Skip to main content
Log in

A DFT Study of Structural, Electronic, Optical, and Thermoelectric Properties of TMX (TM = Mo and W; X = N, P, and As) Compounds

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Structural, electronic, optical, thermoelectric ,and elastic properties of Mo- and W-based group-V compounds, TMX (TM = Mo and W; X = N, P, and As) have been studied by using the full-potential linear augmented plane wave method. Local spin density approximation (LSDA) has been used for exchange–correlation potentials. Pressure-dependent lattice constants and bulk moduli have been obtained using LSDA. Volume optimization, with and without spin-polarization, reveal that the WC-type hexagonal phase (MoN, MoP, and WN) and MoAs and WP in MnP-type orthorhombic phase are energetically stable in a non-magnetic phase. The electronic properties show that all these materials are metallic in nature, while the optical properties showed high reflectivity and low transmission. The thermoelectric properties have also been elaborated, and, as these materials have zero band gap values, they showed high thermal conductivity at high temperatures with low Seebeck and almost constant electrical conductivity. Moreover, the elastic properties of these two phases are surprising with their high bulk and shear moduli. All the materials fall in the category of super-hard materials with ductile and brittle characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. S. Chu, Y. Cui, and N. Liu, The path towards sustainable energy. Nat. Mater. 16, 16 (2019).

    Google Scholar 

  2. M. Aneke and M. Wang, Energy storage technologies and real life applications. Appl. Energy 179, 350 (2016).

    Google Scholar 

  3. J. Wang, F. Xie, X.H. Cao, S.C. An, W.X. Zhou, L.M. Tang, and K.Q. Chen, Excellent thermoelectric properties in monolayer WSe2 nanoribbons due to ultra low phonon thermal conductivity. Sci. Rep. 7, 41418 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. S. Kumar and U. Schwingenschlogl, Thermoelectric response of bulk and monolayer MoSe2 and WSe2. Chem. Mater. 27, 1278 (2015).

    CAS  Google Scholar 

  5. J. Yang, L. Xi, W. Qiu, L. Wu, X. Shi, L. Chen, J. Yang, W. Zhang, C. Uder, and D.J. Singh, On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory−experiment perspective. NPJ Comput. Mater. 2, 1 (2016).

    Google Scholar 

  6. J.M. Skelton, S.C. Parker, A. Togo, I. Tanaka, and A. Walsh, Thermal physics of the lead chalcogenides PbS, PbSe, and PbTe from first principles. Phys. Rev. B 89, 205203 (2014).

    Google Scholar 

  7. D. Xie, B. Zhang, A. Zhang, Y. Chen, Y. Yan, H. Yang, G. Wang, G. Wang, X. Han, G. Han, X. Lu, and X. Zhou, High thermoelectric performance of Cu3SbSe4 nano crystals with Cu2−xSe in situ inclusions synthesized by a microwave-assisted solvothermal method. Nanoscale 10, 14546 (2018).

    CAS  PubMed  Google Scholar 

  8. T. Ouyang, E.L. Jiang, C. Tang, J. Li, C.Y. He, and J.X. Zhong, Thermal and thermoelectric properties of monolayer Indium triphosphide (InP3) a first-principles study. J. Mater. Chem. A 6, 21532 (2018).

    CAS  Google Scholar 

  9. Y. Saeed, B. Amin, H. Khalil, F. Rehman, H. Ali, M.I. Khan, A. Mahmood, and M. Shafiq, Cs2NaGaBr6: a new lead-free and direct band gap halide double perovskite. RSC Adv. 30, 17444 (2020).

    Google Scholar 

  10. B.L. Li and K.Q. Chen, Effects of electron-phonon interactions on the spin-dependent Seebeck effect in graphene nano ribbons. Carbon 119, 548 (2017).

    CAS  Google Scholar 

  11. Y. Zhao, L. Yang, L. Kong, M.H. Nai, D. Liu, J. Wu, Y. Liu, S.Y. Chiam, W.K. Chim, C.T. Lim, B. Li, J.T.L. Thong, and K. Hippalgaonkar, Ultralow thermal conductivity of single-crystalline porous silicon nano wires. Adv. Funct. Mater. 27, 1702824 (2017).

    Google Scholar 

  12. Z. Wang, L. Zhao, K.F. Mak, and J. Shan, Probing the spin-polarized electronic band structure in mono-layer transition metal dichalcogenides by optical spectroscopy. Nano Lett. 17, 740 (2017).

    CAS  PubMed  Google Scholar 

  13. X.Y. Mi, X. Yu, K.L. Yao, X. Huang, N. Yang, and J.T. Lu, Efficient calculation of inelastic vibration signals in electron transport: beyond the wide-band approximation. Nano Lett. 15, 5229 (2015).

    CAS  PubMed  Google Scholar 

  14. B. Ozdamar, G. Ozbal, M.N. Cinar, K. Sevim, G. Kurt, B. Kaya, and H. Sevincli, Structural, vibrational, and electronic properties of single-layer hexagonal crystals of group IV and V elements. Phys. Rev. B 98, 045431 (2018).

    CAS  Google Scholar 

  15. P. Zhao, J. Li, W. Wei, Q. Sun, H. Jin, B. Hao, and Y.D. Huang, Giant anisotropic photogalvanic effect in a flexible AsSb monolayer with ultrahigh carrier mobility. Phys. Chem. Chem. Phys. 19, 27233 (2017).

    CAS  PubMed  Google Scholar 

  16. R.N. Somaiya, Y.A. Sonvane, and S.K. Gupta, Exploration of the strain and thermoelectric properties of hexagonal SiX (X = N, P, As, Sb, and Bi) monolayers. Phys. Chem. Chem. Phys. 22, 3990 (2020).

    CAS  PubMed  Google Scholar 

  17. A.H. Reshak, Thermoelectric properties of fully hydrogenated graphene: Semi-classical Boltzmann theory. J. Appl. Phys. 117, 225104 (2015).

    Google Scholar 

  18. A.H. Reshak, Exploring and exploiting the influence of the compression mechanism on the transport properties of CrF3. RSC Adv. 5, 47569 (2015).

    CAS  Google Scholar 

  19. A.H. Reshak, Transport properties of g-BC3 and t-BC3 phases. RSC Adv. 5, 33632 (2015).

    CAS  Google Scholar 

  20. G. Ding, G. Gao, and K. Yao, High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds. Sci. Rep. 5, 9567 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. L.D. Zhao, S.H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, and M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373 (2014).

    CAS  PubMed  Google Scholar 

  22. L.D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, and V.P. Dravid, Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 351, 141 (2016).

    CAS  PubMed  Google Scholar 

  23. A.Y. Ganin, L. Kienle, and G.V. Vajenine, Synthesis and characterization of hexagonal molybdenum nitrides. J. Solid State Chem. 179, 2339 (2006).

    CAS  Google Scholar 

  24. B. Winkler, K. Knorr, M. Hytha, V. Milman, V. Soto, and M. Avalos, Crystal chemistry of molybdenum phosphides from density functional theory calculations. J. Phys. Chem. Solid 64, 405 (2003).

    CAS  Google Scholar 

  25. D.A. Papaconstantopoulos, W.E. Pickett, B.M. Klein, and L.L. Boyer, Electronic properties of transition-metal nitrides: The group-V and group-VI nitrides VN, NbN, TaN, CrN, MoN, and WN. Phys. Rev. B 31, 752 (1985).

    CAS  Google Scholar 

  26. G. Jaiganesh, R.D. Eithiraj, and G. Kalpana, Theoretical study of electronic, magnetic and structural properties of Mo and W based group V (N, P, As, Sb and Bi) compounds. Comput. Mater. Sci. 49, 112 (2010).

    CAS  Google Scholar 

  27. C. Tayran and M. Çakmak, Electronic structure, phonon and superconductivity for WP 5d-transition metal. J. Appl. Phys. 126, 175103 (2019).

    Google Scholar 

  28. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k; an augmented plane wave plus local orbital program for calculating crystal properties (Austria: Vienna University of Technology, 2001).

    Google Scholar 

  29. A. Hassan, M. Ismail, A.H. Reshak, Z. Zada, A.A. Khan, M. Arif, K. Siraj, S. Zada, G. Murtaza, and M.M. Ramli, Effect of heteroatoms on structural, electronic and spectroscopic properties of polyfuran, polythiophene and polypyrrole: a hybrid DFT approach. J. Molec. Struct. 1274, 134484 (2023).

    CAS  Google Scholar 

  30. H. Yu, H. Huang, A.H. Reshak, S. Auluck, L. Liu, T. Ma, and Y. Zhang, Coupling ferroelectric polarization and anisotropic charge migration for enhanced CO2 photoreduction. Appl. Catalys. B:Envir 284, 119709 (2021).

    CAS  Google Scholar 

  31. R. Ullah, A.H. Reshak, M.A. Ali, A. Khan, G. Murtaza, M. Al-Anazy, H. Althib, and T.H. Flemban, Pressure-dependent elasto-mechanical stability and thermoelectric properties of MYbF3 (M=Rb, Cs) materials for renewable energy. Int. J. Energy Res. 45, 8711 (2021).

    CAS  Google Scholar 

  32. H. Tabassam, A.H. Reshak, G. Murtaza, S. Muhammad, A. Laref, M. Yousaf, A.M. Al Bakri, and J. Bila, Co2 YZ (Y= Cr, Nb, Ta, V and Z= Al, Ga) Heusler alloys under the effect of pressure and strain. J. Mol. Graph. Model. 104, 107841 (2021).

    CAS  PubMed  Google Scholar 

  33. R. Singla, S. Kumar, T.A. Hackett, A.H. Reshak, and M.K. Kashyap, Genesis of magnetism in graphene/MoS2 van der Waals heterostructures via interface engineering using Cr-adsorption. J. Alloys Compd. 859, 157776 (2021).

    CAS  Google Scholar 

  34. D.M. Hoat, S. Amirian, H. Alborznia, A. Laref, A.H. Reshak, and M. Naseri, Strain effect on the electronic and optical properties of 2D Tetrahex carbon: a DFT-based study. Indian J. Phys. 95, 2365 (2021).

    CAS  Google Scholar 

  35. M. Husain, N. Rahman, A.H. Reshak, A. Habib, S. Ali, A. Laref, A.M. Al Bakri, and J. Bila, Insight into the physical properties of the inter-metallic titanium-based binary compounds. Eur. Phys. J. Plus 136, 624 (2021).

    CAS  Google Scholar 

  36. S.M. Ali, M.U. Saeed, H.O. Elansary, and Y. Saeed, Exploring optoelectronic and photocatalytic properties of X2 AgBiY6 (X = NH4, PH4, AsH4, SbH4 and Y = Cl, Br): a DFT study. RSC Adv. 14, 3178 (2024).

    CAS  Google Scholar 

  37. U. Khan, M.U. Saeed, H.O. Elansary, I.M. Moussa, A.U.R. Bacha, and Y. Saeed, A DFT study of bandgap tuning in chloro-fluoro silicene. RSC Adv. 14, 4844 (2024).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. K. Jackson and M.R. Pederson, Accurate forces in alocal-orbital approach to the local-density approximation. Phys. Rev. B 42, 3276 (1990).

    CAS  Google Scholar 

  39. E. Kiely, R. Zwane, R. Fox, A.M. Reilly, and S. Guerin, Density functional theory predictions of the mechanical properties of crystalline materials. Cryst. Eng. Comm. 23, 5697 (2021).

    CAS  Google Scholar 

  40. G.K. Madsen and D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67 (1996).

    Google Scholar 

  41. F. Birch, Finite elastic strain of cubic crystal. Phys. Rev. 71, 809 (1947).

    CAS  Google Scholar 

  42. R. Gaillac, P. Pullumbi, and F.X. Coudert, ELATE: an open-source online application for analysis and visualization of elastic tensors. J. Phys. Condens. Matter 28, 275201 (2016).

    PubMed  Google Scholar 

  43. W. Wu, X. Zhang, Z. Yin, P. Zheng, N. Wang, and J. Luo, Low temperature properties of pnictide CrAs single crystal. Sci. China Phys. Mech. Astron. 53, 1207 (2010).

    CAS  Google Scholar 

  44. M. Matsuda, F. Ye, S.E. Dissanayake, J.G. Cheng, S. Chi, J. Ma, H.D. Zhou, J.Q. Yan, S. Kasamatsu, O. Sugino, T. Kato, K. Matsubayashi, T. Okada, and Y. Uwatoko, Pressure dependence of the magnetic ground states in MnP. Phys. Rev. B 93, 100405 (2016).

    Google Scholar 

  45. Q. Niu, W.C. Yu, K.Y. Yip, Z.L. Lim, H. Kotegawa, E. Matsuoka, H. Sugawara, H. Tou, Y. Yanase, and S.K. Goh, Quasilinear quantum magnetoresistance in pressure-induced nonsymmorphic superconductor chromium arsenide. Nat. Commun. 8, 15358 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Q. Niu, W.C. Yu, E.I. Paredes Aulestia, Y.J. Hu, K.T. Lai, H. Kotegawa, E. Matsuoka, H. Sugawara, H. Tou, D. Sun, F.F. Balakirev, Y. Yanase, and S.K. Goh, Nonsaturating large magnetoresistance in the high carrier density nonsymmorphic metal CrP. Phys. Rev. B 99, 125126 (2019).

    CAS  Google Scholar 

  47. R. Joshi, J. Sahariya, H.S. Mund, K.C. Bhamu, S. Tiwari, and B.L. Ahuja, Compton profiles of MoP and WP: validation of second order generalized gradient approximation. Comput. Mater. Sci. 53, 89 (2012).

    CAS  Google Scholar 

  48. G. Flower, M. Goryachev, J. Bourhill, and M.E. Tobar, Experimental implementations of cavity-magnon systems: from ultra strong coupling to applications in precision measurement. New J. Phys. 21, 095004 (2019).

    CAS  Google Scholar 

  49. M.A. Khan, K. Arti, A.K. Solanki, N. Tashi, and S. Auluck, Interband optical properties of Ni3 Al. Phys. Rev. B 48, 16974 (1993).

    CAS  Google Scholar 

  50. M. Dressel and G. Gruner, Electrodynamics of solids: optical properties of electrons in matter (Cambridge: Cambridge University Press, 2002).

    Google Scholar 

  51. Y. Liu, Z. Hu, M. Abeykoon, E. Stavitski, K. Attenkofer, E.D. Bauer, and C. Petrovic, Polaronic transport and thermoelectricity in Mn3 Si2 Te6 single crystals. Phys. Rev. B 103, 245122 (2021).

    CAS  Google Scholar 

  52. X. Zhu, P. Liu, H. Gao, G. Xie, and B. Wang, Thermoelectric properties of hexagonal WN6 from first principles calculation. ES Energy Environ. 3, 80 (2018).

    Google Scholar 

  53. M. Zia, A.M. Shaimaa, A.M. Eman, M. Usman, M. Idress, M. Shafiq, B. Amin, and Y. Saeed, First principles study of structural, electronic, elastic and optical properties of Cs2 LiTlBr6 and Cs2 NaTlBr6. Mater. Sci. Semicond. Process. 151, 106993 (2022).

    Google Scholar 

  54. J.H. Skone, M. Govoni, and G. Galli, Self-consistent hybrid functional for condensed systems. Phys. Rev. B 89, 195112 (2014).

    Google Scholar 

  55. M. Jamal, N.K. Sarvestani, A. Yazdani, and A.H. Reshak, Mechanical and thermodynamical properties of hexagonal compounds at optimized lattice parameters from two-dimensional search of the equation of state. RSC Adv. 4, 57903 (2014).

    CAS  Google Scholar 

  56. S. Li, X. Ju, and C. Wan, Theoretical studies of elastic properties of orthorhombic LiBH4. Comput. Mater. Sci. 81, 378 (2014).

    CAS  Google Scholar 

  57. S. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett. 101, 055504 (2008).

    PubMed  Google Scholar 

  58. R.P. Thompson and W.J. Clegg, Predicting whether a material is ductile or brittle. Curr. Opin. Solid State Mater. Sci. 22, 100 (2018).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Researchers Supporting Project number (RSPD2024R741), King Saud University, Riyadh, Saudi Arabia. The author Y. Saeed would like to thank Higher Education Commission (HEC) of Pakistan for providing grant under NRPU − 15844.

Funding

Researchers supporting the project (RSPD2024R741), King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Saeed.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, Z., Razzaq, A., Ali, S.M. et al. A DFT Study of Structural, Electronic, Optical, and Thermoelectric Properties of TMX (TM = Mo and W; X = N, P, and As) Compounds. J. Electron. Mater. 53, 3834–3847 (2024). https://doi.org/10.1007/s11664-024-11128-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-024-11128-3

Keywords

Navigation