Skip to main content

PET and SPECT Imaging of the Central Dopamine System in Humans

  • Chapter
  • First Online:
PET and SPECT of Neurobiological Systems

Abstract

The neurotransmitter dopamine plays a role in many different functions of the human brain, ranging from psychomotor planning to cognition. This short review addresses which parts of the dopamine system can be imaged quantitatively in the living human brain using positron-emission tomography (PET) or single-photon emission computed tomography (SPECT).

Nowadays, imaging of the nigrostriatal dopaminergic pathway in humans can be performed quantitatively using radiotracers like the aromatic amino acid decarboxylase (AADC) substrate [18F]FDOPA, vesicular monoamine transporter 2 (VMAT-2) radioligands derived from tetrabenazine or PET/SPECT radioligands that bind to the dopamine transporter (DAT). Using PET, also several other dopaminergic projection pathways (e.g. mesocortical projections) can be assessed in humans. Several antagonist PET radioligands for the dopamine D1 receptor have been developed successfully. In addition, well-validated antagonist PET and SPECT radioligands are available for imaging of dopamine D2/3 receptors in the living human brain. Recently, also agonist PET radioligands for the dopamine D2/3 receptors have become available, which afford the opportunity to evaluate the existence of the high-affinity state of these receptors in vivo. These agonist radiopharmaceuticals may also prove more sensitive to changes in dopamine concentrations (e.g. induced by the dopamine releaser amphetamine). Finally, selective antagonist PET radioligands for the dopamine D4 receptor have recently been synthesized and evaluated successfully in small laboratory animals, although these radioligands have not yet been reported as applied in human subjects.

In conclusion, after almost three decades of research, several relevant parts of the central dopamine system can be assessed quantitatively in the living human brain using PET or SPECT. Future studies may include application of agonist radioligands and more dopamine receptor subtype selective radioligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen PH, Grønvald FC, Hohlweg R et al (1992) NNC-112, NNC-687 and NNC-756, new selective and highly potent dopamine D1 receptor antagonists. Eur J Pharmacol 219:45–52

    Google Scholar 

  • Antonini A, Vontobel P, Psylla M et al (1995) Complementary positron emission tomographic studies of the striatal dopaminergic system in Parkinson’s disease. Arch Neurol 52:1183–1190

    CAS  PubMed  Google Scholar 

  • Beaulieu JM, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217

    CAS  PubMed  Google Scholar 

  • Bohnen NI, Albin RL, Koeppe RA (2006) Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow Metab 26:1198–1212

    CAS  PubMed  Google Scholar 

  • Booij J, Andringa G, Rijks LJ et al (1997a) [123I]FP-CIT binds to the dopamine transporter as assessed by biodistribution studies in rats and SPECT studies in MPTP-lesioned monkeys. Synapse 27:183–190

    CAS  PubMed  Google Scholar 

  • Booij J, Tissingh G, Boer GJ (1997b) [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry 62:133–140

    CAS  PubMed  Google Scholar 

  • Booij J, Tissingh G, Winogrodzka A, van Royen EA (1999) Imaging of the dopaminergic neurotransmission system using single-photon emission tomography and positron emission tomography in patients with parkinsonism. Eur J Nucl Med 26:171–182

    CAS  PubMed  Google Scholar 

  • Booij J, Speelman JD, Horstink MW, Wolters EC (2001) The clinical benefit of imaging striatal dopamine transporters with [123I]FP-CIT SPET in differentiating patients with presynaptic parkinsonism from those with other forms of parkinsonism. Eur J Nucl Med 28:266–272

    CAS  PubMed  Google Scholar 

  • Booij J, de Jong J, de Bruin K, Knol R, de Win MM, van Eck-Smit BL (2007) Quantification of striatal dopamine transporters with 123I-FP-CIT SPECT is influenced by the selective serotonin reuptake inhibitor paroxetine: a double-blind, placebo-controlled, crossover study in healthy control subjects. J Nucl Med 48:359–366

    CAS  PubMed  Google Scholar 

  • Boot E, Booij J, Hasler G et al (2008) AMPT-induced monoamine depletion in humans: evaluation of two alternative [123I]IBZM SPECT procedures. Eur J Nucl Med Mol Imaging 35:1350–1356

    PubMed Central  PubMed  Google Scholar 

  • Braskie MN, Wilcox CE, Landau SM et al (2008) Relationship of striatal dopamine synthesis capacity to age and cognition. J Neurosci 28:14320–14328

    CAS  PubMed Central  PubMed  Google Scholar 

  • Breier A, Su T-P, Saunders R, Carson R et al (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci U S A 94:2569–2574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks DJ, Ibanez V, Sawle GV et al (1990) Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 28:547–555

    CAS  PubMed  Google Scholar 

  • Brown WD, DeJesus OT, Pyzalski RW (1999) Localization of trapping of 6-[18F]fluoro-L-m-tyrosine, an aromatic L-amino acid decarboxylase tracer for PET. Synapse 34:111–123

    CAS  PubMed  Google Scholar 

  • Buckholtz JW, Treadway MT, Cowan RL et al (2010) Dopaminergic network differences in human impulsivity. Science 329:532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burke JF, Albin RL, Koeppe RA et al (2011a) Assessment of mild dementia with amyloid and dopamine terminal positron emission tomography. Brain 134:1647–1657

    PubMed  Google Scholar 

  • Burke SM, van de Giessen E, de Win M et al (2011b) Serotonin and dopamine transporters in relation to neuropsychological functioning, personality traits and mood in young adult healthy subjects. Psychol Med 41:419–429

    CAS  PubMed  Google Scholar 

  • Cárdenas L, Houle S, Kapur S, Busto UE (2004) Oral D-amphetamine causes prolonged displacement of [11C]raclopride as measured by PET. Synapse 51:27–31

    PubMed  Google Scholar 

  • Catafau AM, Tolosa E, DaTSCAN Clinically Uncertain Parkinsonian Syndromes Study Group (2004) Impact of dopamine transporter SPECT using 123I-Ioflupane on diagnosis and management of patients with clinically uncertain Parkinsonian syndromes. Mov Disord 19:1175–1182

    PubMed  Google Scholar 

  • Catafau AM, Searle GE, Bullich S (2010) Imaging cortical dopamine D1 receptors using [11C]NNC112 and ketanserin blockade of the 5-HT 2A receptors. J Cereb Blood Flow Metab 30:985–993

    CAS  PubMed  Google Scholar 

  • Chen R, Furman CA, Gnegy ME (2010) Dopamine transporter trafficking: rapid response on demand. Future Neurol 5:123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chio CL, Hess GF, Graham RS, Huff RM (1990) A second molecular form of D2 dopamine receptor in rat and bovine caudate nucleus. Nature 343:266–269

    CAS  PubMed  Google Scholar 

  • Chio CL, Lajiness ME, Huff RM (1994) Activation of heterologously expressed D3 dopamine receptors: comparison with D2 dopamine receptors. Mol Pharmacol 45:51–60

    Google Scholar 

  • Chou YH, Halldin C, Farde L (2006) Clozapine binds preferentially to cortical D1-like dopamine receptors in the primate brain: a PET study. Psychopharmacology (Berl) 185:29–35

    CAS  Google Scholar 

  • Cortés R, Gueye B, Pazos A, Probst A, Palacios JM (1989) Dopamine receptors in human brain: autoradiographic distribution of D1 sites. Neuroscience 28:263–273

    PubMed  Google Scholar 

  • Cumming P, Munk OL, Doudet D (2001) Loss of metabolites from monkey striatum during PET with FDOPA. Synapse 41:212–218

    CAS  PubMed  Google Scholar 

  • de Haan L, van Bruggen M, Lavalaye J, Booij J, Dingemans PM, Linszen D (2003) Subjective experience and D2 receptor occupancy in patients with recent-onset schizophrenia treated with low-dose olanzapine or haloperidol: a randomized, double-blind study. Am J Psychiatry 160:303–309

    PubMed  Google Scholar 

  • Dejesus OT, Endres CJ, Shelton SE, Nickles RJ, Holden JE (2001) Noninvasive assessment of aromatic L-amino acid decarboxylase activity in aging rhesus monkey brain in vivo. Synapse 39:58–63

    CAS  PubMed  Google Scholar 

  • Dreher JC, Meyer-Lindenberg A, Kohn P, Berman KF (2008) Age-related changes in midbrain dopaminergic regulation of the human reward system. Proc Natl Acad Sci U S A 105:15106–15111

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dresel SH, Kung MP, Plössl K, Meegalla SK, Kung HF (1998) Pharmacological effects of dopaminergic drugs on in vivo binding of [99mTc]TRODAT-1 to the central dopamine transporters in rats. Eur J Nucl Med 25:31–39

    CAS  PubMed  Google Scholar 

  • Earley CJ, Kuwabara H, Wong DF et al (2011) The dopamine transporter is decreased in the striatum of subjects with restless legs syndrome. Sleep 34:341–347

    PubMed  Google Scholar 

  • Egerton A, Demjaha A, McGuire P, Mehta MA, Howes OD (2010) The test-retest reliability of 18 F-DOPA PET in assessing striatal and extrastriatal presynaptic dopaminergic function. Neuroimage 50:524–531

    PubMed  Google Scholar 

  • Eisenegger C, Knoch D, Ebstein RP, Gianotti LR, Sándor PS, Fehr E (2010) Dopamine receptor D4 polymorphism predicts the effect of L-DOPA on gambling behavior. Biol Psychiatry 67:702–706

    CAS  PubMed  Google Scholar 

  • Ekelund J, Slifstein M, Narendran R et al (2007) In vivo DA D1 receptor selectivity of NNC 112 and SCH 23390. Mol Imaging Biol 9:117–125

    PubMed  Google Scholar 

  • Enomoto K, Matsumoto N, Nakai S et al (2011) Dopamine neurons learn to encode the long-term value of multiple future rewards. Proc Natl Acad Sci U S A 108:15462–15467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eriksen J, Rasmussen SG, Rasmussen TN et al (2009) Visualization of dopamine transporter trafficking in live neurons by use of fluorescent cocaine analogs. J Neurosci 29:6794–6808

    CAS  PubMed  Google Scholar 

  • Farde L, Hall H, Ehrin E, Sedvall G (1986) Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 231:258–261

    CAS  PubMed  Google Scholar 

  • Finnema SJ, Halldin C, Bang-Andersen B, Gulyás B, Bundgaard C, Wikström HV, Farde L (2009) Dopamine D2/3 receptor occupancy of apomorphine in the nonhuman primate brain-a comparative PET study with [11C]raclopride and [11C]MNPA. Synapse 63:378–389

    CAS  PubMed  Google Scholar 

  • Finnema SJ, Bang-Andersen B, Wikström HV, Halldin C (2010) Current state of agonist radioligands for imaging of brain dopamine D2/D3 receptors in vivo with positron emission tomography. Curr Top Med Chem 10:1477–1498

    CAS  PubMed  Google Scholar 

  • Fiorillo CD, Tobler PN, Schultz W (2003) Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299:1898–1902

    CAS  PubMed  Google Scholar 

  • Freedman SB, Patel S, Marwood R et al (1994) Expression and pharmacological characterization of the human D3 dopamine receptor. J Pharmacol Exp Ther 268:417–426

    CAS  PubMed  Google Scholar 

  • Frey KA, Koeppe RA, Kilbourn MR et al (1996) Presynaptic monoaminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol 40:873–884

    CAS  PubMed  Google Scholar 

  • Glenthoj BY, Mackeprang T, Svarer C et al (2006) Frontal dopamine D(2/3) receptor binding in drug-naive first-episode schizophrenic patients correlates with positive psychotic symptoms and gender. Biol Psychiatry 60:621–629

    CAS  PubMed  Google Scholar 

  • Goland R, Freeby M, Parsey R et al (2009) 11C-dihydrotetrabenazine PET of the pancreas in subjects with long-standing type 1 diabetes and in healthy controls. J Nucl Med 50:382–389

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guillot TS, Miller GW (2009) Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. Mol Neurobiol 39:149–170

    CAS  PubMed  Google Scholar 

  • Guo N, Guo W, Kralikova M et al (2010) Impact of D2 receptor internalization on binding affinity of neuroimaging radiotracers. Neuropsychopharmacology 35:806–817

    CAS  PubMed  Google Scholar 

  • Halldin C, Farde L, Högberg T et al (1995) Carbon-11-FLB 457: a radioligand for extrastriatal D2 dopamine receptors. J Nucl Med 36:1275–1281

    CAS  PubMed  Google Scholar 

  • Hirvonen J, van Erp TG, Huttunen J et al (2006) Brain dopamine d1 receptors in twins discordant for schizophrenia. Am J Psychiatry 163:1747–1753

    PubMed  Google Scholar 

  • Hirvonen J, Johansson J, Teräs M (2008) Measurement of striatal and extrastriatal dopamine transporter binding with high-resolution PET and [11C]PE2I: quantitative modeling and test-retest reproducibility. J Cereb Blood Flow Metab 28:1059–1069

    CAS  PubMed  Google Scholar 

  • Högberg T (1993) The development of dopamine D2-receptor selective antagonists. Drug Des Discov 9:333–350

    PubMed  Google Scholar 

  • Holden JE, Doudet D, Endres CJ et al (1997) Graphical analysis of 6-fluoro-L-dopa trapping: effect of inhibition of catechol-O-methyltransferase. J Nucl Med 38:1568–1574

    CAS  PubMed  Google Scholar 

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III–the final common pathway. Schizophr Bull 35:549–562

    PubMed  Google Scholar 

  • Hu XS, Okamura N, Arai H (2000) 18F-fluorodopa PET study of striatal dopamine uptake in the diagnosis of dementia with Lewy bodies. Neurology 55:1575–1577

    CAS  PubMed  Google Scholar 

  • Ito H, Takahashi H, Arakawa R, Takano H, Suhara T (2008) Normal database of dopaminergic neurotransmission system in human brain measured by positron emission tomography. Neuroimage 39:555–565

    PubMed  Google Scholar 

  • Ito H, Kodaka F, Takahashi H et al (2011) Relation between presynaptic and postsynaptic dopaminergic functions measured by positron emission tomography: implication of dopaminergic tone. J Neurosci 31:7886–7890

    CAS  PubMed  Google Scholar 

  • Jucaite A, Fernell E, Halldin C, Forssberg H, Farde L (2005) Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol Psychiatry 57:229–238

    CAS  PubMed  Google Scholar 

  • Jucaite A, Forssberg H, Karlsson P, Halldin C, Farde L (2010) Age-related reduction in dopamine D1 receptors in the human brain: from late childhood to adulthood, a positron emission tomography study. Neuroscience 167:104–110

    CAS  PubMed  Google Scholar 

  • Karlsson P, Farde L, Halldin C, Sedvall G (2002) PET study of D(1) dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am J Psychiatry 159:761–767

    PubMed  Google Scholar 

  • Kessler RM, Ansari MS, de Paulis T et al (1991) High affinity dopamine D2 receptor radioligands. 1. Regional rat brain distribution of iodinated benzamides. J Nucl Med 32:1593–1600

    CAS  PubMed  Google Scholar 

  • Khan ZU, Mrzljak L, Gutierrez A, de la Calle A, Goldman-Rakic PS (1998) Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc Natl Acad Sci U S A 95:7731–7736

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kilbourn MR (1997) In vivo radiotracers for vesicular neurotransmitter transporters. Nucl Med Biol 24:615–619

    CAS  PubMed  Google Scholar 

  • Koopman KE, la Fleur SE, Fliers E, Serlie MJ, Booij J (2012) Assessing the optimal time-point for the measurement of extrastriatal serotonin transporter binding with 123I-FP-CIT SPECT in healthy, male subjects. J Nucl Med 53:1087–1090

    CAS  PubMed  Google Scholar 

  • Kornhuber J, Brücke T, Angelberger P, Asenbaum S, Podreka I (1995) SPECT imaging of dopamine receptors with [123I]epidepride: characterization of uptake in the human brain. J Neural Transm Gen Sect 101:95–103

    CAS  PubMed  Google Scholar 

  • Kügler F, Sihver W, Ermert J et al (2011) Evaluation of 18 F-labeled benzodioxine piperazine-based dopamine D4 receptor ligands: lipophilicity as a determinate of nonspecific binding. J Med Chem 54:8343–8352

    PubMed  Google Scholar 

  • Kuikka JT, Baulieu JL, Hiltunen J et al (1998) Pharmacokinetics and dosimetry of iodine-123 labelled PE2I in humans, a radioligand for dopamine transporter imaging. Eur J Nucl Med 25:531–534

    CAS  PubMed  Google Scholar 

  • Kumakura Y, Cumming P (2009) PET studies of cerebral levodopa metabolism: a review of clinical findings and modeling approaches. Neuroscientist 15:635–650

    CAS  PubMed  Google Scholar 

  • Kumakura Y, Vernaleken I, Gründer G, Bartenstein P, Gjedde A, Cumming P (2005) PET studies of net blood–brain clearance of FDOPA to human brain: age-dependent decline of [18 F]fluorodopamine storage capacity. J Cereb Blood Flow Metab 25:807–819

    CAS  PubMed  Google Scholar 

  • Kumakura Y, Cumming P, Vernaleken I et al (2007) Elevated [18 F]fluorodopamine turnover in brain of patients with schizophrenia: an [18 F]fluorodopa/positron emission tomography study. J Neurosci 27:8080–8087

    CAS  PubMed  Google Scholar 

  • Kumakura Y, Vernaleken I, Buchholz HG et al (2010) Age-dependent decline of steady state dopamine storage capacity of human brain: an FDOPA PET study. Neurobiol Aging 31:447–463

    CAS  PubMed  Google Scholar 

  • Lacivita E, De Giorgio P, Lee IT et al (2010) Design, synthesis, radiolabeling, and in vivo evaluation of carbon-11 labeled N-[2-[4-(3-cyanopyridin-2-yl)piperazin-1-yl]ethyl]-3-methoxybenzamide, a potential positron emission tomography tracer for the dopamine D4 receptors. J Med Chem 53:7344–7355

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451

    CAS  PubMed  Google Scholar 

  • Laruelle M, Baldwin RM, Malison RT (1993) SPECT imaging of dopamine and serotonin. transporters with [123I]beta-CIT: pharmacological characterization of brain uptake in nonhuman primates. Synapse 13:295–309

    CAS  PubMed  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH et al (1995) SPECT imaging of striatal dopamine release after amphetamine challenge. J Nucl Med 36:1182–1190

    CAS  PubMed  Google Scholar 

  • Laruelle M, D’Souza CD, Baldwin RM et al (1997) Imaging D2 receptor occupancy by endogenous dopamine in humans. Neuropsychopharmacology 17:162–174

    CAS  PubMed  Google Scholar 

  • Lavalaye J, Booij J, Reneman L, Habraken JB, van Royen EA (2000) Effect of age and gender on dopamine transporter imaging with [123I]FP-CIT SPET in healthy volunteers. Eur J Nucl Med 27:867–869

    CAS  PubMed  Google Scholar 

  • Laymon CM, Mason NS, Frankle WG et al (2009) Human biodistribution and dosimetry of the D2/3 agonist 11C-N-propylnorapomorphine (11C-NPA) determined from PET. J Nucl Med 50:814–817

    CAS  PubMed  Google Scholar 

  • Lewis SJ, Pavese N, Rivero-Bosch M et al (2012) Brain monoamine systems in multiple system atrophy: a positron emission tomography study. Neurobiol Dis 46:130–136

    CAS  PubMed  Google Scholar 

  • Lin KJ, Weng YH, Wey SP et al (2010) Whole-body biodistribution and radiation dosimetry of 18 F-FP-(+)-DTBZ (18 F-AV-133): a novel vesicular monoamine transporter 2 imaging agent. J Nucl Med 51:1480–1485

    CAS  PubMed  Google Scholar 

  • Løkkegaard A, Werdelin LM, Friberg L (2002) Clinical impact of diagnostic SPET investigations with a dopamine re-uptake ligand. Eur J Nucl Med Mol Imaging 29:1623–1629

    PubMed  Google Scholar 

  • Ma SY, Ciliax BJ, Stebbins G et al (1999) Dopamine transporter-immunoreactive neurons decrease with age in the human substantia nigra. J Comp Neurol 409:25–37

    CAS  PubMed  Google Scholar 

  • Mamelak M, Chiu S, Mishra RK (1993) High- and low-affinity states of dopamine D1 receptors in schizophrenia. Eur J Pharmacol 233:175–176

    CAS  PubMed  Google Scholar 

  • Marazziti D, Baroni S, Masala I et al (2009) [(3)H]-YM-09151-2 binding sites in human brain postmortem. Neurochem Int 55:643–647

    CAS  PubMed  Google Scholar 

  • Martinez D, Slifstein M, Narendran R et al (2009) Dopamine D1 receptors in cocaine dependence measured with PET and the choice to self-administer cocaine. Neuropsychopharmacology 34:1774–1782

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez D, Carpenter KM, Liu F (2011) Imaging dopamine transmission in cocaine dependence: link between neurochemistry and response to treatment. Am J Psychiatry 168:634–641

    PubMed Central  PubMed  Google Scholar 

  • McCauley PG, O’Boyle KM, Waddington JL (1995) Dopamine-induced reduction in the density of guanine nucleotide-sensitive D1 receptors in human postmortem brain in the absence of apparent D1: D2 interactions. Neuropharmacology 34:777–783

    Google Scholar 

  • McKeith I, O’Brien J, Walker Z et al (2007) Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol 6:305–313

    PubMed  Google Scholar 

  • McNab F, Varrone A, Farde L et al (2009) Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 323:800–802

    CAS  PubMed  Google Scholar 

  • Moore RY, Whone AL, McGowan S, Brooks DJ (2003) Monoamine neuron innervation of the normal human brain: an 18 F-DOPA PET study. Brain Res 982:137–145

    CAS  PubMed  Google Scholar 

  • Morris G, Nevet A, Arkadir D, Vaadia E, Bergman H (2006) Midbrain dopamine neurons encode decisions for future action. Nat Neurosci 9:1057–1063

    CAS  PubMed  Google Scholar 

  • Mukherjee J, Yang ZY, Das MK, Brown T (1995) Fluorinated benzamide neuroleptics–III. Development of (S)-N-[(1-allyl-2-pyrrolidinyl)methyl]-5-(3-[18 F]fluoropropyl)-2, 3-dimethoxybenzamide as an improved dopamine D-2 receptor tracer. Nucl Med Biol 22:283–296

    CAS  PubMed  Google Scholar 

  • Nakahara H, Itoh H, Kawagoe R, Takikawa Y, Hikosaka O (2004) Dopamine neurons can represent context-dependent prediction error. Neuron 41:269–280

    CAS  PubMed  Google Scholar 

  • Narendran R, Hwang DR, Slifstein M et al (2004) In vivo vulnerability to competition by endogenous dopamine: comparison of the D2 receptor agonist radiotracer (−)-N-[11C]propyl-norapomorphine ([11C]NPA) with the D2 receptor antagonist radiotracer [11C]-raclopride. Synapse 52:188–208

    CAS  PubMed  Google Scholar 

  • Narendran R, Mason NS, Laymon CM et al (2010) A comparative evaluation of the dopamine D2/3 agonist radiotracer [11C](−)-N-propyl-norapomorphine and antagonist [11C]raclopride to measure amphetamine-induced dopamine release in the human striatum. J Pharmacol Exp Ther 333:533–539

    CAS  PubMed  Google Scholar 

  • Neumeyer JL, Gao YG, Kula NS, Baldessarini RJ (1990) Synthesis and dopamine receptor affinity of (R)-(−)-2-fluoro-N-n-propylnorapomorphine: a highly potent and selective dopamine D2 agonist. J Med Chem 33:3122–3124

    CAS  PubMed  Google Scholar 

  • Nordström AL, Farde L, Nyberg S, Karlsson P, Halldin C, Sedvall G (1995) D1, D2, and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients. Am J Psychiatry 152:1444–1449

    PubMed  Google Scholar 

  • Nurmi E, Bergman J, Eskola O, Solin O, Vahlberg T, Sonninen P, Rinne JO (2003) Progression of dopaminergic hypofunction in striatal subregions in Parkinson’s disease using [18F]CFT PET. Synapse 48:109–115

    CAS  PubMed  Google Scholar 

  • Nyberg S, Eriksson B, Oxenstierna G, Halldin C, Farde L (1999) Suggested minimal effective dose of risperidone based on PET-measured D2 and 5-HT2A receptor occupancy in schizophrenic patients. Am J Psychiatry 156:869–875

    CAS  PubMed  Google Scholar 

  • Oh M, Kim JS, Kim JY et al (2012) Subregional patterns of preferential striatal dopamine transporter loss differ in Parkinson disease, progressive supranuclear palsy, and multiple-system atrophy. J Nucl Med 53:399–406

    CAS  PubMed  Google Scholar 

  • Okamura N, Villemagne VL, Drago J et al (2010) In vivo measurement of vesicular monoamine transporter type 2 density in Parkinson disease with 18 F-AV-133. 2010. J Nucl Med 51:223–228

    PubMed  Google Scholar 

  • Otsuka T, Ito H, Halldin C et al (2009) Quantitative PET analysis of the dopamine D2 receptor agonist radioligand 11C-(R)-2-CH3O-N-n-propylnorapomorphine in the human brain. J Nucl Med 50:703–710

    CAS  PubMed  Google Scholar 

  • Palner M, McCormick P, Parkes J, Knudsen GM, Wilson AA (2010) Systemic catechol-O-methyl transferase inhibition enables the D1 agonist radiotracer R-[11C]SKF 82957. Nucl Med Biol 37:837–843

    CAS  PubMed  Google Scholar 

  • Pavese N, Simpson BS, Metta V, Ramlackhansingh A, Chaudhuri KR, Brooks DJ (2012) [18 F]FDOPA uptake in the raphe nuclei complex reflects serotonin transporter availability. A combined [18 F]FDOPA and [11C]DASB PET study in Parkinson’s disease. Neuroimage 59:1080–1084

    CAS  PubMed  Google Scholar 

  • Ramamoorthy S, Shippenberg TS, Jayanthi LD (2011) Regulation of monoamine transporters: role of transporter phosphorylation. Pharmacol Ther 129:220–238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rani M, Kanungo MS (2006) Expression of D2 dopamine receptor in the mouse brain. Biochem Biophys Res Commun 344:981–986

    CAS  PubMed  Google Scholar 

  • Richfield EK, Penney JB, Young AB (1989) Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 30:767–777

    CAS  PubMed  Google Scholar 

  • Rinne JO, Laine M, Kaasinen V, Norvasuo-Heilä MK, NÃ¥gren K, Helenius H (2002) Striatal dopamine transporter and extrapyramidal symptoms in frontotemporal dementia. Neurology 58:1489–1493

    CAS  PubMed  Google Scholar 

  • Rivera A, Cuéllar B, Girón FJ, Grandy DK, de la Calle A, Moratalla R (2002) Dopamine D4 receptors are heterogeneously distributed in the striosomes/matrix compartments of the striatum. J Neurochem 80:219–229

    CAS  PubMed  Google Scholar 

  • Sasaki T, Ito H, Kimura Y et al (2012) Quantification of dopamine transporter in human brain using PET with 18 F-FE-PE2I. J Nucl Med 53:1065–1073

    CAS  PubMed  Google Scholar 

  • Schlagenhauf F, Rapp MA, Huys QJ et al (2013) Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid intelligence. Hum Brain Mapp 34:1490–1499

    PubMed Central  PubMed  Google Scholar 

  • Scott DJ, Stohler CS, Koeppe RA, Zubieta JK (2007) Time-course of change in [11C]carfentanil and [11C]raclopride binding potential after a nonpharmacological challenge. Synapse 61:707–714

    CAS  PubMed  Google Scholar 

  • Seeman P, Waanabe M, Grigoriadis D et al (1985) Dopamine D2 receptor binding sites for agonists. A tetrahedral model. Mol Pharmacol 28:391–399

    CAS  PubMed  Google Scholar 

  • Shotbolt P, Tziortzi AC, Searle GE et al (2012) Within-subject comparison of [11C]-(+)-PHNO and [11C]raclopride sensitivity to acute amphetamine challenge in healthy humans. J Cereb Blood Flow Metab 32:127–136

    CAS  PubMed  Google Scholar 

  • Sibley DR, De Lean A, Creese I (1982) Anterior pituitary dopamine receptors. Demonstration of interconvertible high and low affinity states of the D-2 dopamine receptor. J Biol Chem 257:6351–6361

    Google Scholar 

  • Skinbjerg M, Liow JS, Seneca N et al (2010) D2 dopamine receptor internalization prolongs the decrease of radioligand binding after amphetamine: a PET study in a receptor internalization-deficient mouse model. Neuroimage 50:1402–1407

    CAS  PubMed Central  PubMed  Google Scholar 

  • Skinbjerg M, Sibley DR, Javitch JA, Abi-Dargham A (2012) Imaging the high-affinity state of the dopamine D2 receptor in vivo: fact or fiction? Biochem Pharmacol 83:193–198

    CAS  PubMed Central  PubMed  Google Scholar 

  • Slifstein M, Kolachana B, Simpson EH et al (2008) COMT genotype predicts cortical-limbic D1 receptor availability measured with [11C]NNC112 and PET. Mol Psychiatry 13:821–827

    CAS  PubMed  Google Scholar 

  • Smith TF (2010) Meta-analysis of the heterogeneity in association of DRD4 7-repeat allele and AD/HD: stronger association with AD/HD combined type. Am J Med Genet B Neuropsychiatr Genet 153B:1189–1199

    CAS  PubMed  Google Scholar 

  • Spooren A, Rondou P, Debowska K et al (2010) Resistance of the dopamine D4 receptor to agonist-induced internalization and degradation. Cell Signal 22:600–609

    CAS  PubMed  Google Scholar 

  • Stoof JC, Kebabian JW (1981) Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature 294:366–368

    CAS  PubMed  Google Scholar 

  • Strange PG (1993) New insights into dopamine receptors in the central nervous system. Neurochem Int 22:223–236

    CAS  PubMed  Google Scholar 

  • Sunahara RK, Guan HC, O’Dowd BF et al (1991) Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 350:614–619

    CAS  PubMed  Google Scholar 

  • Takahashi H, Takano H, Kodaka F et al (2010) Contribution of dopamine D1 and D2 receptors to amygdala activity in human. J Neurosci 30:3043–3047

    CAS  PubMed  Google Scholar 

  • Troiano AR, Schulzer M, de la Fuente-Fernandez R et al (2010) Dopamine transporter PET in normal aging: dopamine transporter decline and its possible role in preservation of motor function. Synapse 64:146–151

    CAS  PubMed  Google Scholar 

  • Tuppurainen H, Kuikka JT, Viinamäki H, Husso M, Tiihonen J (2010) Extrapyramidal side-effects and dopamine D2/3 receptor binding in substantia nigra. Nord J Psychiatry 64:233–238

    PubMed  Google Scholar 

  • Tziortzi AC, Searle GE, Tzimopoulou S et al (2011) Imaging dopamine receptors in humans with [11C]-(+)-PHNO: dissection of D3 signal and anatomy. Neuroimage 54:264–277

    CAS  PubMed  Google Scholar 

  • van de Giessen E, de Win MM, Tanck MW, van den Brink W, Baas F, Booij J (2009) Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. J Nucl Med 50:45–52

    PubMed  Google Scholar 

  • van Dyck CH, Malison RT, Jacobsen LK et al (2005) Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J Nucl Med 46:745–751

    PubMed  Google Scholar 

  • Van Tol HHM, Bunzow JR, Guan HC et al (1991) Cloning of the gene for a human D4 receptor with high affinity for the antipsychotic clozapine. Nature 350:610–614

    PubMed  Google Scholar 

  • van Vliet L, Rodenhuis N, Dijkstra D et al (2000) Synthesis and pharmacological evaluation of thiopyran analogues of the dopamine D3 receptor-selective agonist (4aR,10bR)-(þ)-trans-3,4,4a,10b-tetrahydro-4-n-propyl-2H,5H-[1]benzopropyno[4,3-b]-1,4-oxazin-9-ol (PD128907). J Med Chem 43:2871–2882

    PubMed  Google Scholar 

  • van Wieringen J-P, Booij J, Shalgunov V et al (2013) Agonist high- and low-affinity states of dopamine D2 receptors: methods of detection and clinical implications. Naunyn Schmiedebergs Arch Pharmacol 386:135–154

    CAS  PubMed  Google Scholar 

  • Varrone A, Halldin C (2012a) New developments of dopaminergic imaging in Parkinson’s disease. Q J Nucl Med Mol Imaging 56:68–82

    CAS  PubMed  Google Scholar 

  • Varrone A, Halldin C (2012b) Molecular imaging of the dopamine transporter. J Nucl Med 51:1331–1334

    Google Scholar 

  • Varrone A, Fujita M, Verhoeff NP et al (2000) Test-retest reproducibility of extrastriatal dopamine D2 receptor imaging with [123I]epidepride SPECT in humans. J Nucl Med 41:1343–1451

    CAS  PubMed  Google Scholar 

  • Varrone A, Marek KL, Jennings D, Innis RB, Seibyl JP (2001) [123I]beta-CIT SPECT imaging demonstrates reduced density of striatal dopamine transporters in Parkinson’s disease and multiple system atrophy. Mov Disord 16:1023–1032

    CAS  PubMed  Google Scholar 

  • Varrone A, Steiger C, Schou M et al (2009) In vitro autoradiography and in vivo evaluation in cynomolgus monkey of [18 F]FE-PE2I, a new dopamine transporter PET radioligand. Synapse 63:871–880

    CAS  PubMed  Google Scholar 

  • Verhoeff NP, Kapucu O, Sokole-Busemann E, van Royen EA, Janssen AG (1993) Estimation of dopamine D2 receptor binding potential in the striatum with iodine-123-IBZM SPECT: technical and interobserver variability. J Nucl Med 34:2076–2084

    CAS  PubMed  Google Scholar 

  • Videbaek C, Toska K, Scheideler MA, Paulson OB, Moos Knudsen G (2000) SPECT tracer [123I]IBZM has similar affinity to dopamine D2 and D3 receptors. Synapse 38:338–342

    CAS  PubMed  Google Scholar 

  • Villemagne VL, Okamura N, Pejoska S et al (2011) In vivo assessment of vesicular monoamine transporter type 2 in dementia with lewy bodies and Alzheimer disease. Arch Neurol 68:905–912

    PubMed  Google Scholar 

  • Virostko J, Henske J, Vinet L et al (2011) Multimodal image coregistration and inducible selective cell ablation to evaluate imaging ligands. Proc Natl Acad Sci U S A 108:20719–20724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Visser I, Lavini C, Booij J et al (2008) Cerebral impairment in chronic solvent-induced encephalopathy. Ann Neurol 63:572–580

    CAS  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Gatley SJ, Logan J, Wang GJ, Ding YS, Dewey S (1996) PET evaluation of the dopamine system of the human brain. J Nucl Med 37:1242–1256

    CAS  PubMed  Google Scholar 

  • Wang JL, Oya S, Parhi AK et al (2010) In vivo studies of the SERT-selective [18 F]FPBM and VMAT2-selective [18 F]AV-133 radiotracers in a rat model of Parkinson’s disease. Nucl Med Biol 37:479–486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Willeit M, Ginovart N, Kapur S et al (2006) High-affinity states of human brain dopamine D2/3 receptors imaged by the agonist [11C]-(+)-PHNO. Biol Psychiatry 59:389–394

    CAS  PubMed  Google Scholar 

  • Yagi S, Yoshikawa E, Futatsubashi M et al (2010) Progression from unilateral to bilateral parkinsonism in early Parkinson disease: implication of mesocortical dopamine dysfunction by PET. J Nucl Med 51:1250–1257

    PubMed  Google Scholar 

  • Zahniser, Molinoff (1978) Effect of guanine nucleotides on striatal dopamine receptors. Nature 275:453–455

    Google Scholar 

  • Ziebell M, Holm-Hansen S, Thomsen G et al (2010) Serotonin transporters in dopamine transporter imaging: a head-to-head comparison of dopamine transporter SPECT radioligands 123I-FP-CIT and 123I-PE2I. J Nucl Med 51:1885–1891

    PubMed  Google Scholar 

  • Ziebell M, Andersen BB, Thomsen G et al (2012) Predictive value of dopamine transporter SPECT imaging with [123I]PE2I in patients with subtle parkinsonian symptoms. Eur J Nucl Med Mol Imaging 39:242–250

    CAS  PubMed  Google Scholar 

  • Zijlstra F, Booij J, van den Brink W, Franken IH (2008) Striatal dopamine D2 receptor binding and dopamine release during cue-elicited craving in recently abstinent opiate-dependent males. Eur Neuropsychopharmacol 18:262–270

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Booij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Booij, J., van Wieringen, JP., van de Giessen, E., Knol, R.J.J., Finnema, S.J. (2014). PET and SPECT Imaging of the Central Dopamine System in Humans. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., Luiten, P. (eds) PET and SPECT of Neurobiological Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-42014-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-42014-6_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-42013-9

  • Online ISBN: 978-3-642-42014-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics