Skip to main content
Log in

Electronic, elastic, optic, thermal dynamic, and thermoelectric properties of the half-Heusler compounds ZrCoBi and TiCoBi

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, the electronic energy band, elastic, optic, thermal dynamic, and thermoelectric properties of two half-Heusler alloys ZrCoBi and TiCoBi were investigated by using density functional theory. The phonon dispersion and elastic constants confirmed that ZrCoBi and TiCoBi were dynamically and mechanically stable. The elastic constants showed that these two half-Heuslers had better plasticity and that the mechanical properties were strongly direction dependent. In addition, the optics were thoroughly discussed, and ZrCoBi and TiCoBi were found to be promising optical materials. Finally, the thermal characteristics and thermoelectric properties of the materials were investigated and fully analysed. Our investigation demonstrated that both ZrCoBi and TiCoBi were p-type thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data generated or analysed during this study are included in this published article.]

References

  1. J.K. Kawasaki et al., MRS Bull. 47, 555 (2022)

    Article  ADS  Google Scholar 

  2. C.J. Palmstrøm, Prog. Cryst. Growth Charact. Mater. 62, 371 (2016)

    Article  Google Scholar 

  3. K. Elphick et al., Sci. Technol. Adv. Mater. 22, 235 (2021)

    Article  Google Scholar 

  4. L. Huang et al., Mater. Res. Bull. 76, 107 (2016)

    Article  Google Scholar 

  5. S. Anand et al., Joule. 3, 1226 (2019)

    Article  Google Scholar 

  6. T. Graf, C. Felser, S.S.P. Parkin, Prog. Solid State Chem. 39, 1–50 (2011)

    Article  Google Scholar 

  7. X.Y. Dong et al., J. Cryst. Growth 254, 384 (2003)

    Article  ADS  Google Scholar 

  8. I. Galanakis, P.H. Dederichs, N. Papanikolaou, Phys. Rev. B. 66, 134428 (2002)

    Article  ADS  Google Scholar 

  9. Q. Ren et al., Nat. Commun. 11, 3142 (2020)

    Article  ADS  Google Scholar 

  10. S. He et al., J. Mater. Chem. A. 10, 13476 (2022)

    Article  Google Scholar 

  11. G. Fiedler, P. Kratzer, Phys. Rev. B. 94, 075203 (2016)

    Article  ADS  Google Scholar 

  12. G. Surucu et al., Physica B 587, 412146 (2020)

    Article  Google Scholar 

  13. H. Ma et al., J. Phys. D Appl. Phys. 52, 255501 (2019)

    Article  ADS  Google Scholar 

  14. H. Zhu et al., Nat. Commun. 9, 2497 (2018)

    Article  ADS  Google Scholar 

  15. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  16. M.C. Payne et al., Rev. Mod. Phys. 64, 1045 (1992)

    Article  ADS  Google Scholar 

  17. H.C. Cheng, C.F. Yu, W.H. Chen, J. Alloys Compd. 546, 286 (2013)

    Article  Google Scholar 

  18. S. Li, X. Ju, C. Wan, J. Alloys Compd. 593, 169 (2014)

    Article  Google Scholar 

  19. H.C. Cheng, C.F. Yu, W.H. Chen, Comp. Mater. Sci. 81, 146 (2014)

    Article  Google Scholar 

  20. Z.G. Mei, M. Stan, J. Yang, J. Alloys Compd. 60, 282 (2014)

    Article  Google Scholar 

  21. J.D. Head, M.C. Zerner, Chem. Phys. Lett. 122, 264 (1985)

    Article  ADS  Google Scholar 

  22. J. Yang et al., Adv. Funct. Mater. 18, 2880 (2008)

    Article  Google Scholar 

  23. N. Ibrahim et al., Mater. Today Commun. 32, 103908 (2022)

    Article  Google Scholar 

  24. S. Curtarolo et al., Comp. Mater. Sci. 58, 227 (2012)

    Article  Google Scholar 

  25. J. Wang, Y. Zhou, Phys. Rev. B. 69, 214111 (2004)

    Article  ADS  Google Scholar 

  26. Z.J. Wu et al., Phys. Rev. B. 76, 054115 (2007)

    Article  ADS  Google Scholar 

  27. R. Hill, Proc. Phys. Soc. A 65, 349 (1952)

    Article  ADS  Google Scholar 

  28. O. Beckstein et al., Phys. Rev. B 63, 134112 (2001)

    Article  ADS  Google Scholar 

  29. P.H. Mott, C.M. Roland, Phys. Rev. B. 80, 132104 (2009)

    Article  ADS  Google Scholar 

  30. Y. Cao et al., Comp. Mater. Sci. 69, 40 (2013)

    Article  Google Scholar 

  31. F.W. Vahldiek and Mersol S.A. Springer New York, NY, (1968)

  32. S. Saha, T.P. Sinha, A. Mookerjee, Phys. Rev. B. 62, 8828 (2000)

    Article  ADS  Google Scholar 

  33. L. Li et al., J. Phys. Chem. C 113, 8460 (2009)

    Article  Google Scholar 

  34. O.L. Anderson, J. Phys. Chem. Solids 24, 909 (1963)

    Article  ADS  Google Scholar 

  35. M. Wang et al., Mater. Chem. Phys. 197, 145 (2017)

    Article  ADS  Google Scholar 

  36. L. Qi et al., J. Alloys Compd. 621, 383 (2015)

    Article  Google Scholar 

  37. W.C. Hu et al., Comp. Mater. Sci. 83, 27 (2014)

    Article  Google Scholar 

  38. Z. Chen et al., J. Appl. Phys. 117, 085904 (2015)

    Article  ADS  Google Scholar 

  39. S.-F. Wang et al., Mater. Chem. Phys. 85, 432 (2004)

    Article  Google Scholar 

  40. C. Toher et al., Phys. Rev. B 90, 174107 (2014)

    Article  ADS  Google Scholar 

  41. J. Carrete et al., Phys. Rev. X 4, 011019 (2014)

    Google Scholar 

  42. A. Hao et al., Mater. Chem. Phys. 129, 99 (2011)

    Article  ADS  Google Scholar 

  43. H.R. Lei et al., Solid State Sci. 48, 49 (2015)

    Article  ADS  Google Scholar 

  44. S. Feng, S. Li, H. Fu, Comp. Mater. Sci. 82, 45 (2014)

    Article  Google Scholar 

  45. C.L. Julian, Phys. Rev. 137, A128 (1965)

    Article  ADS  Google Scholar 

  46. O.L. Anderson, J. Phys. Chem. Solids 12, 41 (1959)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China Regional Fund (GrantNo. 12364017 and GrantNo. 12264001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shao-Bo Chen or Wan-Jun Yan.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SB., Yan, WJ. & Gao, TH. Electronic, elastic, optic, thermal dynamic, and thermoelectric properties of the half-Heusler compounds ZrCoBi and TiCoBi. Eur. Phys. J. Plus 138, 966 (2023). https://doi.org/10.1140/epjp/s13360-023-04592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04592-z

Navigation