Skip to main content

Using the λN Peptide to Tether Proteins to RNAs

  • Protocol
mRNA Processing and Metabolism

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 257))

Abstract

Proteins interacting with messenger RNAs (mRNAs) affect their nuclear processing, export, translation efficiency, stability, or cytoplasmic localization. Such RNA-binding proteins are often modular, containing RNA-binding domain(s) and other functional modules. To analyze the function of such proteins independent of their normal RNA-binding domains or to introduce effector modules to defined RNA-binding regions, a number of tethering approaches have been developed, often based on the use of large proteins and their specifically interacting RNA sequences. Here we report the use of a versatile system to tether proteins to mRNAs. The 22 amino acid RNA-binding domain of the λ bacteriophage antiterminator protein N (λN-(1–22) or λN peptide) is used to tag the protein of interest, and its specific 19 nt binding site (boxB) is inserted into the target RNA recruiting the properties of the fusion protein to the RNA. The major advantage of this system derives from the small size of the peptide and its target sequence, which facilitates cloning and its use for biochemical experiments and diminishes possible interferences with the fused protein. The chapter illustrates the use of this system to create dedicated mRNA-specific factors involved in processes, such as mRNA translation and nonsense-mediated mRNA decay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Coller J. M., Gray N. K., and Wickens M. P. (1998) mRNA stabilization by poly(A) binding protein is independent of poly(A) and requires translation. Genes Dev. 12, 3226–3235.

    Article  PubMed  CAS  Google Scholar 

  2. De Gregorio E., Preiss T., and Hentze M. W. (1999) Translation driven by an eIF4G core domain in vivo. EMBO J. 18, 4865–4874.

    Article  PubMed  Google Scholar 

  3. Gray N. K., Coller J. M., Dickson K. S., and Wickens M. (2000) Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J. 19, 4723–4733.

    Article  PubMed  CAS  Google Scholar 

  4. Lykke-Andersen J., Shu M. D., and Steitz J. A. (2000) Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103, 1121–1131.

    Article  PubMed  CAS  Google Scholar 

  5. De Gregorio E., Baron J., Preiss T., and Hentze M. W. (2001) Tethered-function analysis reveals that elF4E can recruit ribosomes independent of its binding to the cap structure. RNA 7, 106–113.

    Article  PubMed  Google Scholar 

  6. Lykke-Andersen J., Shu M. D., and Steitz J. A. (2001) Communication of the position of exon-exon junctions to the mRNA surveillance machinery by the protein RNPS1. Science 293, 1836–1839.

    Article  PubMed  CAS  Google Scholar 

  7. Sachs A. B., Sarnow P., and Hentze M. W. (1997) Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 89, 831–838.

    Article  PubMed  CAS  Google Scholar 

  8. Gingras A. C., Raught B., and Sonenberg N. (1999) eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913–963.

    Article  PubMed  CAS  Google Scholar 

  9. Preiss T. and Hentze M. W. (1999) From factors to mechanisms: translation and translational control in eukaryotes. Curr. Opin. Genet. Dev. 9, 515–521.

    Article  PubMed  CAS  Google Scholar 

  10. Morino S., Hazama H., Ozaki M., Teraoka Y., Shibata S., Doi M., Ueda H., Ishida T., and Uesugi S. (1996) Analysis of the mRNA cap-binding ability of human eukaryotic initiation factor-4E by use of recombinant wild-type and mutant forms. Eur. J. Biochem. 239, 597–601.

    Article  PubMed  CAS  Google Scholar 

  11. Pyronnet S., Imataka H., Gingras A. C., Fukunaga R., Hunter T., and Sonenberg N. (1999) Human eukaryotic translation initiation factor 4G (eIF4G) recruits mnk1 to phosphorylate eIF4E. EMBO J. 18, 270–279.

    Article  PubMed  CAS  Google Scholar 

  12. Nielsen P. J. and Trachsel H. (1988) The mouse protein synthesis initiation factor 4A gene family includes two related functional genes which are differentially expressed. EMBO J. 7, 2097–2105.

    PubMed  CAS  Google Scholar 

  13. Li Q., Imataka H., Morino S., Rogers G. W. J., Richter-Cook N. J., Merrick W. C., and Sonenberg N. (1999) Eukaryotic translation initiation factor 4AIII (eIF4AIII) is functionally distinct from eIF4AI and eIF4AII. Mol. Cell. Biol. 19, 7336–7346.

    PubMed  CAS  Google Scholar 

  14. Thermann R., Neu-Yilik G., Deters A., Frede U., Wehr K., Hagemeier C., Hentze M. W., and Kulozik A. E. (1998) Binary specification of nonsense codons by splicing and cytoplasmic translation. EMBO J. 17, 3484–3494.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang J., Sun X., Qian Y., and Maquat L. E. (1998) Intron function in the nonsense-mediated decay of beta-globin mRNA: indications that pre-mRNA splicing in the nucleus can influence mRNA translation in the cytoplasm. RNA 4, 801–815.

    Article  PubMed  CAS  Google Scholar 

  16. Le Hir H., Gatfield D., Izaurralde E., and Moore M. J. (2001) The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J. 20, 4987–4997.

    Article  PubMed  Google Scholar 

  17. Le Hir H., Moore M. J., and Maquat L. E. (2000) Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev. 14, 1098–1108.

    PubMed  Google Scholar 

  18. Schell T., Kulozik A. E., and Hentze M. W. (2002) Integration of splicing, transport and translation to achieve mRNA quality control by the nonsense-mediated decay pathway. Genome Biol. 3, 1006.1001–1006.

    Article  Google Scholar 

  19. Mendell J. T., Medghalchi S. M., Lake R. G., Noensie E. N., and Dietz H. C. (2000) Novel Upf2p orthologues suggest a functional link between translation initiation and nonsense surveillance complexes. Mol. Cell Biol. 20, 8944–8957.

    Article  PubMed  CAS  Google Scholar 

  20. Serin G., Gersappe A., Black J. D., Aronoff R., and Maquat L. E. (2001) Identification and characterization of human orthologues to Saccharomyces cerevisiae Upf2 protein and Upf3 protein (Caenorhabditis elegans SMG-4). Mol. Cell Biol. 21, 209–223.

    Article  PubMed  CAS  Google Scholar 

  21. Neu-Yilik G., Gehring N. H., Thermann R., Frede U., Hentze M. W., and Kulozik A. E. (2001) Splicing and 3′ end formation in the definition of nonsense-mediated decay-competent human beta-globin mRNPs. EMBO J. 20, 532–540.

    Article  PubMed  CAS  Google Scholar 

  22. Sambrook J., Fritsch E. F., and Maniatis T. (1989) Molecular Cloning: A Laboratory Manual I, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  23. Carter M. S., Li S., and Wilkinson M. F. (1996) A splicing-dependent regulatory mechanism that detects translation signals. EMBO J. 15, 5965–5975.

    PubMed  CAS  Google Scholar 

  24. Sun X., Perlick H. A., Dietz H. C., and Maquat L. E. (1998) A mutated human homologue to yeast Upf1 protein has a dominant-negative effect on the decay of nonsense-containing mRNAs in mammalian cells. Proc. Natl. Acad. Sci. USA 95, 10,009–10,014.

    Article  PubMed  CAS  Google Scholar 

  25. Austin, R. A., Xia, T., Ren, J., Takahashi, T. T., and Roberts, R. W. (2002) Designed arginine-rich RNA-binding peptides with picomolar affinity. J. Am. Chem. Soc. 124, 10,966–10,967.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Humana Press Inc., Totowa, NJ

About this protocol

Cite this protocol

Baron-Benhamou, J., Gehring, N.H., Kulozik, A.E., Hentze, M.W. (2004). Using the λN Peptide to Tether Proteins to RNAs. In: Schoenberg, D.R. (eds) mRNA Processing and Metabolism. Methods in Molecular Biology™, vol 257. Humana Press. https://doi.org/10.1385/1-59259-750-5:135

Download citation

  • DOI: https://doi.org/10.1385/1-59259-750-5:135

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-225-4

  • Online ISBN: 978-1-59259-750-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics