Skip to main content

Exploitation of Saccharomyces cerevisiae Enzymes in Food Processing and Preparation of Nutraceuticals and Pharmaceuticals

  • Chapter
  • First Online:
Microbial Enzymes: Roles and Applications in Industries

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 11))

Abstract

Saccharomyces cerevisiae enzymes are well recognized for high biodiversity and industrial applicability. This chapter sketches the main research trends concerning the functionalities of S. cerevisiae enzymes in food processing, ethanol industry, and production of new nutraceuticals and pharmaceuticals. We review the key aspects of the overall production process for the enzyme production and the recent strategies to identify and improve its catalyst properties. Finally, we summarize the classical and latest applications of S. cerevisiae enzymes in the food industry, with specific attention given to their role in changing the nutritional, digestibility, and sensory properties in a variety of food sectors like dairy, bakery, beverages, brewing, wine, fish processing, and sweeteners. Additionally, the use of S. cerevisiae enzymes in the production of functional foods, namely protein hydrolysates/autolysates, with provided health benefits by reducing the risk of chronic diseases, as well as its use in the formulation of new cosmetic and pharmaceutical products, is explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas CA (2006) Production of antioxidants, aromas, colours, flavours, and vitamins by yeasts. In: Querol A, Fleet G (eds) Yeasts in food and beverages. Springer, Berlin, Heidelberg, pp 285–334

    Chapter  Google Scholar 

  • Acourene S, Ammouche A (2012) Optimization of ethanol, citric acid, and α-amylase production from date wastes by strains of Saccharomyces cerevisiae, Aspergillus niger, and Candida guilliermondii. J Ind Microbiol Biotechnol 39:759–766

    Article  CAS  PubMed  Google Scholar 

  • Adrio J, Demain A (2014) Microbial enzymes: tools for biotechnological processes. Biomol Ther 4:117–139

    Google Scholar 

  • Agrawal PB, Pandit AB (2003) Isolation of α-glucosidase from Saccharomyces cerevisiae: cell disruption and adsorption. Biochem Eng J 15:37–45

    Article  CAS  Google Scholar 

  • Agyepong JK, Barimah J (2017) Evaluation of crude preparations of Saccharomyces cerevisiae (ATCC 52712) pectolytic enzymes in cassava starch extraction: effects of variety on yield and starch recovery rates. Afr J Biotechnol 16:2031–2042

    Article  CAS  Google Scholar 

  • Ahmad R, Sardar M (2015) Enzyme immobilization: an overview on nanoparticles as immobilization matrix. Biochem Anal Biochem 4:178

    Google Scholar 

  • Akaracharanya A, Kesornsit J, Leepipatpiboon N, Srinorakutara T, Kitpreechavanich V, Tolieng V (2011) Evaluation of the waste from cassava starch production as a substrate for ethanol fermentation by Saccharomyces cerevisiae. Ann Microbiol 61:431–436

    Article  CAS  Google Scholar 

  • Akardere E, Özer B, Çelem EB, Önal S (2010) Three-phase partitioning of invertase from Baker's yeast. Sep Purif Technol 72:335–339

    Article  CAS  Google Scholar 

  • Alimardani-Theuil P, Gainvors-Claisse A, Duchiron F (2011) Yeasts: an attractive source of pectinases - from gene expression to potential applications: a review. Process Biochem 46:1525–1537

    Article  CAS  Google Scholar 

  • AL-Sa'ady AJR (2014) Optimization of invertase production from Saccharomyces cerevisiae by solid state fermentation. Curr Res Microbiol Biotechnol 2:373–377

    Google Scholar 

  • Ametefe GD, Dzogbefia VP, Apprey C, Kwatia S (2017) Optimal conditions for pectinase production by Saccharomyces cerevisiae (ATCC 52712) in solid state fermentation and its efficacy in orange juice extraction. IOSR J Biotechnol. Biochemist 3:78–86

    Google Scholar 

  • Aruna TE, Aworh OC, Raji AO, Olagunju AI (2017) Protein enrichment of yam peels by fermentation with Saccharomyces cerevisiae (BY4743). Ann Agric Sci 62:33–37

    Article  Google Scholar 

  • Bae S-M, Park Y-C, Lee T-H, Kweon D-H, Choi J-H, Kim S-K, Ryu Y-W, Seo J-H (2004) Production of xylitol by recombinant Saccharomyces cerevisiae containing xylose reductase gene in repeated fed-batch and cell-recycle fermentations. Enzym Microb Technol 35:545–549

    Article  CAS  Google Scholar 

  • Bauer FF, NDLOVU T (2015) Method for preventing wine haze formation. WO2015162573A1

    Google Scholar 

  • Belmares R, Contreras-Esquivel JC, Rodrı́guez-Herrera R, ARr C, Aguilar CN (2004) Microbial production of tannase: an enzyme with potential use in food industry. LWT - Food Sci Technol 37:857–864

    Google Scholar 

  • Białas W, Szymanowska D, Grajek W (2010) Fuel ethanol production from granular corn starch using Saccharomyces cerevisiae in a long term repeated SSF process with full stillage recycling. Bioresour Technol 101:3126–3131

    Article  PubMed  CAS  Google Scholar 

  • Białecka-Florjańczyk E, Krzyczkowska J, Stolarzewicz I (2010) Catalytic activity of baker's yeast in ester hydrolysis. Biocatal Biotransformation 28:288–291

    Article  Google Scholar 

  • Blanco P, Sieiro C, Díaz A, Reboredo N, Villa T (1997) Grape juice biodegradation by polygalacturonases from Saccharomyces cerevisiae. Int Biodeterior Biodegradation 40:115–118

    Article  CAS  Google Scholar 

  • Blanco P, Sieiro C, Villa TG (1999) Production of pectic enzymes in yeasts. FEMS Microbiol Lett 175:1–9

    Article  CAS  PubMed  Google Scholar 

  • Bulter T, Alcalde M, Sieber V, Meinhold P, Schlachtbauer C, Arnold FH (2003) Functional expression of a fungal laccase in Saccharomyces cerevisiae by directed evolution. Appl Environ Microbiol 69:987–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443

    Article  CAS  PubMed  Google Scholar 

  • Cortivo PRD, Hickert LR, Hector R, Ayub MAZ (2018) Fermentation of oat and soybean hull hydrolysates into ethanol and xylitol by recombinant industrial strains of Saccharomyces cerevisiae under diverse oxygen environments. Ind Crop Prod 113:10–18

    Article  CAS  Google Scholar 

  • Costenoble R, Adler L, Niklasson C, Lidén G (2003) Engineering of the metabolism of Saccharomyces cerevisiae for anaerobic production of mannitol. FEMS Yeast Res 3:17–25

    CAS  PubMed  Google Scholar 

  • Degrassi G, Uotila L, Klima R, Venturi V (1999) Purification and properties of an esterase from the yeast Saccharomyces cerevisiae and identification of the encoding gene. Appl Environ Microbiol 65:3470–3472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djokoto D, Dzogbefia VP, Oldham JH (2006) Rapid extraction of pawpaw juice with the application of locally produced pectic enzymes from Saccharomyces cerevisiae ATCC 51712. Food Biotechnol 20:31–41

    Article  CAS  Google Scholar 

  • dos Santos Aguilar JG, Sato HH (2018) Microbial proteases: production and application in obtaining protein hydrolysates. Food Res Int 103:253–262

    Article  PubMed  CAS  Google Scholar 

  • Dzogbefia V, Amoke E, Oldham J, Ellis W (2001) Production and use of yeast pectolytic enzymes to aid pineapple juice extraction. Food Biotechnol 15:25–34

    Article  CAS  Google Scholar 

  • Dzogbefia V, Ofosu G, Oldham J (2008) Evaluation of locally produced Saccharomyces cerevisiae pectinase enzyme for industrial extraction of starch from cassava in Ghana. Sci Res Essay 3:365–369

    Google Scholar 

  • Faria-Oliveira F, Puga S, Ferreira C (2013) Yeast: world’s finest chef. In Food Industry Innocenzo Muzzalupo, IntechOpen

    Google Scholar 

  • Fernandes P, Carvalho F (2017) Chapter 19 - microbial enzymes for the food industry. In: Brahmachari G, Demain AL, Adrio JL (eds) Biotechnology of microbial enzymes - production, biocatalysis and industrial applications. Elsevier, Academic Press, San Diego, CA, pp 513–544

    Google Scholar 

  • Ferreira IM, Pinho O, Vieira E, Tavarela JG (2010) Brewer's Saccharomyces yeast biomass: characteristics and potential applications. Trends Food Sci Technol 21:77–84

    Article  CAS  Google Scholar 

  • Gainvors A, Frezier V, Lemaresquier H, Lequart C, Aigle M, Belarbi A (1994) Detection of polygalacturonase, pectin-lyase and pectin-esterase activities in a Saccharomyces cerevisiae strain. Yeast 10:1311–1319

    Article  CAS  PubMed  Google Scholar 

  • Ganeva V, Galutzov B, Teissié J (2003) High yield electroextraction of proteins from yeast by a flow process. Anal Biochem 315:77–84

    Article  CAS  PubMed  Google Scholar 

  • Grohmann K, Baldwin EA, Buslig BS (1994) Production of ethanol from enzymatically hydrolyzed orange peel by the yeast Saccharomyces cerevisiae. Appl Biochem Biotechnol 45:315

    Article  PubMed  Google Scholar 

  • Gummadi SN, Panda T (2003) Purification and biochemical properties of microbial pectinases - a review. Process Biochem 38:987–996

    Article  CAS  Google Scholar 

  • Hashem M, Darwish SM (2010) Production of bioethanol and associated by-products from potato starch residue stream by Saccharomyces cerevisiae. Biomass Bioenergy 34:953–959

    Article  CAS  Google Scholar 

  • Hecht KA, O'Donnell AF, Brodsky JL (2014) The proteolytic landscape of the yeast vacuole. Cell Logist 4:e28023

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang G, Chen S, Dai C, Sun L, Sun W, Tang Y, Xiong F, He R, Ma H (2017) Effects of ultrasound on microbial growth and enzyme activity. Ultrason Sonochem 37:144–149

    Article  CAS  PubMed  Google Scholar 

  • Kanauchi O, Igarashi K, Ogata R, Mitsuyama K, Andoh A (2005) A yeast extract high in bioactive peptides has a blood-pressure lowering effect in hypertensive model. Curr Med Chem 12:3085–3090

    Article  CAS  PubMed  Google Scholar 

  • Karthik N, Binod P, Pandey A (2017) 15 - Chitinases. In: Larroche C, Sanroman MA, Du G, Pandey A (eds) Current developments in biotechnology and bioengineering. Elsevier, Amsterdam, pp 335–368

    Chapter  Google Scholar 

  • Kim B-W, Kim H-W, Nam S-W (1997) Continuous production of fructose-syrups from inulin by immobilized inulinase from recombinant Saccharomyces cerevisiae. Biotechnol Bioprocess Eng 2:90–93

    Article  Google Scholar 

  • Kim J-H, Kim H-R, Lim M-H, Ko H-M, Chin J-E, Lee HB, Kim I-C, Bai S (2010) Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, α-amylase and debranching enzyme. Biotechnol Lett 32:713–719

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Kesavapillai B (2012) Stimulation of extracellular invertase production from spent yeast when sugarcane pressmud used as substrate through solid state fermentation. Springerplus 1:81

    Google Scholar 

  • Lane S, Dong J, Jin Y-S (2018) Value-added biotransformation of cellulosic sugars by engineered Saccharomyces cerevisiae. Bioresour Technol 260:380–394

    Article  CAS  PubMed  Google Scholar 

  • Lee W-J, Ryu Y-W, Seo J-H (2000) Characterization of two-substrate fermentation processes for xylitol production using recombinant Saccharomyces cerevisiae containing xylose reductase gene. Process Biochem 35:1199–1203

    Article  CAS  Google Scholar 

  • Liu D, Lebovka N, Vorobiev E (2013) Impact of electric pulse treatment on selective extraction of intracellular compounds from Saccharomyces cerevisiae yeasts. Food Bioprocess Technol 6:576–584

    Article  CAS  Google Scholar 

  • Liu X, Kokare C (2017) Chapter 11 - microbial enzymes of use in industry. In: Brahmachari G, Demain AL, Adrio JL (eds) Biotechnology of microbial enzymes - production, biocatalysis and industrial applications. Elsevier, Academic Press, London, pp 267–298

    Google Scholar 

  • Lopes LMM, Costa Batista LH, Gouveia MJ, Leite TCC, de Mello MRF, de Assis SA, de Sena AR (2018) Kinetic and thermodynamic parameters, and partial characterization of the crude extract of tannase produced by Saccharomyces cerevisiae CCMB 520. Nat Prod Res 32:1068–1075

    Article  CAS  PubMed  Google Scholar 

  • Lushchak VI, Gospodaryov DV (2005) Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell Biol Int 29:187–192

    Article  CAS  PubMed  Google Scholar 

  • Madeira JV Jr, Contesini FJ, Calzado F, Rubio MV, Zubieta MP, Lopes DB, de Melo RR (2017) Chapter 18—Agro-industrial residues and microbial enzymes: an overview on the eco-friendly bioconversion into high value-added products. In: Brahmachari G, Demain AL, Adrio JL (eds) Biotechnology of microbial enzymes - production, biocatalysis and industrial applications. Elsevier, Academic Press, London, pp 475–511

    Google Scholar 

  • Marangon M, Van Sluyter SC, Neilson KA, Chan C, Haynes PA, Waters EJ, Falconer RJ (2011) Roles of grape thaumatin-like protein and chitinase in white wine haze formation. J Agric Food Chem 59:733–740

    Article  CAS  PubMed  Google Scholar 

  • Marsit S, Dequin S (2015) Diversity and adaptive evolution of Saccharomyces wine yeast: a review. FEMS Yeast Res 15:fov067-fov067

    Google Scholar 

  • Martı́n C, Galbe M, Wahlbom CF, Hahn-Hägerdal B, Jönsson LJ (2002) Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzym Microb Technol 31:274–282

    Google Scholar 

  • Mirzaei M, Mirdamadi S, Ehsani MR, Aminlari M, Hosseini E (2015) Purification and identification of antioxidant and ACE-inhibitory peptide from Saccharomyces cerevisiae protein hydrolysate. J Funct Foods 19:259–268

    Article  CAS  Google Scholar 

  • Mobini-Dehkordi M, Afzal Javan F (2012) Application of alpha-amylase in biotechnology. J Biol Today’s World 1:15–20

    Google Scholar 

  • Mogharabi M, Faramarzi MA (2014) Laccase and laccase-mediated systems in the synthesis of organic compounds. Adv Synth Catal 356:897–927

    Article  CAS  Google Scholar 

  • Nadir N, Mel M, Karim A, Ismail M, Mohd Yunus R (2009) Comparison of sweet sorghum and cassava for ethanol production by using Saccharomyces cerevisiae. J Appl Sci 9:3068–3073

    Article  CAS  Google Scholar 

  • Nakatani Y, Yamada R, Ogino C, Kondo A (2013) Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose. Microb Cell Factories 12:66

    Article  CAS  Google Scholar 

  • Nandy SK, Srivastava RK (2018) A review on sustainable yeast biotechnological processes and applications. Microbiol Res 207:83–90

    Article  CAS  PubMed  Google Scholar 

  • Nuanpeng S, Thanonkeo S, Klanrit P, Thanonkeo P (2018) Ethanol production from sweet sorghum by Saccharomyces cerevisiae DBKKUY-53 immobilized on alginate-loofah matrices. Braz J Microbiol 49:140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh EJ, Ha S-J, Kim SR, Lee W-H, Galazka JM, Cate JH, Jin Y-S (2013) Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metab Eng 15:226–234

    Article  CAS  PubMed  Google Scholar 

  • Onilude AA, Fadaunsi IF, Garuba EO (2012) Inulinase production by Saccharomyces sp. in solid state fermentation using wheat bran as substrate. Ann Microbiol 62:843–848

    Article  CAS  Google Scholar 

  • Park Y-C, Oh EJ, Jo J-H, Jin Y-S, Seo J-H (2016) Recent advances in biological production of sugar alcohols. Curr Opin Biotechnol 37:105–113

    Article  CAS  PubMed  Google Scholar 

  • Parrella A, Caterino E, Cangiano M, Criscuolo E, Russo C, Lavorgna M, Isidori M (2012) Antioxidant properties of different milk fermented with lactic acid bacteria and yeast. Int J Food Sci Tech 47:2493–2502

    Google Scholar 

  • Pedrolli DB, Monteiro AC, Gomes E, Carmona EC (2009) Pectin and pectinases: production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnol J 3:9–18

    Article  CAS  Google Scholar 

  • Rasika D, Ueda T, Jayakody L, Suriyagoda L, Silva K, Ando S, Vidanarachchi J (2015) ACE-inhibitory activity of milk fermented with Saccharomyces cerevisiae K7 and Lactococcus lactis subsp. lactis NBRC 12007. J Natl Sci Found 43:141–151

    Google Scholar 

  • Ribereau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (2006) Handbook of enology, volume 1: the microbiology of wine and vinification. John Wiley & Sons, Ltd, Chichester, UK. ISBN 0, 471(97362)

    Book  Google Scholar 

  • Roy MK, Watanabe Y, Tamai Y (1999) Induction of apoptosis in HL-60 cells by skimmed milk digested with a proteolytic enzyme from the yeast Saccharomyces cerevisiae. J Biosci Bioeng 88:426–432

    Article  CAS  PubMed  Google Scholar 

  • Roy MK, Watanabe Y, Tamai Y (2000) Yeast protease B-digested skimmed milk inhibits angiotensin-I-converting-enzyme activity. Biotechnol Appl Biochem 31:95–100

    Article  CAS  PubMed  Google Scholar 

  • Saranraj P, Sivasakthivelan P, Suganthi K (2017) Baker’s yeast: historical development, genetic characteristics, biochemistry, fermentation and downstream processing. J Acad Ind Res (JAIR) 6:111–119

    CAS  Google Scholar 

  • Schousboe I (1976) Properties of triacylglycerol lipase in a mitochondrial fraction from baker's yeast (Saccharomyces cerevisiae). Biochim Biophys Acta (BBA)-Lipids and Lipid Metabolism 450:165–174

    Article  CAS  Google Scholar 

  • Seip JE, Di Cosimo R (1992) Optimization of accessible catalase activity in polyacrylamide gel-immobilized Saccharomyces cerevisiae. Biotechnol Bioeng 40:638–642

    Article  CAS  PubMed  Google Scholar 

  • Sharma VK, Kumar N, Prakash T, Taylor TD (2009) MetaBioME: a database to explore commercially useful enzymes in metagenomic datasets. Nucleic Acids Res 38:D468–D472

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi S, Valle-Rodríguez JO, Khoomrung S, Siewers V, Nielsen J (2012) Functional expression and characterization of five wax ester synthases in Saccharomyces cerevisiae and their utility for biodiesel production. Biotechnol Biofuels 5:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shynkaryk M, Lebovka N, Lanoisellé J-L, Nonus M, Bedel-Clotour C, Vorobiev E (2009) Electrically-assisted extraction of bio-products using high pressure disruption of yeast cells (Saccharomyces cerevisiae). J Food Eng 92:189–195

    Article  Google Scholar 

  • Singh RS, Singh RP (2017) 18 - Inulinases. In: Pandey A, Negi S, Soccol CR (eds) Current developments in biotechnology and bioengineering - production, isolation and purification of industrial products. Elsevier, Amsterdam, pp 423–446

    Google Scholar 

  • Singh SK, Sczakas G, Soccol CR, Pandey A (2008) Production of enzymes by solid-state fermentation. In: Pandey A, Negi S, Soccol CR (eds) Current developments in solid-state fermentation. Springer, pp 183–204

    Google Scholar 

  • Spier M, Nogueira A, Alberti A, Gomes T, Dhillon G (2016) Potential applications of enzymes in brewery and winery. In: Dhillon GS, Kaur S (eds) Agro-industrial wastes as feedstock for enzyme production - apply and exploit the emerging and valuable use options of waste biomass. Elsevier, Academic Press, London, pp 261–278

    Google Scholar 

  • Sundarram A, Murthy TPK (2014) α-Amylase production and applications: a review. J Appl Environ Microbiol 2:166–175

    Google Scholar 

  • Taketani S, Nishino T, Katsuki H (1981) Purification and properties of sterol-ester hydrolase from Saccharomyces cerevisiae. J Biochem 89:1667–1673

    Article  CAS  PubMed  Google Scholar 

  • Tavano OL (2013) Protein hydrolysis using proteases: an important tool for food biotechnology. J Mol Catal B Enzym 90:1–11

    Article  CAS  Google Scholar 

  • van Zyl W, den Haan R, Rose S, la Grange D (2015) Expression of fungal hydrolases in Saccharomyces cerevisiae. In: Himmel ME (ed) Direct microbial conversion of biomass to advanced biofuels. Elsevier, Waltham, MA, pp 153–175

    Google Scholar 

  • Venkateshwaran G, Somashekar D, Prakash MH, Agrawal R, Basappa SC, Joseph R (1999) Production and utilization of catalase using Saccharomyces cerevisiae. Process Biochem 34:187–191

    Article  CAS  Google Scholar 

  • Vermeirssen V, Van Camp J, Decroos K, Van Wijmelbeke L, Verstraete W (2003) The impact of fermentation and in vitro digestion on the formation of angiotensin-I-converting enzyme inhibitory activity from pea and whey protein. J Dairy Sci 86:429–438

    Article  CAS  PubMed  Google Scholar 

  • Vieira E, Brandão T, Ferreira IM (2013) Evaluation of Brewer's spent yeast to produce flavor enhancer nucleotides: influence of serial repitching. J Agric Food Chem 61:8724–8729

    Article  CAS  PubMed  Google Scholar 

  • Vieira E, Teixeira J, Ferreira IM (2016a) Valorization of brewers’ spent grain and spent yeast through protein hydrolysates with antioxidant properties. Eur Food Res Technol 242:1975–1984

    Article  CAS  Google Scholar 

  • Vieira EF, Carvalho J, Pinto E, Cunha S, Almeida AA, Ferreira IM (2016c) Nutritive value, antioxidant activity and phenolic compounds profile of brewer’s spent yeast extract. J Food Compost Anal 52:44–51

    Article  CAS  Google Scholar 

  • Vieira EF, da Silva DD, Carmo H, Ferreira IM (2017a) Protective ability against oxidative stress of brewers’ spent grain protein hydrolysates. Food Chem 228:602–609

    Article  CAS  PubMed  Google Scholar 

  • Vieira EF, das Neves J, Vitorino R, Dias da Silva D, Carmo H, Ferreira IM (2016b) Impact of in vitro gastrointestinal digestion and transepithelial transport on antioxidant and ACE-inhibitory activities of Brewer's spent yeast autolysate. J Agric Food Chem 64:7335–7341

    Article  CAS  PubMed  Google Scholar 

  • Vieira EF, Ferreira IM (2017) Antioxidant and antihypertensive hydrolysates obtained from by-products of cannery sardine and brewing industries. Int J Food Prop 20:662–673

    Article  CAS  Google Scholar 

  • Vieira EF, Melo A, Ferreira IM (2017d) Autolysis of intracellular content of Brewer's spent yeast to maximize ACE-inhibitory and antioxidant activities. LWT—Food Sci Technol 82:255–259

    Article  CAS  Google Scholar 

  • Vieira EF, Pinho O, Ferreira IM (2017b) Bio-functional properties of sardine protein hydrolysates obtained by brewer's spent yeast and commercial proteases. J Sci Food Agric 97:5414–5422

    Article  CAS  PubMed  Google Scholar 

  • Vieira EF, Van Camp J, Ferreira IM, Grootaert C (2017c) Protein hydrolysate from canned sardine and brewing by-products improves TNF-α-induced inflammation in an intestinal-endothelial co-culture cell model. Eur J Nutr:1–12

    Google Scholar 

  • Wangpor J, Prayoonyong P, Sakdaronnarong C, Sungpet A, Jonglertjunya W (2017) Bioethanol production from cassava starch by enzymatic hydrolysis, fermentation and ex-situ nanofiltration. Energy Procedia 138:883–888

    Article  CAS  Google Scholar 

  • Wilkins MR, Widmer WW, Grohmann K (2007) Simultaneous saccharification and fermentation of citrus peel waste by Saccharomyces cerevisiae to produce ethanol. Process Biochem 42:1614–1619

    Article  CAS  Google Scholar 

  • Younes B, Cilindre C, Jeandet P, Vasserot Y (2013) Enzymatic hydrolysis of thermo-sensitive grape proteins by a yeast protease as revealed by a proteomic approach. Food Res Int 54:1298–1301

    Article  CAS  Google Scholar 

  • Younes B, Cilindre C, Villaume S, Parmentier M, Jeandet P, Vasserot Y (2011) Evidence for an extracellular acid proteolytic activity secreted by living cells of Saccharomyces cerevisiae PlR1: impact on grape proteins. J Agric Food Chem 59:6239–6246

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Kim S-K (2012) Chapter 28—Application of marine microbial enzymes in the food and pharmaceutical industries. In: Kim S-K (ed) Advances in food and nutrition research. Academic Press, Cambridge, MA, pp 423–435

    Google Scholar 

Download references

Acknowledgments

Conflicts of Interest: The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elsa F. Vieira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vieira, E.F., Delerue-Matos, C. (2020). Exploitation of Saccharomyces cerevisiae Enzymes in Food Processing and Preparation of Nutraceuticals and Pharmaceuticals. In: Arora, N., Mishra, J., Mishra, V. (eds) Microbial Enzymes: Roles and Applications in Industries. Microorganisms for Sustainability, vol 11. Springer, Singapore. https://doi.org/10.1007/978-981-15-1710-5_2

Download citation

Publish with us

Policies and ethics