Skip to main content
Log in

In vivo Imaging of Brain Dopaminergic Neurotransmission System in Small Animals with High-resolution Single Photon Emission Computed Tomography

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

High-resolution single photon emission computed tomography (SPECT) provides a unique capability to image the biodistribution of radiolabeled molecules in small laboratory animals. Thus, we applied the high-resolution SPECT to in vivo imaging of the brain dopaminergic neurotransmission system in common marmosets using two radiolabeled ligands, [123I]2β-carbomethoxy-3β-(4-iodophenyl)tropane (β-CIT) as a dopamine transporter (DAT) ligand and [123I]iodobenzamide (IBZM) as a dopamine D2 receptor (D2R) ligand. Specific images of the striatum, a region with a high density of dopaminergic synapses, were obtained at 240 min and 60 min after injection of [123I]β-CIT and [123I]IBZM, respectively. Furthermore, a significantly low accumulation of [123I]β-CIT in the striatum was observed in MPTP-treated animals compared with results for a control group, and a similar accumulation in the control group was observed with the pretreatment of deprenyl in the MPTP-treated animals. However, the striatal accumulation of [123I]IBZM showed no changes among the control, MPTP-treated, and deprenyl-MPTP-treated groups. These SPECT imaging results agreed well with those of DA concentration and motor behavior. Since MPTP destroys nigrostriatal dopamine nerves and produces irreversible neurodegeneration associated with Parkinsonian syndrome, SPECT imaging data in this study demonstrated that deprenyl shows its neuroprotective effect on Parkinsonism by protecting against the destruction of presynaptic dopamine neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Tonami and A. Kubo, “A New Textbook of Clinical Nuclear Medicine,” 3rd ed., 2001, Kanehara Shuppan, Tokyo.

    Google Scholar 

  2. K. Yanai, J. H. Ryu, and T. Watanabe, Br. J. Pharmacol., 1995, 116, 1649.

    Article  CAS  Google Scholar 

  3. S. P. Hume, D. J. Brown, S. Ashworth, E. Hirani, S. K. Luthra, and A. A. Lammertsma, J. Neurosci. Meth., 1997, 76, 45.

    Article  CAS  Google Scholar 

  4. M. E. Phelps, Proc. Natl. Acad. Sci. USA, 2000, 97, 9226.

    Article  CAS  Google Scholar 

  5. M. E. Phelps, J. Nucl. Med., 2000, 41, 661.

    CAS  PubMed  Google Scholar 

  6. R. Myers, Nucl. Med. Biol., 2001, 28, 585.

    Article  CAS  Google Scholar 

  7. A. F. Chatziioannou, Eur. J. Nucl. Med., 2002, 29, 98.

    Article  Google Scholar 

  8. A. F. Chatziioannou, S. R. Cherry, Y. Shao, R. W. Silverman, K. Meadors, T. H. Farquhar, M. Pedarsani, and M. E. Phelps, J. Nucl. Med., 1999, 40, 1164.

    CAS  PubMed  Google Scholar 

  9. M. P. Tornai, R. J. Jaszczak, T. G. Turkington, and R. E. Coleman, J. Nucl. Med., 1999, 40, 1176.

    CAS  PubMed  Google Scholar 

  10. S. Nikolaus, R. Larisch, M. Beu, H. Vosberg, and H.-W. Muller-Gartner, J. Nucl. Med., 2001, 42, 1691.

    CAS  PubMed  Google Scholar 

  11. K. Ishizu, T. Mukai, Y. Yonekura, M. Pagani, T. Fujita, Y. Magata, S. Nishizawa, N. Tamaki, H. Shibasaki, and J. Konishi, J. Nucl. Med., 1995, 36, 2282.

    CAS  PubMed  Google Scholar 

  12. S. P. Markey, J. N. Jahannessen, C. C. Chiueh, R. S. Burns, and M. A. Herkenham, Nature, 1984, 311, 464.

    Article  CAS  Google Scholar 

  13. M. Monoto, P. Jenner, and C. D. Marsden, Eur. J. Pharmacol., 1986, 121, 123.

    Article  Google Scholar 

  14. W. G. Tatton and C. E. Greenwoood, J. Neurosci. Res., 1991, 30, 666.

    Article  CAS  Google Scholar 

  15. M. Edadi, S. Shama, S. Shavali, and H. El Refaey, J. Neurosci. Res., 2002, 67, 285.

    Article  Google Scholar 

  16. Y. Zea-Ponce, R. M. Baldwin, M. Laruelle, S. Wang, J. L. Neumeyer, and R. B. Innis, J. Nucl. Med., 1995, 36, 525.

    CAS  PubMed  Google Scholar 

  17. M. P. Kung and H. F. Kung, J. Labelled Compd. Radipharm., 1989, 27, 691.

    Article  CAS  Google Scholar 

  18. M. Nomoto and T. Fukuda, Neuropharmacol., 1993, 32, 473.

    Article  CAS  Google Scholar 

  19. M. Irifune, M. Nomoto, and T. Fukuda, Eur. J. Pharmacol., 1993, 238, 235.

    Article  CAS  Google Scholar 

  20. S. Asenbaum, T. Brücke, W. Pirker, I. Podreka, P. Angelberger, S. Wenger, C. Wöber, C. Müller, and L. Deecke, J. Nucl. Med., 1997, 38, 1.

    CAS  PubMed  Google Scholar 

  21. A. Anand, P. Verhoeff, N. Seneca, S. S. Zoghbi, J. P. Seibyl, D. S. Charney, and R. B. Innis, Am. J. Psychiatry, 2000, 157, 1108.

    Article  CAS  Google Scholar 

  22. T. Brücke, J. Kornhuber, P. Angelberger, S. Asenbaum, H. Frassine, and I. Podreka. J. Neural. Transm. Gen. Sect., 1993, 94, 137.

    Article  Google Scholar 

  23. J. M. Palacios, M. Camp, R. Cortés, and A. Probst, J. Neural. Transm. Suppl., 1988, 27, 227.

    CAS  PubMed  Google Scholar 

  24. J. De Keyser, J. P. De Backer, G. Ebinger, and G. Vauquelin, J. Neurochem., 1989, 53, 1400.

    Article  Google Scholar 

  25. I. Sziraki, V. Kardos, M. Patthy, J. Gaal, P. Aranyi, E. Kollar, Z. Tomoskozi, and I. Kiraly, “Progress in Brain Research”, ed. P. M. Yu, K. F. Tipton, and A. B. Boulton, 1995, Vol. 106, Elsevier Sci., New York, 155.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Saji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saji, H., Iida, Y., Kawashima, H. et al. In vivo Imaging of Brain Dopaminergic Neurotransmission System in Small Animals with High-resolution Single Photon Emission Computed Tomography. ANAL. SCI. 19, 67–71 (2003). https://doi.org/10.2116/analsci.19.67

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19.67

Navigation