Skip to main content

Ecology of Thermophilic Anoxygenic Phototrophs

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

It is apparent that very few species of anoxygenic phototrophs occur or grow at high temperatures, particularly when compared to species numbers for thermophilic Archaea and non-photosynthetic Bacteria. Chloroflexus spp. are the most thermotolerant ( up to ~70 °C), but none are in the hyperthermophilic category.

Recognizing that there may be some endemic populations of anoxygenic phototrophic bacteria that have not been dispersed among geographically disparate geothermal sites, the major factors affecting the distribution of these bacteria are temperature, pH, and concentration of sulfide. Oxygen may have an effect on the vertical distribution and the diel vertical migration of some species within mats. Facultative aerobic metabolism appears to be a property of many of the anoxygenic phototrophs (but not Chlorobium or Heliobacillus) in these dynamic habitats. Light quantity and quality are affected by the diversity of pigmentation within the vertically stratified communities and adaptation to low photon fluence rates is a necessity for many species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bateson MM and Ward DM (1988) Photoexcretion and fate of glycolate in a hot springmicrobial mat. Appl Environ Microbiol 54: 1738–1743

    CAS  PubMed  Google Scholar 

  • Beer-Romero P and Gest H (1987) Heliobacillus mobilis, a peritrichously flagellated anoxyphototroph containing bacteriochlorophyll g. FEMS Microbiol Lett 41: 109–114

    Article  CAS  Google Scholar 

  • Blankenship RE (1985) Electron transport in green photosynthetic bacteria. Photosynth Res 6: 317–333

    Article  CAS  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33: 91–111

    Article  CAS  PubMed  Google Scholar 

  • Brock TD (1978) Thermophilic microorganisms and life at high temperatures. Springer-Verlag, NY, Heidelberg

    Google Scholar 

  • Castenholz RW (1969) Thermophilic blue-green algae and the thermal environment. Bacteriol Rev 33: 476–504

    CAS  PubMed  Google Scholar 

  • Castenholz RW (1973a) The possible photosynthetic use of sulfide by the filamentous phototrophic bacteria of hot springs. Limnol Oceanogr 18: 863–876

    CAS  Google Scholar 

  • Castenholz RW (1973b) Ecology of blue-green algae in hot springs. In: Carr NG and Whitton BA (eds) The Biology of Blue-Green Algae, pp379–414. Blackwell Publications, Oxford

    Google Scholar 

  • Castenholz RW (1976) The effect of sulfide on the blue-green algae of hot springs I. New Zealand and Iceland. J Phycol 12: 54–68

    CAS  Google Scholar 

  • Castenholz RW (1977) The effect of sulfide on the blue-green algae of hot springs II. Yellowstone Park. Microbial Ecol 3: 79–105

    Article  CAS  Google Scholar 

  • Castenholz RW (1984a) Habitats of Chloroflexus and related organisms. In: Klug MJ and Reddy CA (eds) Current Perspectives in Microbial Ecology, pp196–200. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Castenholz RW (1984b) Composition of hot spring microbial mats: A summary. In: Cohen Y, Castenholz RW, Halvorson HO (eds), Microbial Mats: Stromatolites, pp101–119. Alan R. Liss, New York

    Google Scholar 

  • Castenholz RW (1988) The green sulfur and nonsulfur bacteria of hot springs. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E and Trüper HG (eds) Green Photosynthetic Bacteria, pp243–255. Plenum Press, New York

    Google Scholar 

  • Castenholz RW and Schneider AJ (1993) Cyanobacterial dominance at high and low temperatures: Optimal conditions or precarious existence? In: Guerrero R and Pedros-Alio C (eds), Trends in Microbial Ecology, pp19–24. Spanish Society for Microbiology, Barcelona

    Google Scholar 

  • Castenholz RW and Utkilen HC (1984) Physiology of sulfide tolerance in a thermophilic Oscillatoria. Arch Microbiol 138: 299–305

    CAS  Google Scholar 

  • Castenholz RW, Bauld J and Jørgensen BB (1990) Anoxygenic microbial mats of hot springs: thermophilic Chlorobium sp. FEMS Microbiol Ecol 74: 325–336

    Article  CAS  Google Scholar 

  • Castenholz RW, Jørgensen BB, D’Amelio E and Bauld J (1991) Photosynthetic and behavioral versatility of the cyanobacterium Oscillatoria boryana in a sulfide-rich microbial mat. FEMS Microbiol Ecol 86: 43–58

    Article  CAS  Google Scholar 

  • Cohen Y, Jørgensen BB, Revsbech NP and Poplowski R (1986) Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl Environ Microbiol 51: 398–407

    CAS  PubMed  Google Scholar 

  • de Wit R and van Gemerden H (1987) Chemolithotrophic growth of the phototrophic sulfur bacterium Thiocapsa roseopersicina. FEMS Microbiol Ecol 45: 117–126

    Google Scholar 

  • de Wit R and van Gemerden H (1990) Growth of the phototrophic purple sulfur bacterium Thiocapsa roseopersicina under oxic/anoxic regimens in the light. FEMS Microbiol Ecol 73: 69–76

    Google Scholar 

  • Garcia D, Parot P, Vermeglio A and Madigan MT (1986) The light-harvesting complexes of a thermophilic purple sulfur photosynthetic bacterium Chromatium tepidum. Biochim. Biophys. Acta 850: 390–395

    CAS  Google Scholar 

  • Garcia-Pichel F and Castenholz RW (1990) Comparative anoxygenic photosynthetic capacity in 7 strains of a thermophilic cyanobacterium. Arch Microbiol 153: 344–351

    Article  CAS  Google Scholar 

  • Giovannoni SJ, Revsbech NP, Ward DM and Castenholz RW (1987) Obligately phototrophic Chloroflexus: Primary production in anaerobic hot spring microbial mats. Arch Microbiol 147: 80–87

    CAS  Google Scholar 

  • Gorlenko VM, Kompantseva EI and Puchkova NN (1985) Influence of temperature on the prevalence of phototrophic bacteria in hot springs. Mikrobiologiya 54: 848–853

    Google Scholar 

  • Gorlenko VM, Bonch-Osmolovskaya EA, Kompantseva EI and Starynin DA (1987) Differentiation of microbial communities in connection with a change in the physicochemical conditions in thermophile spring. Mikrobiologiya 56: 314–322

    CAS  Google Scholar 

  • Hanada S, Hiraishi A, Shimada K and Matsuura K (1993) New isolates of Chloroflexus-like bacteria from Japanese hot springs. Abstract, 1993 International Botanical Congress, Yokohama, Japan

    Google Scholar 

  • Heda GD and Madigan MT (1986) Utilization of amino acids and lack of diazotrophy in the thermophilic anoxygenic phototroph Chloroflexus aurantiacus. J Gen Microbiol 132: 2469–2473

    CAS  Google Scholar 

  • Howsley R and Pearson HW (1979) pH-dependent sulfide toxicity to oxygenic photosynthesis in cyanobacteria. FEMS Microbiol Lett 6: 288–292

    Article  Google Scholar 

  • Imhoff JF and Trüper HG (1981) Ectothiorhodospira abdelmalekii sp. nov., a new halophilic alkaliphilic phototrophic bacterium. Zentralbl Bakteriol Mikrobiol Hyg I Abt Orig. C2: 228–234

    Google Scholar 

  • Imhoff JF and Trüper HG (1989) Purple nonsulfur bacteria. In: Staley JT, Bryant MP, Pfennig N and Holt JT (eds) Bergey’s Manual of Systematic Bacteriology, Vol. 3: 1658–1682. Williams and Wilkins, Baltimore

    Google Scholar 

  • Jørgensen BB (1982) Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environment. Phil Trans Royal Soc London B 298: 543–561

    Google Scholar 

  • Jørgensen BB and Nelson DC (1988) Bacterial zonation, photosynthesis, and spectral light distribution in hot spring microbial mats of Iceland. Microbial Ecol 16: 133–147

    Article  Google Scholar 

  • Jørgensen BB, Castenholz RW and Pierson BK (1992) The microenvironment within modern microbial mats. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, a Multidisciplinary Study, pp 271–278. Cambridge University press, Cambridge, New York

    Google Scholar 

  • Jue C-S (1990) The effect of aerobic environments on Chromatium cf. tepidum, a thermophilic purple sulfur bacterium. M.A. thesis, University of Oregon, Eugene

    Google Scholar 

  • Kämpf C and Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rate of Thiocystis violacea and Chromatium vinosum. Arch Microbiol 127: 125–135

    Google Scholar 

  • Kimble LK and Madigan MT (1994) Isolation and characterization of thermophilic heliobacteria. Abstract I-7, General Meeting of the American Society for Microbiology

    Google Scholar 

  • Kimble LK, Mandelco L, Woese CR and Madigan MT (1995) Heliobacterium medesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils. Arch Microbiol 163: 259–267

    CAS  Google Scholar 

  • Madigan MT (1984) A novel photosynthetic purple bacterium isolated from a Yellowstone hot spring. Science 225: 313–315

    Google Scholar 

  • Madigan MT (1986) Chromatium tepidum sp. nov., a thermophilic photosynthetic bacterium of the family Chromatiaceae. Int J Syst Bacteriol 36: 222–227

    CAS  Google Scholar 

  • Madigan MT (1988) Microbiology, physiology, and ecology of phototrophic bacteria. In: Zehnder AJB (ed) Biology of Anaerobic Microorganisms, pp 39–111. Wiley, Chichester

    Google Scholar 

  • Madigan MT (1992) The family Heliobacteriaceae. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleiffer K-H (eds) The Prokaryotes, second edition, Vol. 4: 1981–1992. Springer-Verlag, NY, Heidelberg

    Google Scholar 

  • Madigan MT and Brock TD (1975) Photosynthetic sulfide oxidation by Chloroflexus aurantiacus, a filamentous, photosynthetic, gliding bacterium. J Bacteriol 122: 782–784

    CAS  PubMed  Google Scholar 

  • Madigan MT, Takigiku R, Lee RG, Gest H and Hayes JM (1989) Carbon isotope fractionation by thermophilic phototrophic sulfur bacteria: Evidence for autotrophic gowth in natural populations. Appl Environ Microbiol 55: 639–644

    CAS  PubMed  Google Scholar 

  • Meeks JC and Castenholz RW (1971) Growth and photosynthesis in an extreme thermophile, Synechococcus lividus (Cyanophyta). Arch Microbiol 78: 25–41

    CAS  Google Scholar 

  • Oelze J (1992) Light and oxygen regulation of the synthesis of bacteriochlorophylls a and c in Chloroflexus aurantiacus. J Bacteriol 174: 5021–5026

    CAS  PubMed  Google Scholar 

  • Olsen GJ, Woese CR and Overbeek R (1994) The winds of (evolutionary) change: Breathing new life into microbiology. J Bacteriol 176: 1–6

    CAS  PubMed  Google Scholar 

  • Overmann J, Lehmann S and Pfennig N (1991) Gas vesicle formation and buoyancy regulation in Pelodictyon phaeoclathratiforme (Green sulfur bacteria). Arch Microbiol 157: 29–37

    Article  CAS  Google Scholar 

  • Overmann J, Cypionka H and Pfennig N (1992) An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol Oceanogr 37: 150–155

    CAS  Google Scholar 

  • Paschinger H, Paschinger J and Gaffron H (1974) Photochemical disproportionation of sulfur into sulfide and sulfate by Chlorobium limicola forma thiosulfatophilum. Arch Microbiol 96: 341–351

    Article  CAS  Google Scholar 

  • Pierson BK and Castenholz RW (1974a) A phototrophic gliding filamentous bacterium of hot springs, Chloroflexus aurantiacus, gen. and sp. nov. Arch Microbiol 100: 5–24

    CAS  PubMed  Google Scholar 

  • Pierson BK and Castenholz RW (1974b) Studies of pigments and growth in Chloroflexus aurantiacus, a phototrophic filamentous bacterium. Arch Microbiol 100: 283–305

    CAS  Google Scholar 

  • Pierson BK and Castenholz RW (1992) The family Chloroflexaceae. In: Balows A, Trüper HG, Dworkin M, Harder W and Schleifer K-H (eds) The Prokaryotes, 2nd edition, Vol. 4, pp 3754–3774. Springer-Verlag, NY, Heidelberg

    Google Scholar 

  • Pierson BK, Giovannoni SJ and Castenholz RW (1984) Physiological ecology of a gliding bacterium containing bacteriochlorophyll a. Appl Environ Microbiol 47: 576–584

    CAS  PubMed  Google Scholar 

  • Pierson BK, Giovannoni SJ, Stahl DA and Castenholz RW (1985) Heliothrix oregonensis, gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a. Arch Microbiol 142: 164–167

    Article  CAS  PubMed  Google Scholar 

  • Pierson BK, Sands VM and Frederick JL (1990) Spectral irradiance and distribution of pigments in a highly layered marine microbial mat. Appl Environ Microbiol 56: 2327–2340

    CAS  PubMed  Google Scholar 

  • Raymond JC and Sistrom WR (1969) Ectothiorhodospira halophila: A new species of the genus Ectothiorhodospira. Arch Mikrobiol 69: 121–126

    Article  CAS  PubMed  Google Scholar 

  • Resnick SM and Madigan MT (1989) Isolation and characterization of a mildly thermophilic nonsulfur purple bacterium containing bacteriochlorophyll b. FEMS Microbiol Lett 65: 165–170

    Article  CAS  Google Scholar 

  • Revsbech NP and Ward DM (1984a) Microelectrode studies of interstitial water chemistry and photosynthetic activity in a hot spring microbial mat. Appl Environ Microbiol 48: 270–275

    CAS  PubMed  Google Scholar 

  • Revsbech NP and Ward DM (1984b) Microprofiles of dissolved substances and photosynthesis in microbial mats measured with microelectrodes. In: Cohen Y, Castenholz RW, and Halvorson HO (eds) Microbial Mats: Stromatolites, pp 171–188. Alan R. Liss, New York

    Google Scholar 

  • Richardson LL and Castenholz RW (1987) Diel vertical movements of the cyanobacterium Oscillatoria terebriformis in a sulfide-rich hot spring microbial mat. Appl Environ Microbiol 53: 2142–2150

    PubMed  Google Scholar 

  • Ruff-Roberts AL, Kuenen JG and Ward DM (1994) Distribution of cultivated and uncultivated cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats. Appl Environ Microbiol 60: 697–704

    CAS  PubMed  Google Scholar 

  • Shiea J, Brassell SC and Ward DM (1991) Comparative analysis of extractable lipids in hot spring microbial mats and their component photosynthetic bacteria. Org Geochem 17: 309–319

    Article  CAS  Google Scholar 

  • Sorokin YI (1970) Interrelations between sulphur and carbon turnover in meromictic lakes. Arch Hydrobiol 66: 391–446

    Google Scholar 

  • Sprague SG, Staehelin LA and Fuller RC (1981) Semiaerobic induction of bacteriochlorophyll synthesis in the green bacterium Chloroflexus aurantiacus. J Bacteriol 147: 1032–1039

    CAS  PubMed  Google Scholar 

  • Stadtwald-Demchick R, Turner FR and Gest H (1990a) Rhodopseudomonas cryptolactis, sp. nov., a new thermotolerant species of budding phototrophic purple bacteria. FEMS Microbiol Lett 71: 117–122

    Article  CAS  Google Scholar 

  • Stadtwald-Demchick R, Turner FR and Gest H (1990b) Physiological properties of the thermotolerant photosynthetic bacterium, Rhodospirillum centenum. FEMS Microbiol Lett 67: 139–144

    Article  CAS  Google Scholar 

  • Stauffer RE, Jenny EA and Ball JW (1980) Chemical studies of selected trace elements in hot-spring drainages of Yellowstone National Park. Geohydrology of Geothermal Systems, Geological Survey Professional Paper 1044-F, U.S. Department of the Interior, Washington, DC

    Google Scholar 

  • Teiser ML (1993) Extracellular low molecular weight organic compounds produced by Synechococcus sp. and their roles in the food web of alkaline hot spring microbial mat communities. Ph.D. Thesis, Dept. of Biology, University of Oregon, Eugene

    Google Scholar 

  • Wahlund TM and Madigan MT (1993) Nitrogen fixation by the thermophilic green sulfur bacterium Chlorobium tepidum. J Bacteriol 175: 474–478

    CAS  PubMed  Google Scholar 

  • Wahlund TM, Woese CR, Castenholz RW and Madigan MT (1991) A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov. Arch Microbiol 156: 81–90

    Article  CAS  Google Scholar 

  • Ward DM, Weller R, Shiea J, Castenholz RW and Cohen Y (1989) Hot spring microbial mats: Anoxygenic and oxygenic mats of possible evolutionary significance. In: Cohen Y and Rosenberg E (eds) Microbial Mats, Physiological Ecology of Benthic Microbial Communities, pp 3–15. ASM, Washington, DC

    Google Scholar 

  • Ward DM, Bauld J, Castenholz RW and Pierson BK (1992) Modern phototrophic microbial mats: anoxygenic, intermittently oxygenic/anoxygenic, thermal, eukaryotic, and terrestrial. In: Schopf JW and Klein C (eds) The Proterozoic Biosphere, a Multidisciplinary Study, pp 309–324. Cambridge University Press, Cambridge, New York

    Google Scholar 

  • Waring GA (1965) Thermal springs of the United States and other countries of the world — a summary. Revised by Blankenship RR and Bentall R, Geological Survey Professional Paper 492, U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Weller R, Bateson MM, Heimbuch BK, Kopczynski ED and Ward DM. (1992) Uncultivated cyanobacteria, Chloroflexus-like inhabitants, and spirochete-like inhabitants of a hot spring microbial mat. Appl Environ Microbiol 58: 3964–3969

    CAS  PubMed  Google Scholar 

  • White DE, Hem JD and Waring GA (1963) Chapter F. Chemical composition of sub-surface waters. In: Fleischer M (ed) Data of Geochemistry, Sixth edition. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • Yun Z (1986) Thermophilic microorganisms in the hot springs of Tengchong Geothermal Area, West Yunnan, China. Geothermics 15: 347–358

    Article  Google Scholar 

  • Yurkov VV, Gorlenko VM, Mityushina LL and Starynin DA (1992) Effect of limiting factors on the structure of phototrophic associations in thermal springs. Mikrobiologiya 60: 129–138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Castenholz, R.W., Pierson, B.K. (1995). Ecology of Thermophilic Anoxygenic Phototrophs. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics