Skip to main content

Tethered Function Assays to Elucidate the Role of RNA-Binding Proteins

  • Protocol
  • First Online:
Alternative Splicing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2537))

Abstract

The fate of each RNA molecule is strongly determined by RNA-binding proteins (RBPs) which accompany transcripts from its synthesis to its degradation. To elucidate the effect of a specific RBP on bound RNA, it can be artificially recruited to a specific site on a reporter mRNA that can be followed by a variety of methods. In this so-called tethering assay, the protein of interest (POI) is fused to the coat protein of the MS2 bacteriophage and expressed in your favorite cells together with a reporter gene containing MS2 binding sites. The MS2 binding sites are recognized by the MS2 coat protein (MS2CP) with high affinity and specificity and by doing so, the POI is tethered to the reporter RNA. Here, we describe how with the help of this assay the human cytoplasmic poly(A) binding protein is recruited to a mini-μ RNA reporter, thereby influencing the stability of the reporter transcript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gerstberger S, Hafner M, Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15(12):829–845. https://doi.org/10.1038/nrg3813

    Article  CAS  PubMed  Google Scholar 

  2. Hentze MW, Castello A, Schwarzl T, Preiss T (2018) A brave new world of RNA-binding proteins. Nat Rev Mol Cell Biol 19(5):327–341. https://doi.org/10.1038/nrm.2017.130

    Article  CAS  PubMed  Google Scholar 

  3. Singh G, Pratt G, Yeo GW, Moore MJ (2015) The clothes make the mRNA: past and present trends in mRNP fashion. Annu Rev Biochem 84:325–354. https://doi.org/10.1146/annurev-biochem-080111-092106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coller JM, Gray NK, Wickens MP (1998) mRNA stabilization by poly(a) binding protein is independent of poly(A) and requires translation. Genes Dev 12(20):3226–3235. https://doi.org/10.1101/gad.12.20.3226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hocine S, Raymond P, Zenklusen D, Chao JA, Singer RH (2013) Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nat Methods 10(2):119–121. https://doi.org/10.1038/nmeth.2305

    Article  CAS  PubMed  Google Scholar 

  6. Wu B, Chen J, Singer RH (2014) Background free imaging of single mRNAs in live cells using split fluorescent proteins. Sci Rep 4:3615. https://doi.org/10.1038/srep03615

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bos TJ, Nussbacher JK, Aigner S, Yeo GW (2016) Tethered function assays as tools to elucidate the molecular roles of RNA-binding proteins. Adv Exp Med Biol 907:61–88. https://doi.org/10.1007/978-3-319-29073-7_3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coller J, Wickens M (2007) Tethered function assays: an adaptable approach to study RNA regulatory proteins. Methods Enzymol 429:299–321. https://doi.org/10.1016/S0076-6879(07)29014-7

    Article  CAS  PubMed  Google Scholar 

  9. Buhler M, Paillusson A, Muhlemann O (2004) Efficient downregulation of immunoglobulin mu mRNA with premature translation-termination codons requires the 5′-half of the VDJ exon. Nucleic Acids Res 32(11):3304–3315. https://doi.org/10.1093/nar/gkh651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buhler M, Steiner S, Mohn F, Paillusson A, Muhlemann O (2006) EJC-independent degradation of nonsense immunoglobulin-mu mRNA depends on 3′ UTR length. Nat Struct Mol Biol 13(5):462–464. https://doi.org/10.1038/nsmb1081

    Article  CAS  PubMed  Google Scholar 

  11. Dugre-Brisson S, Elvira G, Boulay K, Chatel-Chaix L, Mouland AJ, DesGroseillers L (2005) Interaction of Staufen1 with the 5′ end of mRNA facilitates translation of these RNAs. Nucleic Acids Res 33(15):4797–4812. https://doi.org/10.1093/nar/gki794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim YK, Furic L, Desgroseillers L, Maquat LE (2005) Mammalian Staufen1 recruits Upf1 to specific mRNA 3'UTRs so as to elicit mRNA decay. Cell 120(2):195–208. https://doi.org/10.1016/j.cell.2004.11.050

    Article  CAS  PubMed  Google Scholar 

  13. Stripecke R, Oliveira CC, McCarthy JE, Hentze MW (1994) Proteins binding to 5′ untranslated region sites: a general mechanism for translational regulation of mRNAs in human and yeast cells. Mol Cell Biol 14(9):5898–5909. https://doi.org/10.1128/mcb.14.9.5898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Joncourt R, Eberle AB, Rufener SC, Muhlemann O (2014) Eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay by two genetically separable mechanisms. PLoS One 9(8):e104391. https://doi.org/10.1371/journal.pone.0104391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nicholson P, Josi C, Kurosawa H, Yamashita A, Muhlemann O (2014) A novel phosphorylation-independent interaction between SMG6 and UPF1 is essential for human NMD. Nucleic Acids Res 42(14):9217–9235. https://doi.org/10.1093/nar/gku645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lykke-Andersen J, Shu MD, Steitz JA (2000) Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103(7):1121–1131. https://doi.org/10.1016/s0092-8674(00)00214-2

    Article  CAS  PubMed  Google Scholar 

  17. Minshall N, Thom G, Standart N (2001) A conserved role of a DEAD box helicase in mRNA masking. RNA 7(12):1728–1742. https://doi.org/10.1017/s135583820101158x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruiz-Echevarria MJ, Peltz SW (2000) The RNA binding protein Pub1 modulates the stability of transcripts containing upstream open reading frames. Cell 101(7):741–751. https://doi.org/10.1016/s0092-8674(00)80886-7

    Article  CAS  PubMed  Google Scholar 

  19. de Turris V, Nicholson P, Orozco RZ, Singer RH, Muhlemann O (2011) Cotranscriptional effect of a premature termination codon revealed by live-cell imaging. RNA 17(12):2094–2107. https://doi.org/10.1261/rna.02918111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nicholson P, Joncourt R, Muhlemann O (2012) Analysis of nonsense-mediated mRNA decay in mammalian cells. Curr Protoc Cell Biol. Chapter 27:Unit27 24. https://doi.org/10.1002/0471143030.cb2704s55

  21. Eberle AB, Stalder L, Mathys H, Orozco RZ, Muhlemann O (2008) Posttranscriptional gene regulation by spatial rearrangement of the 3′ untranslated region. PLoS Biol 6(4):e92. https://doi.org/10.1371/journal.pbio.0060092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Choe J, Lin S, Zhang W, Liu Q, Wang L, Ramirez-Moya J, Du P, Kim W, Tang S, Sliz P, Santisteban P, George RE, Richards WG, Wong KK, Locker N, Slack FJ, Gregory RI (2018) mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis. Nature 561(7724):556–560. https://doi.org/10.1038/s41586-018-0538-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baillat D, Shiekhattar R (2009) Functional dissection of the human TNRC6 (GW182-related) family of proteins. Mol Cell Biol 29(15):4144–4155. https://doi.org/10.1128/MCB.00380-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ahsan KB, Masuda A, Rahman MA, Takeda JI, Nazim M, Ohkawara B, Ito M, Ohno K (2017) SRSF1 suppresses selection of intron-distal 5′ splice site of DOK7 intron 4 to generate functional full-length DOK-7 protein. Sci Rep 7(1):10446. https://doi.org/10.1038/s41598-017-11036-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pichon X, Robert MC, Bertrand E, Singer RH, Tutucci E (2020) New generations of MS2 variants and MCP fusions to detect single mRNAs in living eukaryotic cells. Methods Mol Biol 2166:121–144. https://doi.org/10.1007/978-1-0716-0712-1_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Long RM, Gu W, Lorimer E, Singer RH, Chartrand P (2000) She2p is a novel RNA-binding protein that recruits the Myo4p-She3p complex to ASH1 mRNA. EMBO J 19(23):6592–6601. https://doi.org/10.1093/emboj/19.23.6592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sebbag-Sznajder N, Brody Y, Hochberg-Laufer H, Shav-Tal Y, Sperling J, Sperling R (2020) Dynamic Supraspliceosomes are assembled on different transcripts regardless of their intron number and splicing state. Front Genet 11:409. https://doi.org/10.3389/fgene.2020.00409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research of A.B.E. and O.M. is supported by the NCCR RNA & Disease funded by the Swiss National Science Foundation (SNSF), by the SNSF grant 310030B-182831 to O.M., and by the canton of Bern.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Mühlemann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Eberle, A.B., Mühlemann, O. (2022). Tethered Function Assays to Elucidate the Role of RNA-Binding Proteins. In: Scheiffele, P., Mauger, O. (eds) Alternative Splicing. Methods in Molecular Biology, vol 2537. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2521-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2521-7_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2520-0

  • Online ISBN: 978-1-0716-2521-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics