshiro, and K. Okuda (1984). Purification of cytochrome P-450 catalyzing 25-hydroxylation of vitamin D3 from rat liver microsomes. Biochem. Biophys. Res. Commun. 121, 994–1000.

    Article  PubMed  CAS  Google Scholar 

  1404. Saarem, K. and J.I. Pedersen (1985). 25-Hydroxylation of 1α-hydroxyvitamin D3 in rat and human liver. Biochim. Biophys. Acta 840, 177–126.

    Google Scholar 

  1405. Akiyoshi-Shibata, M., E. Usui, T. Sakaki, Y. Yabusaki, M. Noshiro, K. Okuda et al. (1991). Expression of rat liver vitamin D3 25-hydroxylase cDNA in Saccharomyces cerevisiae. FEBS Lett. 280, 367–370.

    Article  PubMed  CAS  Google Scholar 

  1406. Guo, Y.D., S. Strugnell, D.W. Back, and G. Jones (1993). Transfected human liver cytochrome P-450 hydroxylates vitamin D analogs at different side-chain positions. Proc. Natl. Acad. Sci. USA 90, 8668–8672.

    Article  PubMed  CAS  Google Scholar 

  1407. Shiga, K., R. Fukuyama, S. Kimura, K. Nakajima, and S. Fushiki (1999). Mutation of the sterol 27-hydroxylase gene (CYP27) results in truncation of mRNA expressed in leucocytes in a Japanese family with cerebrotendinous xanthomatosis. J. Neurol. Neurosurg. Psychiatr. 67, 675–677.

    PubMed  CAS  Google Scholar 

  1408. Garuti, R., M.A. Croce, R. Tiozzo, M.T. Dotti, A. Federico, S. Bertolini et al. (1997). Four novel mutations of sterol 27-hydroxylase gene in Italian patients with cerebrotendinous xanthomatosis. J. Lipid Res. 38, 2322–2334.

    PubMed  CAS  Google Scholar 

  1409. Gascon-Barre, M., C. Demers, O. Ghrab, C. Theodoropoulos, R. Lapointe, G. Jones et al. (2001). Expression of CYP27A, a gene encoding a vitamin D-25 hydroxylase in human liver and kidney. Clin. Endocrinol. (Oxford) 54, 107–115.

    Article  CAS  Google Scholar 

  1410. Shanahan, C.M., K.L. Carpenter, and N.R. Cary (2001). A potential role for sterol 27-hydroxylase in atherogenesis. Atherosclerosis 154, 269–276.

    Article  PubMed  CAS  Google Scholar 

  1411. Lee, M.J., Y.C. Huang, M.G. Sweeney, N.W. Wood, M.M. Reilly, and P.K. Yip (2002). Mutation of the sterol 27-hydroxylase gene (CYP27A1) in a Taiwanese family with cerebrotendinous xanthomatosis. J. Neurol. 249, 1311–1312.

    Article  PubMed  Google Scholar 

  1412. Chen, W., S. Kubota, H. Ujike, T. Ishihara, and Y. Seyama (1998). A novel Arg362Ser mutation in the sterol 27-hydroxylase gene (CYP27): Its effects on pre-mRNA splicing and enzyme activity. Biochemistry 37, 15050–15056.

    Article  PubMed  CAS  Google Scholar 

  1413. Su, P., H. Rennert, R.M. Shayiq, R. Yamamoto, Y. Zheng, S. Addya et al. (1990). A cDNA encoding a rat mitochondrial cytochrome P450 catalyzing both the 26-hydroxylation of cholesterol and 25-hydroxylation of vitamin D3: Gonadotropic regulation of the cognate mRNA in ovaries. DNA Cell Biol. 9, 657–665.

    PubMed  CAS  Google Scholar 

  1414. Wikvall, K. (2001). Cytochrome P450 enzymes in the bioactivation of vitamin D to its hormonal form (review). Int. J. Mol. Med. 7, 201–209.

    PubMed  CAS  Google Scholar 

  1415. Pikuleva, I.A., I. Björkhelm, and M.R. Waterman (1997). Expression, purification, and enzymatic properties of recombinant human cytochrome P450c27 (CYP27). Arch. Biochem. Biophys. 343, 123–130.

    Article  PubMed  CAS  Google Scholar 

  1416. Pikuleva, I.A., A. Babiker, M.R. Waterman, and I. Björkhem (1998). Activities of recombinant human cytochrome P450c27 (CYP27) which produce intermediates of alternative bile acid biosynthetic pathways. J. Biol. Chem. 273, 18153–18160.

    Article  PubMed  CAS  Google Scholar 

  1417. Sawada, N., T. Sakaki, M. Ohta, and K. Inouye (2000). Metabolism of vitamin D3 by human CYP27A1. Biochem. Biophys. Res. Commun. 273, 977–984.

    Article  PubMed  CAS  Google Scholar 

  1418. Sawada, N., T. Sakaki, S. Kitanaka, S. Kato, and K. Inouye (2001). Structure-function analysis of CYP27B1 and CYP27A1—Studies on mutants from patients with vitamin D-dependent rickets type I (VDDR-I) and cerebrotendinous xanthomatosis (CTX). Eur. J. Biochem. 268, 6607–6615.

    Article  PubMed  CAS  Google Scholar 

  1419. Pikuleva, I.A., A. Puchkaev, and I. Bjorkhem (2001). Putative helix F contributes to regioselectivity of hydroxylation in mitochondrial cytochrome P450 27A1. Biochemistry 40, 7621–7629.

    PubMed  CAS  Google Scholar 

  1420. Murtazina, D., A.V. Puchkaev, C.H. Schein, N. Oezguen, W. Braun, A. Nanavati et al. (2002). Membrane-protein interactions contribute to efficient 27-hydroxylation of cholesterol by mitochondrial cytochrome P450 27A1. J. Biol. Chem. 277, 37582–37589.

    Article  PubMed  CAS  Google Scholar 

  1421. Hosseinpour, F., M. Hidestrand, M. Ingelman-Sundberg, and K. Wikvall (2001). The importance of residues in substrate recognition site 3 for the catalytic function of CYP2D25 (vitamin D 25-hydroxylase). Biochem. Biophys. Res. Commun. 288, 1059–1063.

    Article  PubMed  CAS  Google Scholar 

  1422. Wills, M.R. and J. Savory (1984). Vitamin D metabolism and chronic liver disease. Ann. Clin. Lab. Sci. 14, 189–197.

    PubMed  CAS  Google Scholar 

  1423. Sugama, S., A. Kimura, W. Chen, S. Kubota, Y. Seyama, N. Taira et al. (2001). Frontal lobe dementia with abnormal cholesterol metabolism and heterozygous mutation in sterol 27-hydroxylase gene (CYP27). J. Inherit. Metab. Dis. 24, 379–392.

    Article  PubMed  CAS  Google Scholar 

  1424. Björkhem, I. (2002). Do oxysterols control cholesterol homeostasis?. J. Clin. Invest. 110, 725–730.

    Article  PubMed  CAS  Google Scholar 

  1425. Rosen, H., A. Reshef, N. Maeda, A. Lippoldt, S. Shpizen, L. Triger et al. (1998). Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27-hydroxylase gene. J. Biol. Chem. 273, 14805–14812.

    Article  PubMed  CAS  Google Scholar 

  1426. Reiss, A.B., N.W. Awadallah, S. Malhotra, M.C. Montesinos, E.S. Chan, N.B. Javitt et al. (2001). Immune complexes and IFN-γ decrease cholesterol 27-hydroxylase in human arterial endothelium and macrophages. J. Lipid Res. 42, 1913–1922.

    PubMed  CAS  Google Scholar 

  1427. Goodwin, B., K.C. Gauthier, M. Umetani, M.A. Watson, M.I. Lochansky, J.L. Collins et al. (2003). Identification of bile acid precursors as endogenous ligands for the nuclear xenobiotic pregnane X receptor. Proc. Natl. Acad. Sci. USA 100, 223–228.

    Article  PubMed  CAS  Google Scholar 

  1428. Escher, G., Z. Krozowski, K.D. Croft, and D. Sviridov (2003). Expression of sterol 27-hydroxylase (CYP27A1) enhances cholesterol efflux. J. Biol. Chem. 278, 11015–11019.

    Article  PubMed  CAS  Google Scholar 

  1429. Fu, X., J.G. Menke, Y. Chen, G. Zhou, K.L. MacNaul, S.D. Wright et al. (2001). 27-Hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J. Biol. Chem. 276, 38378–38387.

    Article  PubMed  CAS  Google Scholar 

  1430. H.F. DeLuca (1977). Vitamin D as a prohormone. Biochem. Pharmacol. 26, 563–566.

    Article  PubMed  CAS  Google Scholar 

  1431. Paulson, S.K. and H.F. DeLuca (1985). Subcellular location and properties of rat renal 25-hydroxyvitamin D3-1α-hydroxylase. J. Biol. Chem. 260, 11488–11492.

    PubMed  CAS  Google Scholar 

  1432. M. Burgos-Trinidad, R. Ismail, R.A. Ettinger, J.M. Prahl, and H.F. DeLuca (1992). Immunopurified 25-hydroxyvitamin D 1α-hydroxylase and 1,25-dihydroxyvitamin D 24-hydroxylase are closely related but distinct enzymes. J. Biol. Chem. 267, 3498–3505.

    PubMed  CAS  Google Scholar 

  1433. Arabian, A., J. Grover, M.G. Barre, and E.E. Delvin (1993). Rat kidney 25-hydroxyvitamin D3 1α-and 24-hydroxylases: Evidence for two distinct gene products. J. Steroid Biochem. Mol. Biol. 45, 513–516.

    Article  PubMed  CAS  Google Scholar 

  1434. Axén, E., H. Postlind, H. Sjöberg, and K. Wikvall (1994). Liver mitochondrial cytochrome P450 CYP27 and recombinant expressed human CYP27 catalyze 1α-hydroxylation of 25-hydroxyvitamin D3. Proc. Natl. Acad. Sci. USA 91, 10014–10018.

    Article  PubMed  Google Scholar 

  1435. Monkawa, T., T. Yoshida, S. Wakino, T. Shinki, H. Anazawa, H.F. DeLuca et al. (1997). Molecular cloning of cDNA and genomic DNA for human 25-hydroxyvitamin D3 1α-hydroxylase. Biochem. Biophys. Res. Commun. 239, 527–533.

    Article  PubMed  CAS  Google Scholar 

  1436. Fu, G.K., A.A. Portale, and W.L. Miller (1997). Complete structure of the human gene for the vitamin D 1α-hydroxylase, P450c1α. DNA Cell Biol. 16, 1499–1507.

    PubMed  CAS  Google Scholar 

  1437. Zehnder, D., R. Bland, E.A. Walker, A.R. Bradwell, A.J. Howie, M. Hewison et al. (1999). Expression of 25-hydroxyvitamin D3-1α-hydroxylase in the human kidney. J. Am. Soc. Nephrol. 10, 2465–2473.

    PubMed  CAS  Google Scholar 

  1438. Zehnder, D., R. Bland, M.C. Williams, R.W. McNinch, A.J. Howie, P.M. Stewart et al. (2001). Extrarenal expression of 25-hydroxyvitamin D3-1α-hydroxylase. J. Clin. Endocrinol. Metab. 86, 888–894.

    Article  PubMed  CAS  Google Scholar 

  1439. Zehnder, D., K.N. Evans, M.D. Kilby, J.N. Bulmer, B.A. Innes, P.M. Stewart et al. (2002). The ontogeny of 25-hydroxyvitamin D3 1α-hydroxylase expression in human placenta and decidua. Am. J. Pathol. 161, 105–114.

    PubMed  CAS  Google Scholar 

  1440. Diaz, L., C. Arranz, E. Avila, A. Halhali, F. Vilchis, and F. Larrea (2002). Expression and activity of 25-hydroxyvitamin D-1α-hydroxylase are restricted in cultures of human syncytiotrophoblast cells from preeclamptic pregnancies. J. Clin. Endocrinol. Metab. 87, 3876–3882.

    Article  PubMed  CAS  Google Scholar 

  1441. Friedrich, M., C. Villena-Heinsen, R. Axt-Fliedner, R. Meyberg, W. Tilgen, W. Schmidt et al. (2002). Analysis of 25-hydroxyvitamin D3-1α-hydroxylase in cervical tissue. Anticancer Res. 22, 183–186.

    PubMed  CAS  Google Scholar 

  1442. Segersten, U., P. Correa, M. Hewison, P. Hellman, H. Dralle, T. Carling et al. (2002). 25-hydroxyvitamin D3-1α-hydroxylase expression in normal and pathological parathyroid glands. J. Clin. Endocrinol. Metab. 87, 2967–2972.

    Article  PubMed  CAS  Google Scholar 

  1443. Brenza, H.L. and H.F. DeLuca (2001). Analysis of basal regulatory elements in the 25-hydroxyvitamin D3 1α-hydroxylase gene promoter. Arch. Biochem. Biophys. 388, 121–126.

    Article  PubMed  CAS  Google Scholar 

  1444. Baxter, L.A. and H.F. DeLuca (1976). Stimulation of 25-hydroxyvitamin D3-1α-hydroxylase by phosphate depletion. J. Biol. Chem. 251, 3158–3161.

    PubMed  CAS  Google Scholar 

  1445. Yoshida, T., N. Yoshida, T. Monkawa, M. Hayashi, and T. Saruta (2001). Dietary phosphorus deprivation induces 25-hydroxyvitamin D3 1α-hydroxylase gene expression. Endocrinology 142, 1720–1726.

    Article  PubMed  CAS  Google Scholar 

  1446. Zhang, M.Y., X. Wang, J.T. Wang, N.A. Compagnone, S.H. Mellon, J.L. Olson et al. (2002). Dietary phosphorus transcriptionally regulates 25-hydroxyvitamin D-1α-hydroxylase gene expression in the proximal renal tubule. Endocrinology 143, 587–595.

    Article  PubMed  CAS  Google Scholar 

  1447. Bland, R., E.A. Walker, S.V. Hughes, P.M. Stewart, and M. Hewison (1999). Constitutive expression of 25-hydroxyvitamin D3-1α-hydroxylase in a transformed human proximal tubule cell line: Evidence for direct regulation of vitamin D metabolism by calcium. Endocrinology 140, 2027–2034.

    Article  PubMed  CAS  Google Scholar 

  1448. Takeyama, K., S. Kitanaka, T. Sato, M. Kobori, J. Yanagisawa, and S. Kato (1997). 25-Hydroxyvitamin D3 1α-hydroxylase and vitamin D synthesis. Science 277, 1827–1830.

    Article  PubMed  CAS  Google Scholar 

  1449. Murayama, A., K. Takeyama, S. Kitanaka, Y. Kodera, T. Hosoya, and S. Kato (1998). The promoter of the human 25-hydroxyvitamin D3 1α-hydroxylase gene confers positive and negative responsiveness to PTH, calcitonin, and 1α,25(OH)2D3. Biochem. Biophys. Res. Commun. 249, 11–16.

    Article  PubMed  CAS  Google Scholar 

  1450. Kong, X.F., X.H. Zhu, Y.L. Pei, D.M. Jackson, and M.F. Holick (1999). Molecular cloning, characterization, and promoter analysis of the human 25-hydroxyvitamin D3-1α-hydroxylase gene. Proc. Natl. Acad. Sci. USA 96, 6988–6993.

    Article  PubMed  CAS  Google Scholar 

  1451. Gao, X.H., P.P. Dwivedi, S. Choe, F. Alba, H.A. Morris, J.L. Omdahl et al. (2002). Basal and parathyroid hormone induced expression of the human 25-hydroxyvitamin D 1α-hydroxylase gene promoter in kidney AOK-B50 cells: Role of Sp1, Ets and CCAAT box protein binding sites. Int. J. Biochem. Cell Biol. 34, 921–930.

    Article  PubMed  CAS  Google Scholar 

  1452. Michigami, T., H. Yamato, H. Suzuki, Y. Nagai-Itagaki, K. Sato, and K. Ozono (2001). Conflicting actions of parathyroid hormone-related protein and serum calcium as regulators of 25-hydroxyvitamin D3-1α-hydroxylase expression in a nude rat model of humoral hypercalcemia of malignancy. J. Endocrinol. 171, 249–257.

    Article  PubMed  CAS  Google Scholar 

  1453. Kato, S., T. Yoshizazawa, S. Kitanaka, A. Murayama, and K. Takeyama (2002). Molecular genetics of vitamin D-dependent hereditary rickets. Horm. Res. 57, 73–78.

    Article  PubMed  CAS  Google Scholar 

  1454. Wang, J.T., C.J. Lin, S.M. Burridge, G.K. Fu, M. Labuda, A.A. Portale et al. (1998). Genetics of vitamin D 1α-hydroxylase deficiency in 17 families. Am. J. Hum. Genet. 63, 1694–1702.

    Article  PubMed  CAS  Google Scholar 

  1455. Portale, A.A. and W.L. Miller (2000). Human 25-hydroxyvitamin D-1α-hydroxylase: Cloning, mutations, and gene expression. Pediatr. Nephrol. 14, 620–625.

    PubMed  CAS  Google Scholar 

  1456. Porcu, L., A. Meloni, L. Casula, I. Asunis, M.G. Marini, A. Cao et al. (2002). A novel splicing defect (IVS6 + 1G>T) in a patient with pseudovitamin D deficiency rickets. J. Endocrinol. Invest. 25, 557–560.

    PubMed  CAS  Google Scholar 

  1457. Kitanaka, S., K. Takeyama, A. Murayama, T. Sato, K. Okumura, M. Nogami et al. (1998). Inactivating mutations in the 25-hydroxyvitamin D3 1α-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N. Engl. J. Med. 338, 653–661.

    Article  PubMed  CAS  Google Scholar 

  1458. Smith, S.J., A.K. Rucka, J.L. Berry, M. Davies, S. Mylchreest, C.R. Paterson et al. (1999). Novel mutations in the 1α-hydroxylase (P450c1) gene in three families with pseudovitamin D-deficiency rickets resulting in loss of functional enzyme activity in blood-derived macrophages. J. Bone Miner. Res. 14, 730–739.

    Article  PubMed  CAS  Google Scholar 

  1459. Sawada, N., T. Sakaki, S. Kitanaka, K. Takeyama, S. Kato, and K. Inouye (1999). Enzymatic properties of human 25-hydroxyvitamin D3 1α-hydroxylase coexpression with adrenodoxin and NADPH-adrenodoxin reductase in Escherichia coli. Eur. J. Biochem. 265, 950–956.

    Article  PubMed  CAS  Google Scholar 

  1460. Wang, X., M.Y. Zhang, W.L. Miller, and A.A. Portale (2002). Novel gene mutations in patients with 1α-hydroxylase deficiency that confer partial enzyme activity in vitro. J. Clin. Endocrinol. Metab. 87, 2424–2430.

    Article  PubMed  CAS  Google Scholar 

  1461. Muralidharan, K.R., M. Rowland-Goldsmith, A.S. Lee, G. Park, A.W. Norman, H.L. Henry et al. (1997). Inhibitors of 25-hydroxyvitamin D3-1α-hydroxylase: Thiavitamin D analogs and biological evaluation. J. Steroid Biochem. 62, 73–78.

    Article  CAS  Google Scholar 

  1462. Hewison, M., D. Zehnder, R. Bland, and P.M. Stewart (2000). 1α-Hydroxylase and the action of vitamin D. J. Mol. Endocrinol. 25, 141–148.

    Article  PubMed  CAS  Google Scholar 

  1463. Kitanaka, S., K. Takeyama, A. Murayama, and S. Kato (2001). The molecular basis of vitamin D-dependent rickets type I. Endocrinol. J. 48, 427–432.

    CAS  Google Scholar 

  1464. Portale, A.A. and W.L. Miller (2000). Human 25-hydroxyvitamin D-1α-hydroxylase: Cloning, mutations, and gene expression. Pediatr. Nephrol. 14, 620–625.

    PubMed  CAS  Google Scholar 

  1465. Kitanaka, S., A. Murayama, T. Sakaki, K. Inouye, Y. Seino, S. Fukumoto et al. (1999). No enzyme activity of 25-hydroxyvitamin D3 1α-hydroxylase gene product in pseudovitamin D deficiency rickets, including that with mild clinical manifestation. J. Clin. Endocrinol. Metab. 84, 4111–4117.

    Article  PubMed  CAS  Google Scholar 

  1466. Dardenne, O., J. Prud’homme, A. Arabian, F.H. Glorieux, and R. St-Arnaud (2001). Targeted inactivation of the 25-hydroxyvitamin D3-1α-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology 142, 3135–3141.

    Article  PubMed  CAS  Google Scholar 

  1467. Panda, D.K., D. Miao, M.L. Tremblay, J. Sirois, R. Farookhi, G.N. Hendy et al. (2001). Targeted ablation of the 25-hydroxyvitamin D 1α-hydroxylase enzyme: Evidence for skeletal, reproductive, and immune dysfunction. Proc. Natl. Acad. Sci. USA 98, 7498–7503.

    Article  PubMed  CAS  Google Scholar 

  1468. St-Arnaud, R., O. Dardenne, J. Prud’homme, S.A. Hacking, and F.H. Glorieux (2003). Conventional and tissue-specific inactivation of the 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). J. Cell. Biochem. 88, 245–251.

    Article  PubMed  CAS  Google Scholar 

  1469. Satomura, K., Y. Seino, K. Yamaoka, Y. Tanaka, M. Ishida, H. Yabuuchi et al. (1988). Renal 25-hydroxyvitamin D3-1-hydroxylase in patients with renal disease. Kidney Int. 34, 712–716.

    PubMed  CAS  Google Scholar 

  1470. Correa, P., U. Segersten, P. Hellman, G. Akerstrom, and G. Westin (2002). Increased 25-hydroxyvitamin D3 1α-hydroxylase and reduced 25-hydroxyvitamin D3 24-hydroxylase expression in parathyroid tumors—new prospects for treatment of hyperparathyroidism with vitamin D. J. Clin. Endocrinol. Metab. 87, 5826–5829.

    Article  PubMed  CAS  Google Scholar 

  1471. Maas, R.M., K. Reus, B. Diesel, W.I. Steudel, W. Feiden, U. Fischer et al. (2001). Amplification and expression of splice variants of the gene encoding the P450 cytochrome 25-hydroxyvitamin D3 1,α-hydroxylase (CYP 27B1) in human malignant glioma. Clin. Cancer Res. 7, 868–875.

    PubMed  CAS  Google Scholar 

  1472. Tangpricha, V., J.N. Flanagan, L.W. Whitlatch, C.C. Tseng, T.C. Chen, P.R. Holt et al. (2001). 25-hydroxyvitamin D-1α-hydroxylase in normal and malignant colon tissue. Lancet 357, 1673–1674.

    Article  PubMed  CAS  Google Scholar 

  1473. Cross, H.S., P. Bareis, H. Hofer, M.G. Bischof, E. Bajna, S. Kriwanek et al. (2001). 25-Hydroxyvitamin D3-1α-hydroxylase and vitamin D receptor gene expression in human colonic mucosa is elevated during early cancerogenesis. Steroids 66, 287–292.

    Article  PubMed  CAS  Google Scholar 

  1474. Ogunkolade, B.W., B.J. Boucher, P.D. Fairclough, G.A. Hitman, S. Dorudi, P.J. Jenkins et al. (2002). Expression of 25-hydroxyvitamin D-1-α-hydroxylase mRNA in individuals with colorectal cancer. Lancet 359, 1831–1832.

    Article  PubMed  CAS  Google Scholar 

  1475. Hsu, J.Y., D. Feldman, J.E. McNeal, and D.M. Peehl (2001). Reduced 1α-hydroxylase activity in human prostate cancer cells correlates with decreased susceptibility to 25-hydroxyvitamin D3-induced growth inhibition. Cancer Res. 61, 2852–2856.

    PubMed  CAS  Google Scholar 

  1476. Whitlatch, L.W., M.V. Young, G.G. Schwartz, J.N. Flanagan, K.L. Burnstein et al. (2002). 25-Hydroxyvitamin D-1α-hydroxylase activity is diminished in human prostate cancer cells and is enhanced by gene transfer. J. Steroid Biochem. Mol. Biol. 81, 135–140.

    Article  PubMed  CAS  Google Scholar 

  1477. Flanagan, J.N., L.W. Whitlatch, T.C. Chen, X.H. Zhu, M.T. Holick, X.F. Kong et al. (2001). Enhancing 1α-hydroxylase activity with the 25-hydroxyvitamin D-1α-hydroxylase gene in cultured human keratinocytes and mouse skin. J. Invest. Dermatol. 116, 910–914.

    Article  PubMed  CAS  Google Scholar 

  1478. Li-Hawkins, J., E.G. Lund, A.D. Bronson, and D.W. Russell (2000). Expression cloning of an oxysterol 7α-hydroxylase selective for 24-hydroxycholesterol. J. Biol. Chem. 275, 16543–16549.

    Article  PubMed  CAS  Google Scholar 

  1479. Lund, E.G., J.M. Guileyardo, and D.W. Russell (1999). cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc. Natl. Acad. Sci. USA 96, 7238–7243.

    Article  PubMed  CAS  Google Scholar 

  1480. Russell, D.W. (2000). Oxysterol biosynthetic enzymes. Biochim. Biophys. Acta 1529, 126–135.

    PubMed  CAS  Google Scholar 

  1481. Bogdanovic, N., L. Bretillon, E.G. Lund, U. Diczfalusy, L. Lannfelt, B. Winblad et al. (2001). On the turnover of brain cholesterol in patients with Alzheimer’s disease. Abnormal induction of the cholesterol-catabolic enzyme CYP46 in glial cells. Neurosci. Lett. 314, 45–48.

    Article  PubMed  CAS  Google Scholar 

  1482. Papassotiropoulos, A., D. Lutjohann, M. Bagli, S. Locatelli, F. Jessen, R. Buschfort et al. (2002). 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia. J. Psychiatr. Res. 36, 27–32.

    Article  PubMed  CAS  Google Scholar 

  1483. Kolsch, H., D. Lutjohann, M. Ludwig, A. Schulte, U. Ptok, F. Jessen et al. (2002). Polymorphism in the cholesterol 24S-hydroxylase gene is associated with Alzheimer’s disease. Mol. Psychiatry 7, 899–902.

    Article  PubMed  CAS  Google Scholar 

  1484. Desai, P., S.T. DeKosky, and M.I. Kamboh (2002). Genetic variation in the cholesterol 24-hydroxylase (CYP46) gene and the risk of Alzheimer’s disease. Neurosci. Lett. 328, 9–12.

    Article  PubMed  CAS  Google Scholar 

  1485. Mast, N., R. Norcross, U. Andersson, M. Shou, K. Nakayama, I. Bjorkhem, and I.A. Pikuleva (2003). Broad substrate specificity of human cytochrome P450 46A1 which initiates cholesterol degradation in the brain. Biochemistry 42, 14284–14292.

    Article  PubMed  CAS  Google Scholar 

  1486. Aoyama, Y., Y. Funae, M. Noshiro, T. Horiuchi, and Y. Yoshida (1994). Occurrence of a P450 showing high homology to yeast lanosterol 14-demethylase (P45014DM) in rat liver. Biochem. Biophys. Res. Commun. 201, 1320–1326.

    Article  PubMed  CAS  Google Scholar 

  1487. Aoyama, Y., T. Horiuchi, and Y. Yoshida (1996). Lanosterol 14-demethylase activity expressed in rat brain microsomes. J. Biochem. (Tokyo) 120, 982–986.

    PubMed  CAS  Google Scholar 

  1488. Rozman, D., M. Strömstedt, and M.R. Waterman (1996). The three human cytochrome P450 lanosterol 14α-demethylase (CYP51) genes reside on chromosomes 3, 7, and 13: Structure of the two retrotransposed pseudogenes, association with a line-1 element, and evolution of the human CYP51 family. Arch. Biochem. Biophys. 333, 466–474.

    Article  PubMed  CAS  Google Scholar 

  1489. Cotman, M., D. Rozma, L. Banek, and D. Jezek (2001). Localisation of lanosterol 14α-demethylase in round and elongated spermatids of the mouse testis: An immunoelectron microscopic and stereological study. Pflugers Arch. 442, R167–R168.

    Article  PubMed  CAS  Google Scholar 

  1490. Rozman, D. (2000). Lanosterol 14α-demethylase (CYP51)—a cholesterol biosynthetic enzyme involved in production of meiosis activating sterols in oocytes and testis—a minireview. Pflugers Arch. 439, R56–R57.

    Article  PubMed  CAS  Google Scholar 

  1491. Kelley, R.I., L.E. Kratz, R.L. Glaser, M.L. Netzloff, L.M. Wolf, and E.W. Jabs (2002). Abnormal sterol metabolism in a patient with Antley-Bixler syndrome and ambiguous genitalia. Am. J. Med. Genet. 110, 95–102.

    Article  PubMed  Google Scholar 

  1492. Debeljak, N., M. Fink, and D. Rozman (2003). Many facets of mammalian lanosterol 14α-demethylase from the evolutionarily conserved cytochrome P450 family CYP51. Arch. Biochem. Biophys. 409, 159–171.

    Article  PubMed  CAS  Google Scholar 

  1493. Strömstedt, M., D. Rozman, and M.R. Waterman (1996). The ubiquitously expressed human CYP51 cDNA encodes lanosterol 14α-demethylase, a cytochrome P450 whose expression is regulated by oxysterols. Arch. Biochem. Biophys. 329, 73–81.

    Article  PubMed  Google Scholar 

  1494. Rozman, D., M. Fink, G.M. Fimia, P. Sassone-Corsi, and M.R. Waterman (1999). Cyclic adenosine 3′,5′-monophosphate(cAMP)/ cAMP-responsive element modulator (CREM)-dependent regulation of cholesterogenic lanosterol 14α-demethylase (CYP51) in spermatids. Mol. Endocrinol. 13, 1951–1962.

    Article  PubMed  CAS  Google Scholar 

  1495. Halder, S.K., M. Fink, M.R. Waterman, and D. Rozman (2002). A cAMP-responsive element binding site is essential for sterol regulation of the human lanosterol 14α-demethylase gene (CYP51). Mol. Endocrinol. 16, 1853–1863.

    Article  PubMed  CAS  Google Scholar 

  1496. Yamashita, C., M. Kudo, H. Ishida, M. Noshiro, Y. Aoyama, and Y. Yoshida (2000). Insulin is the essential factor maintaining the constitutive expression of hepatic sterol 14-demethylase P450 (CYP51). J. Biochem. (Tokyo) 128, 93–99.

    PubMed  CAS  Google Scholar 

  1497. Rodriguez, C., J. Martinez-Gonzalez, S. Sanchez-Gomez, and L. Badimon (2001). LDL downregulates CYP51 in porcine vascular endothelial cells and in the arterial wall through a sterol regulatory element binding protein-2-dependent mechanism. Circ. Res. 88, 268–274.

    PubMed  CAS  Google Scholar 

  1498. Lamb, D.C., N.N. Kaderbhai, K. Venkateswarlu, D.E. Kelly, S.L. Kelly, and M.A. Kaderbhai (2001). Human sterol 14α-demethylase activity is enhanced by the membrane-bound state of cytochrome b 5. Arch. Biochem. Biophys. 395, 78–84.

    Article  PubMed  CAS  Google Scholar 

  1499. Lamb, D.C., D.E. Kelly, and S.L. Kelly (1998). Molecular diversity of sterol 14α-demethylase substrates in plants, fungi and humans. FEBS Lett. 425, 263–265.

    Article  PubMed  CAS  Google Scholar 

  1500. Podust, L.M., T.L. Poulos, and M.R. Waterman (2001). Crystal structure of cytochrome P450 14α-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc. Natl. Acad. Sci. USA 98, 3068–3073.

    Article  PubMed  CAS  Google Scholar 

  1501. Podust, L.M., J. Stojan, T.L. Poulos, and M.R. Waterman (2001). Substrate recognition sites in 14 α-sterol demethylase from comparative analysis of amino acid sequences and X-ray structure of Mycobacterium tuberculosis CYP51. J. Inorg. Biochem. 87, 227–235.

    Article  PubMed  CAS  Google Scholar 

  1502. Marichal, P., L. Koymans, S. Willemsens, D. Bellens, P. Verhasselt, W. Luyten et al. (1999). Contribution of mutations in the cytochrome P450 14α-demethylase (Erg11p, CYP51p) to azole resistance in Candida albicans. Microbiology 145, 2701–2713.

    PubMed  CAS  Google Scholar 

  1503. Lepesheva, G.I., L.M. Podust, A. Bellamine, and M.R. Waterman (2001). Folding requirements are different between sterol 14α-demethylase (CYP51) from Mycobacterium tuberculosis and human or fungal orthologs. J. Biol. Chem. 276, 28413–28420.

    Article  PubMed  CAS  Google Scholar 

  1504. Lamb, D.C., D.E. Kelly, M.R. Waterman, M. Stromstedt, D. Rozman, and S.L. Kelly (1999). Characteristics of the heterologously expressed human lanosterol 14α-demethylase (other names: P45014DM, CYP51, P45051) and inhibition of the purified human and Candida albicans CYP51 with azole antifungal agents. Yeast 15, 755–763.

    Article  PubMed  CAS  Google Scholar 

  1505. Rozman, D. and M.R. Waterman (1998). Lanosterol 14α-demethylase (CYP51) and spermatogenesis. Drug Metab. Dispos. 26, 1199–1201.

    PubMed  CAS  Google Scholar 

  1506. Majdic, G., M. Parvinen, A. Bellamine, H.J. Harwood, Jr., W.W. Ku, M.R. Waterman, and D. Rozman (2000). Lanosterol 14α-demethylase (CYP51), NADPH-cytochrome P450 reductase and squalene synthase in spermatogenesis: Late spermatids of the rat express proteins needed to synthesize follicular fluid meiosis activating sterol. J. Endocrinol. 166, 463–474.

    Article  PubMed  CAS  Google Scholar 

  1507. Yamashita, C., Y. Aoyama, M. Noshiro, and Y. Yoshida (2001). Gonadotropin-dependent expression of sterol 14-demethylase P450 (CYP51) in rat ovaries and its contribution to the production of a meiosis-activating steroid. J. Biochem. (Tokyo) 130, 849–856.

    PubMed  CAS  Google Scholar 

  1508. Rozman, D., M. Cotman, and R. Frangez (2002). Lanosterol 14α-demethylase and MAS sterols in mammalian gametogenesis. Mol. Cell Endocrinol. 187, 179–187.

    Article  PubMed  CAS  Google Scholar 

  1509. Kodaira, H., C.A. Lisek, A. Arimura, I. Jardine, and S. Spector (1989). Identification of the convulsant opiate thebaine in mammalian brain. Proc. Natl. Acad. Sci. USA 86, 716–719.

    Article  PubMed  CAS  Google Scholar 

  1510. Kodaira, H. and S. Spector (1988). Transformation of thebaine to oripavine, codeine, and morphine by rat liver, kidney, and brain microsomes. Proc. Natl. Acad. Sci. USA 85, 1267–1271.

    Article  PubMed  CAS  Google Scholar 

  1511. Dayer, P., J. Desmeules, T. Leemann, and R. Striberni (1988). Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hydroxylation. Biochem. Biophys. Res. Commun. 152, 411–416.

    Article  PubMed  CAS  Google Scholar 

  1512. Mikus, G., F. Bochner, M. Eichelbaum, P. Horak, A.A. Somogyi, and S. Spector (1994). Endogenous codeine and morphine in poor and extensive metabolisers of the CYP2D6 (debrisoquine/sparteine) polymorphism. J. Pharmacol. Exp. Ther. 268, 546–551.

    PubMed  CAS  Google Scholar 

  1513. Trewick, S.C., T.F. Henshaw, R.P. Hausinger, T. Lindahl, and B. Sedgwick (2002). Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature 12, 174–178.

    Article  CAS  Google Scholar 

  1514. Welford, R.W., I. Schlemminger, L.A. McNeill, K.S. Hewitson, and C.J. Schofield (2003). The selectivity and inhibition of AlkB. J. Biol. Chem. 278, 10157–10161.

    Article  PubMed  CAS  Google Scholar 

  1515. Pai, H.V., R.P. Kommaddi, S.J. Chinta, T. Mori, M.R. Boyd, and V. Ravindranath (2004, in press). A frame shift mutation and alternate splicing in human brain generates a functional form of the pseudogene, cytochrome P4502D7 that demethylates codeine to morphine. J. Biol. Chem. 39774.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Guengerich, F.P. (2005). Human Cytochrome P450 Enzymes. In: Ortiz de Montellano, P.R. (eds) Cytochrome P450. Springer, Boston, MA. https://doi.org/10.1007/0-387-27447-2_10

Download citation

  • DOI: https://doi.org/10.1007/0-387-27447-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48324-0

  • Online ISBN: 978-0-387-27447-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics