Skip to main content
Log in

Yeast cell as a potential microcapsule of bioactive compounds: an overview

  • Review
  • Published:
Nutrire Aims and scope Submit manuscript

Abstract

Bioactiv compounds have long been noted for their positive benefits to human health. They have antioxidant properties, provide several essential nutrients that help maintain a healthy body, and even aid in the treatment of diseases such as cancer, cardiovascular disease, diabetes, anti-inflammatory, chronic diseases, etc. However, the amount of bioactive compounds that get into the body is low due to their poor water solubility, heat sensitivity, light, oxygen, pH, storage, etc. Therefore, to limit the above problems, the microencapsulation method has been a remarkable application with many development potentials. Saccharomyces cerevisiae cells have been considered a potential wall material for bioactive compound microencapsulation. There are many approaches to the microencapsulation of bioactive compounds by yeast cells. Each method has different principles and impacts. These features make yeast cell microencapsulation a potential way to bring bio-based food products closer to the consumer. In this review, the structure characteristic of S. cerevisiae was mentioned to show microencapsulation potential and microencapsulation techniques of bioactive compounds by yeast cells. Besides, potential applications, limited challenges, and potential methods were also mentioned in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All relevant data are presented in the paper.

References

  1. Fernandes SS, Coelho MS, de las Mercedes Salas-Mellado M. Bioactive compounds as ingredients of functional foods: polyphenols, carotenoids, peptides from animal and plant sources new. Bioact Compd. 2019;129–142. Woodhead Publishing

  2. Kris-Etherton PM, et al. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med. 2002;113(9):71–88.

    Article  Google Scholar 

  3. Shashirekha M, Mallikarjuna S, Rajarathnam S. Status of bioactive compounds in foods, with focus on fruits and vegetables. Crit Rev Food Sci Nutr. 2015;55(10):1324–39.

    Article  CAS  PubMed  Google Scholar 

  4. Hooper L, Cassidy A. A review of the health care potential of bioactive compounds. J Sci Food Agric. 2006;86(12):1805–13.

    Article  CAS  Google Scholar 

  5. Xu X-Y, Meng X, Li S, Gan R-Y, Li Y, Li H-B. Bioactivity, health benefits, and related molecular mechanisms of curcumin: current progress, challenges, and perspectives. Nutrients. 2018;10(10):1553.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rauf A, Imran M, Orhan IE, Bawazeer S. Health perspectives of a bioactive compound curcumin: A review. Trends Food Sci Technol. 2018;74:33–45.

    Article  CAS  Google Scholar 

  7. Tang M, Taghibiglou C. The mechanisms of action of curcumin in Alzheimer’s disease. J Alzheimer's Dis. 2017;58(4):1003–16.

    Article  CAS  Google Scholar 

  8. Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa M. Curcumin and health. Molecules. 2016;21(3):264.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Islam Shishir MR, Taip FS, Aziz NA, Talib RA, HossainSarker M. Optimization of spray drying parameters for pink guava powder using RSM. Food Sci Biotechnol. 2016;25(2):461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ali MY, Sina AA, Khandker SS, Neesa L, Tanvir EM, Kabir A, Khalil MI, Gan SH. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods. 2020;10(1):45.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Caseiro M, Ascenso A, Costa A, Creagh-Flynn J, Johnson M, Simões S. Lycopene in human health. LWT. 2020;127:109323.

    Article  CAS  Google Scholar 

  12. Lila MA, Burton-Freeman B, Grace M, Kalt W. Unraveling anthocyanin bioavailability for human health. Annu Rev Food Sci Technol. 2016;7:375–93.

    Article  CAS  PubMed  Google Scholar 

  13. Cassidy A. Berry anthocyanin intake and cardiovascular health. Mol Aspects Med. 2018;61:76–82.

    Article  CAS  PubMed  Google Scholar 

  14. Davis JM, Murphy EA, Carmichael MD. Effects of the dietary flavonoid quercetin upon performance and health. Curr Sports Med Rep. 2009;8(4):206–13.

    Article  PubMed  Google Scholar 

  15. Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M. Therapeutic potential of quercetin: new insights and perspectives for human health. ACS Omega. 2020;5(20):11849–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Errenst C, Petermann M, Kilzer A. Encapsulation of limonene in yeast cells using the concentrated powder form technology. J Supercrit Fluids. 2021;168:105076.

    Article  CAS  Google Scholar 

  17. Kahkeshani N, Farzaei F, Fotouhi M, Alavi SS, Bahramsoltani R, Naseri R, Momtaz S, Abbasabadi Z, Rahimi R, Farzaei MH, Bishayee A. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran J Basic Med Sci. 2019;22(3):225.

    PubMed  PubMed Central  Google Scholar 

  18. Feizollahi E, Hadian Z, Honarvar Z. Food fortification with omega-3 fatty acids; microencapsulation as an addition method. Curr Nutr Food Sci. 2018;14(2):90–103.

    Article  CAS  Google Scholar 

  19. Shahidi F, Ambigaipalan P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu Rev Food Sci Technol. 2018;9:345–81.

    Article  CAS  PubMed  Google Scholar 

  20. Shi G, Rao L, Yu H, Xiang H, Yang H, Ji R. Stabilization and encapsulation of photosensitive resveratrol within yeast cell. Int J Pharm. 2008;349(1–2):83–93.

    Article  CAS  PubMed  Google Scholar 

  21. Galiniak S, Aebisher D, Bartusik-Aebisher D. Health benefits of resveratrol administration. Acta Biochim. 2019;66(1):13–21.

    CAS  Google Scholar 

  22. de Jesús Ornelas-Paz J, et al. Effect of heat treatment on the content of some bioactive compounds and free radical-scavenging activity in pungent and non-pungent peppers. Food Res. 2013;50(2)519–525.

  23. Karaman K. Characterization of Saccharomyces cerevisiae based microcarriers for encapsulation of black cumin seed oil: stability of thymoquinone and bioactive properties. Food Chem. 2020;313:126129.

    Article  PubMed  Google Scholar 

  24. Patras A, Brunton NP, O’Donnell C, Tiwari BK. Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci Technol. 2010;21(1):3–11.

    Article  CAS  Google Scholar 

  25. Ruiz-Rodriguez A, Marín FR, Ocaña A, Soler-Rivas C. Effect of domestic processing on bioactive compounds. Phytochem Rev. 2008;7(2):345–84.

    Article  CAS  Google Scholar 

  26. Esfanjani AF, Assadpour E, Jafari SM. Improving the bioavailability of phenolic compounds by loading them within lipid-based nanocarriers. Trends Food Sci Technol. 2018;76:56–66.

    Article  Google Scholar 

  27. Kharat M, Du Z, Zhang G, McClements DJ. Physical and chemical stability of curcumin in aqueous solutions and emulsions: impact of pH, temperature, and molecular environment. J Agric Food Chem. 2017;65(8):1525–32.

    Article  CAS  PubMed  Google Scholar 

  28. McClements DJ, Decker EA, Weiss J. Emulsion-based delivery systems for lipophilic bioactive components. J Food Sci. 2007;72(8):R109–24.

    Article  CAS  PubMed  Google Scholar 

  29. Shi G, et al. Yeast-cell-based microencapsulation of chlorogenic acid as a water-soluble antioxidant. J Food Eng. 2007;80(4):1060–7.

    Article  CAS  Google Scholar 

  30. Drewnowski A, Gomez-Carneros C. Bitter taste, phytonutrients, and the consumer: a review. Am J Clin Nutr. 2000;72(6):1424–35.

    Article  CAS  PubMed  Google Scholar 

  31. Paramera EI, Konteles SJ, Karathanos VT. Microencapsulation of curcumin in cells of Saccharomyces cerevisiae. Food Chem. 2011;125(3):892–902.

    Article  CAS  Google Scholar 

  32. Liu W, et al. Oral bioavailability of curcumin: problems and advancements. J Drug Target. 2016;24(8):694–702.

    Article  CAS  PubMed  Google Scholar 

  33. Chen F-P, Liu L-L, Tang C-H. Spray-drying microencapsulation of curcumin nanocomplexes with soy protein isolate: encapsulation, water dispersion, bioaccessibility and bioactivities of curcumin. Food Hydrocolloids. 2020;105:105821.

    Article  Google Scholar 

  34. Hasheminejad N, Khodaiyan F, Safari M. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem. 2019;275:113–22.

    Article  CAS  PubMed  Google Scholar 

  35. Sarabandi K, Jafari SM, Mahoonak AS, Mohammadi A. Application of gum Arabic and maltodextrin for encapsulation of eggplant peel extract as a natural antioxidant and color source. Int J Biol Macromol. 2019;140:59–68.

    Article  CAS  PubMed  Google Scholar 

  36. Paris M, Ramírez-Corona N, Palou E, López-Malo A. Modelling release mechanisms of cinnamon (Cinnamomum zeylanicum) essential oil encapsulated in alginate beads during vapor-phase application. J Food Eng. 2020;282:110024.

    Article  CAS  Google Scholar 

  37. Ajeeshkumar KK, Aneesh PA, Raju N, Suseela M, Ravishankar CN, Benjakul S. Advancements in liposome technology: preparation techniques and applications in food, functional foods, and bioactive delivery: a review. Compr Rev Food Sci Food Safe. 2021;20(2):1280–306.

    Article  CAS  Google Scholar 

  38. Munin A, Edwards-Lévy F. Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics. 2011;3(4):793–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Paramera EI, Karathanos VT, Konteles SJ. Yeast cells and yeast-based materials for microencapsulation. Microencapsul Food Ind. 2014;267–281. Academic Press

  40. Mokhtari S, Jafari SM, Khomeiri M, Maghsoudlou Y, Ghorbani M. The cell wall compound of Saccharomyces cerevisiae as a novel wall material for encapsulation of probiotics. Food Res Int. 2017;96:19–26.

    Article  CAS  PubMed  Google Scholar 

  41. Nguyen T-T, Phan-Thi H, Pham-Hoang B-N, Ho P-T, Tran TTT, Waché Y. Encapsulation of Hibiscus sabdariffa L. anthocyanins as natural colours in yeast. Food Res Int. 2018;107:275–80.

    Article  CAS  PubMed  Google Scholar 

  42. Lieu MD, Hoang TTH, Nguyen HNT, Dang TKT. Evaluation of anthocyanin encapsulation efficiency into yeast cell by plasmolysis, ethanol, and ultrasound treatments using alone or in combination. Food Res Int. 2020;4(2):557–62.

    Google Scholar 

  43. Parapouli M, Vasileiadis A, Afendra A-S, Hatziloukas E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol. 2020;6(1):1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dong LM, Hang HTT, Tran NHN, Thuy DTK. Improvement of anthocyanin encapsulation efficiency into yeast cell by plasmolysis, ethanol, and anthocyanin concentration using response surface methodology. Microbiol Biotechnol Lett. 2020;48(3):267–75.

    Article  CAS  Google Scholar 

  45. Dimopoulos G, Katsimichas A, Tsimogiannis D, Oreopoulou V, Taoukis P. Cell permeabilization processes for improved encapsulation of oregano essential oil in yeast cells. J Food Eng. 2021;294:110408.

    Article  CAS  Google Scholar 

  46. Kilcher G, Delneri D, Duckham C, Tirelli NJFD. Probing (macro) molecular transport through cell walls. Faraday Discuss. 2008;139:199–212.

    Article  CAS  PubMed  Google Scholar 

  47. Van der Rest M, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol Rev. 1995;59(2):304–22.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Coradello G, Tirelli N. Yeast cells in microencapsulation. General features and controlling factors of the encapsulation process. Molecules. 2021;26(1):3123.

  49. Normand V, Dardelle G, Bouquerand P-E, Nicolas L, Johnston DJ. Flavor encapsulation in yeasts: limonene used as a model system for characterization of the release mechanism. J Agric Food Chem. 2005;53(19):7532–43.

    Article  CAS  PubMed  Google Scholar 

  50. Kogani G, et al. Yeast cell wall polysaccharides as antioxidants and antimutagens: can they fight cancer? Minireview. Neoplasma. 2008;55(5):387.

    Google Scholar 

  51. Križková LV, Ďuračková Z, Šandula J, Sasinková V, Krajčovič J. Antioxidative and antimutagenic activity of yeast cell wall mannans in vitro. Mutat Res/Gen Toxicol Environ Mutagen. 2001;497(1–2):213–22.

    Article  Google Scholar 

  52. Sambrani R, Abdolalizadeh J, Kohan L, Jafari B. Saccharomyces cerevisiae inhibits growth and metastasis and stimulates apoptosis in HT-29 colorectal cancer cell line. Comp Clin Pathol. 2019;28(4):985–95.

    Article  CAS  Google Scholar 

  53. Bertolo AP, Biz AP, Kempka AP, Rigo E, Cavalheiro D. Yeast (Saccharomyces cerevisiae): evaluation of cellular disruption processes, chemical composition, functional properties and digestibility. J Food Sci Technol. 2019;56(8):3697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bishop JRP, Nelson G, Lamb J. Microencapsulation in yeast cells. J Microencapsul. 1998;15(6):761–73.

    Article  CAS  PubMed  Google Scholar 

  55. Paramera EI, Konteles SJ, Karathanos VT. Stability and release properties of curcumin encapsulated in Saccharomyces cerevisiae, β-cyclodextrin and modified starch. Food Chem. 2011;125(3):913–22.

    Article  CAS  Google Scholar 

  56. Czerniak A, Kubiak P, Białas W, Jankowski T. Improvement of oxidative stability of menhaden fish oil by microencapsulation within biocapsules formed of yeast cells. J Food Eng. 2015;167:2–11.

    Article  CAS  Google Scholar 

  57. Kavosi M, Mohammadi A, Shojaee-Aliabadi S, Khaksar R, Hosseini SM. Characterization and oxidative stability of purslane seed oil microencapsulated in yeast cells biocapsules. J Sci Food Agric. 2018;98(7):2490–7.

    Article  CAS  PubMed  Google Scholar 

  58. Fu J, Song L, Guan J, Sun C, Zhou D, Zhu B. Encapsulation of Antarctic krill oil in yeast cell microcarriers: evaluation of oxidative stability and in vitro release. Food Chem. 2021;338:128089.

    Article  CAS  PubMed  Google Scholar 

  59. de Andrade EWV, Hoskin RT, da Silva Pedrini MR. Ultrasound-assisted encapsulation of curcumin and fisetin into Saccharomyces cerevisiae cells: a multistage batch process protocol. Lett Appl Microbiol. 2022;75(6):1538–48.

    Article  PubMed  Google Scholar 

  60. Young S, Dea S, Nitin N. Vacuum facilitated infusion of bioactives into yeast microcarriers: evaluation of a novel encapsulation approach. Food Res Int. 2017;100:100–12.

    Article  CAS  PubMed  Google Scholar 

  61. Morris G, Winters L, Coulson G, Clarke K. Effect of osmotic stress on the ultrastructure and viability of the yeast Saccharomyces cerevisiae. Microbiology. 1986;132(7):2023–34.

    Article  CAS  Google Scholar 

  62. Sultana A, Miyamoto A, Hy QL, Tanaka Y, Fushimi Y, Yoshii H. Microencapsulation of flavors by spray drying using Saccharomyces cerevisiae. J Food Eng. 2017;199:36–41.

    Article  CAS  Google Scholar 

  63. Liu S, Tao M, Huang K. Encapsulation of mānuka essential oil in yeast microcarriers for enhanced thermal stability and antimicrobial activity. Food Bioprocess Technol. 2021;14:2195–206.

    Article  CAS  Google Scholar 

  64. Guerrero S, López-Malo A, Alzamora S. Effect of ultrasound on the survival of Saccharomyces cerevisiae: influence of temperature, pH and amplitude. Innov Food Sci Emerg Technol. 2001;2(1):31–9.

    Article  Google Scholar 

  65. Wu T, Yu X, Hu A, Zhang L, Jin Y, Abid M. Ultrasonic disruption of yeast cells: underlying mechanism and effects of processing parameters. Innov Food Sci Emerg Technol. 2015;28:59–65.

    Article  CAS  Google Scholar 

  66. Pham-Hoang BN, Romero-Guido C, Phan-Thi H, Waché Y. Strategies to improve carotene entry into cells of Yarrowia lipolytica in a goal of encapsulation. J Food Eng. 2018;224:88–94.

    Article  CAS  Google Scholar 

  67. Ciccolini L, Taillandier P, Wilhem A, Delmas H, Strehaiano P. Low frequency thermo-ultrasonication of Saccharomyces cerevisiae suspensions: effect of temperature and of ultrasonic power. Chem Eng J. 1997;65(2):145–9.

    Article  CAS  Google Scholar 

  68. Toepfl S, Heinz V, Knorr D. High intensity pulsed electric fields applied for food preservation. Chem Eng Process: Process Intensif. 2007;46(6):537–46.

    Article  CAS  Google Scholar 

  69. Lopez N, Puertolas E, Condon S, Raso J, Alvarez I. Enhancement of the solid-liquid extraction of sucrose from sugar beet (Beta vulgaris) by pulsed electric fields. LWT-Food Sci Technol. 2009;42(10):1674–80.

    Article  CAS  Google Scholar 

  70. Puértolas E, Cregenzán O, Luengo E, Álvarez I, Raso J. Pulsed-electric-field-assisted extraction of anthocyanins from purple-fleshed potato. Food Chem. 2013;136(3–4):1330–6.

    Article  PubMed  Google Scholar 

  71. López N, Puértolas E, Condón S, Álvarez I, Raso J. Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of Tempranillo grapes. Innov Food Sci Emerg Technol. 2008;9(4):477–82.

    Article  Google Scholar 

  72. Puértolas E, Luengo E, Álvarez I, Raso J. Improving mass transfer to soften tissues by pulsed electric fields: fundamentals and applications. Annu Rev Food Sci Technol. 2012;3:263–82.

    Article  PubMed  Google Scholar 

  73. Ganeva V, Galutzov B, Teissie J. Evidence that pulsed electric field treatment enhances the cell wall porosity of yeast cells. Appl Biochem Biotechnol. 2014;172(3):1540–52.

    Article  CAS  PubMed  Google Scholar 

  74. Stirke A, et al. The link between yeast cell wall porosity and plasma membrane permeability after PEF treatment. Sci Rep. 2019;9(1):1–10.

    Article  CAS  Google Scholar 

  75. Young S, Nitin N. Thermal and oxidative stability of curcumin encapsulated in yeast microcarriers. Food Chem. 2019;275:1–7.

    Article  CAS  PubMed  Google Scholar 

  76. Sultana A, Tanaka Y, Fushimi Y, Yoshii H. Stability and release behavior of encapsulated flavor from spray-dried Saccharomyces cerevisiae and maltodextrin powder. Food Res Int. 2018;106:809–16.

    Article  CAS  PubMed  Google Scholar 

  77. Dadkhodazade E, Khanniri E, Khorshidian N, Hosseini SM, Mortazavian AM, Moghaddas Kia E. Yeast cells for encapsulation of bioactive compounds in food products: a review. Biotechnol Prog. 2021;37(4):e3138.

    CAS  PubMed  Google Scholar 

  78. Dadkhodazade E, Mohammadi A, Shojaee-Aliabadi S, Mortazavian AM, Mirmoghtadaie L, Hosseini SM. Yeast cell microcapsules as a novel carrier for cholecalciferol encapsulation: development, characterization and release properties. Food Biophys. 2018;13(4):404–11.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Lieu My Dong contributed to the study conception and design. Data collection was performed by Lieu My Dong, Vo Thi Kim Ly, Le Gia Han, Nguyen Thi Bich Tien, and Dang Thi Kim Thuy. Data analysis was performed by Vo Thi Kim Ly and Lieu My Dong. The first draft of the manuscript was written by Lieu My Dong. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Dong My Lieu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lieu, D.M., Vo, L.T.K., Le, H.G. et al. Yeast cell as a potential microcapsule of bioactive compounds: an overview. Nutrire 49, 12 (2024). https://doi.org/10.1186/s41110-024-00257-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/s41110-024-00257-8

Keywords

Navigation