Skip to main content
Log in

Ultrathin nano-ring metasurface absorber in visible regime based on circuit model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper suggests a broadband nano-ring chromium metasurface absorbers model in the shape of a square hole and circle hole which covers an extensive wavelength spectrum by introducing an equivalent circuit. So as to confirm the proposed equivalent circuit method, metamaterial absorbers were simulated and detailed. The final results of the circuit model highly match the outcomes of full-wave numerical simulations done primarily based on the finite element method (FEM). Moreover, the circuit model reduces computation time and it needs less storage versus full-wave simulations. As a result, it is easier to investigate the effects of different parameters on the performance of the suggested devices and to determine the appropriate structures. Nano-ring chromium with a square-hole absorber registers a peak absorbance (i.e., more than 99.99%) at 448 nm and minimum absorption rate (i.e., 90.35%) at 580 nm. The Nano-ring chromium with circle hole absorber recorded a peak absorbance of more than 99% and higher than 98% absorbance from 430 to 552 nm and from 626 to 728 nm, respectively. The suggested approach is easy yet general. This method can be adopted to design and simulate other subwavelength structures in a wide frequency range, such as terahertz and visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statements

The data used to support the findings of this study are included within the article.

References

  1. S. L. Mortazavifar, M. R. Salehi, M. Shahraki, E. Abiri, Optimization of light absorption in ultrathin elliptical silicon nanowire arrays for solar cell applications. J. Mod. Opt. 69(7), 368–380 (2022)

    Article  ADS  Google Scholar 

  2. S. L. Mortazavifar, M. R. Salehi, M. Shahraki, E. Abiri, Ultra-thin broadband solar absorber based on stadium-shaped silicon nanowire arrays. Front. Optoelectron. 15(1), 1–13 (2022)

    Article  ADS  Google Scholar 

  3. S. L. Mortazavifar, M. R. Salehi, M. Shahraki, E. Abiri, Absorption improvement of a-Si/c-Si rectangular nanowire arrays in ultrathin solar cells. J. Photonics Energy 11(1), 014502 (2021)

    Google Scholar 

  4. M. Gil, J. Bonache, F. Martin, Metamaterial filters: a review. Metamaterials 2(4), 186–197 (2008)

    Article  ADS  Google Scholar 

  5. Z. Wang, F. Cheng, T. Winsor, Y. Liu, Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology 27(41), 412001 (2016)

    Article  Google Scholar 

  6. J. Sun, L. Liu, G. Dong, J. Zhou, An extremely broad band metamaterial absorber based on destructive interference. Opt. Express 19(22), 21155–21162 (2011)

    Article  ADS  Google Scholar 

  7. B. Choudhury, R. Jha, A review of metamaterial invisibility cloaks. Comput. Mater. Continua 33(3), 275–303 (2013)

    Google Scholar 

  8. M.K. Hedayati, F. Faupel, M. Elbahri, Review of plasmonic nanocomposite metamaterial absorber. Materials 7(2), 1221–1248 (2014)

    Article  ADS  Google Scholar 

  9. Y. Zhi Cheng, Y. Wang, Y. Nie, R. Zhou Gong, X. Xiong, X. Wang, Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements. J. Appl. Phys. 111(4), 044902 (2012)

    Article  ADS  Google Scholar 

  10. V.J. Gokhale, O.A. Shenderova, G.E. McGuire, M. Rais-Zadeh, Infrared absorption properties of carbon nanotube/nanodiamond based thin film coatings. J. Microelectromech. Syst. 23(1), 191–197 (2013)

    Article  Google Scholar 

  11. X. Duan, S. Chen, W. Liu, H. Cheng, Z. Li, J. Tian, Polarization-insensitive and wide-angle broadband nearly perfect absorber by tunable planar metamaterials in the visible regime. J. Opt. 16(12), 125107 (2014)

    Article  ADS  Google Scholar 

  12. S. Ogawa, M. Kimata, Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared wavelengths: a review. Materials 11(3), 458 (2018)

    Article  ADS  Google Scholar 

  13. Y. Liu, S. Gu, C. Luo, X. Zhao, Ultra-thin broadband metamaterial absorber. Appl. Phys. A 108(1), 19–24 (2012)

    Article  ADS  Google Scholar 

  14. Q. Zhou et al., Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure. Appl. Phys. A 125(2), 1–8 (2019)

    Article  Google Scholar 

  15. D. Shreiber et al., Tunable metamaterial device for THz applications based on BaSrTiO3 thin film. Thin Solid Films 660, 282–286 (2018)

    Article  ADS  Google Scholar 

  16. B.-X. Wang, L.-L. Wang, G.-Z. Wang, W.-Q. Huang, X.-F. Li, X. Zhai, A broadband, polarisation-insensitive and wide-angle coplanar terahertz metamaterial absorber. Eur. Phys. J. B 87(4), 1–6 (2014)

    Article  Google Scholar 

  17. H.T. Yudistira, K. Kananda, Design of wideband single-layer metamaterial absorber in the S-band and C-band spectrum. Eur. Phys. J. Plus 136(5), 1–7 (2021)

    Article  Google Scholar 

  18. Z. Zhang et al., Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band. J. Magn. Magn. Mater. 497, 166075 (2020)

    Article  Google Scholar 

  19. Y. Lee, S.-J. Kim, H. Park, B. Lee, Metamaterials and metasurfaces for sensor applications. Sensors 17(8), 1726 (2017)

    Article  ADS  Google Scholar 

  20. J. Zhao, Y. Cheng, Ultrabroadband microwave metamaterial absorber based on electric SRR loaded with lumped resistors. J. Electron. Mater. 45(10), 5033–5039 (2016)

    Article  ADS  Google Scholar 

  21. W. Wang, A.V. Amirkhizi, Exceptional points and scattering of discrete mechanical metamaterials. Eur. Phys. J. Plus 137(4), 1–15 (2022)

    Article  Google Scholar 

  22. P. Singh, S.K. Ameri, L. Chao, M.N. Afsar, S. Sonkusale, Broadband millimeterwave metamaterial absorber based on embedding of dual resonators. Prog. Electromagn. Res. 142, 625–638 (2013)

    Article  Google Scholar 

  23. A. Sellier, T.V. Teperik, A. de Lustrac, Resonant circuit model for efficient metamaterial absorber. Opt. Express 21(106), A997–A1006 (2013)

    Article  Google Scholar 

  24. H. Heidari, A. Afifi, Design and fabrication of an energy-harvesting device using vibration absorber. Eur. Phys. J. Plus 132(5), 1–11 (2017)

    Article  Google Scholar 

  25. V. Dave, V. Sorathiya, T. Guo, S.K. Patel, Graphene based tunable broadband far-infrared absorber. Superlattices Microstruct. 124, 113–120 (2018)

    Article  ADS  Google Scholar 

  26. M. Zhang, J.T. Yeow, Nanotechnology-based terahertz biological sensing: a review of its current state and things to come. IEEE Nanatechnol. Mag. 10(3), 30–38 (2016)

    Article  Google Scholar 

  27. E. Zarepour, M. Hassan, C.T. Chou, A.A. Adesina, Energy-harvesting nanosensor networks: efficient event detection. IEEE Nanatechnol. Mag. 10(4), 4–12 (2016)

    Article  Google Scholar 

  28. S. Behura et al., WS2\/Silicon heterojunction solar cells: a CVD process for the fabrication of WS2 Films on p-Si substrates for photovoltaic and spectral responses. IEEE Nanatechnol. Mag. 11(2), 33–38 (2017)

    Article  Google Scholar 

  29. C.M. Watts, X. Liu, W.J. Padilla, Metamaterial electromagnetic wave absorbers. Adv. Mater. 24(23), OP98–OP120 (2012)

    Google Scholar 

  30. Y. Li et al., Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces. Appl. Phys. Lett. 104(22), 221110 (2014)

    Article  ADS  Google Scholar 

  31. C. Cao, Y. Cheng, A broadband plasmonic light absorber based on a tungsten meander-ring-resonator in visible region. Appl. Phys. A 125(1), 1–8 (2019)

    Article  Google Scholar 

  32. N. Yu, F. Capasso, Flat optics with designer metasurfaces. Nat. Mater. 13(2), 139–150 (2014)

    Article  ADS  Google Scholar 

  33. H.-L. Huang, H. Xia, Z.-B. Guo, D. Xie, H.-J. Li, Design of broadband metamaterial absorbers for permittivity sensitivity and solar cell application. Chin. Phys. Lett. 34(11), 117801 (2017)

    Article  ADS  Google Scholar 

  34. J.A. Bossard, L. Lin, S. Yun, L. Liu, D.H. Werner, T.S. Mayer, Near-ideal optical metamaterial absorbers with super-octave bandwidth. ACS Nano 8(2), 1517–1524 (2014)

    Article  Google Scholar 

  35. H. Deng et al., Broadband perfect absorber based on one ultrathin layer of refractory metal. Opt. Lett. 40(11), 2592–2595 (2015)

    Article  ADS  Google Scholar 

  36. I. Kim, S. So, A.S. Rana, M.Q. Mehmood, J. Rho, Thermally robust ring-shaped chromium perfect absorber of visible light. Nanophotonics 7(11), 1827–1833 (2018)

    Article  Google Scholar 

  37. Q. Wang et al., Design, fabrication, and modulation of THz bandpass metamaterials. Laser Photonics Rev. 13(11), 1900071 (2019)

    Article  ADS  Google Scholar 

  38. K. Mohamed, 2.16 Nanoimprint Lithography for Nanomanufacturing, in Comprehensive Nanoscience and Nanotechnology, 2nd edn., (Academic Press, Oxford, 2019), pp. 357–386.

  39. R.T. Ako, A. Upadhyay, W. Withayachumnankul, M. Bhaskaran, S. Sriram, Dielectrics for terahertz metasurfaces: material selection and fabrication techniques. Adv. Opt. Mater. 8(3), 1900750 (2020)

    Article  Google Scholar 

  40. J.B. Khurgin, A. Boltasseva, Reflecting upon the losses in plasmonics and metamaterials. MRS Bull. 37(8), 768–779 (2012)

    Article  Google Scholar 

  41. N. W. Ashcroft, N. D. Mermin, Solid state physics, in Holt, Rinehart and Winston, (New york London, 1976)

  42. J.-S.G. Bouillard, W. Dickson, D.P. O’Connor, G.A. Wurtz, A.V. Zayats, Low-temperature plasmonics of metallic nanostructures. Nano Lett. 12(3), 1561–1565 (2012)

    Article  ADS  Google Scholar 

  43. R. Cohen, G. Cody, M. Coutts, B. Abeles, Optical properties of granular silver and gold films. Phys. Rev. B 8(8), 3689 (1973)

    Article  ADS  Google Scholar 

  44. B. Kramer, Advances in solid state physics (Springer, Berlin, 2007)

    Google Scholar 

  45. O. Heavens, Optical properties of thin films. Rep. Prog. Phys. 23(1), 1 (1960)

    Article  ADS  Google Scholar 

  46. L. Kazmerski, D.M. Racine, Growth, environmental, and electrical properties of ultrathin metal films. J. Appl. Phys. 46(2), 791–795 (1975)

    Article  ADS  Google Scholar 

  47. P. Clegg, The optical constants of thin metallic films deposited by evaporation. Proc. Phys. Soc. Sect. B 65(10), 774 (1952)

    Article  ADS  Google Scholar 

  48. K.H. Park, J.S. Ha, E.H. Lee, Uniform Ag thin film growth on an Sb-terminated Si (111) Surface. ETRI J. 19(2), 71–81 (1997)

    Article  Google Scholar 

  49. V. Logeeswaran et al., Ultra-smooth metal surfaces generated by pressure-induced surface deformation of thin metal films. Appl. Phys. A 87(2), 187–192 (2007)

    Article  ADS  Google Scholar 

  50. W. Chen, M.D. Thoreson, S. Ishii, A.V. Kildishev, V.M. Shalaev, Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. Opt. Express 18(5), 5124–5134 (2010)

    Article  ADS  Google Scholar 

  51. D. Pashley, The preparation of smooth single crystal surfaces of silver by an evaporation technique. Phil. Mag. 4(39), 316–323 (1959)

    Article  ADS  Google Scholar 

  52. P. Palmberg, T. Rhodin, C. Todd, Epitaxial growth of gold and silver on magnesium oxide cleaved in ultrahigh vacuum. Appl. Phys. Lett. 11(2), 33–35 (1967)

    Article  ADS  Google Scholar 

  53. W. Kraus, G.C. Schatz, Plasmon resonance broadening in small metal particles. J. Chem. Phys. 79(12), 6130–6139 (1983)

    Article  ADS  Google Scholar 

  54. H. Hövel, S. Fritz, A. Hilger, U. Kreibig, M. Vollmer, Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B 48(24), 18178 (1993)

    Article  ADS  Google Scholar 

  55. V.P. Drachev, U.K. Chettiar, A.V. Kildishev, H.-K. Yuan, W. Cai, V.M. Shalaev, The Ag dielectric function in plasmonic metamaterials. Opt. Express 16(2), 1186–1195 (2008)

    Article  ADS  Google Scholar 

  56. D. Smith, D. Vier, T. Koschny, C. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71(3), 036617 (2005)

    Article  ADS  Google Scholar 

  57. D.M. Pozar, Microwave engineering (Wiley, New York, 2011)

    Google Scholar 

  58. G. Shen, M. Zhang, Y. Ji, W. Huang, H. Yu, J. Shi, Broadband terahertz metamaterial absorber based on simple multi-ring structures. AIP Adv. 8(7), 075206 (2018)

    Article  ADS  Google Scholar 

  59. J.-Y. Jung et al., Infrared broadband metasurface absorber for reducing the thermal mass of a microbolometer. Sci. Rep. 7(1), 1–8 (2017)

    ADS  Google Scholar 

  60. A.K. Azad et al., Metasurface broadband solar absorber. Sci. Rep. 6(1), 1–6 (2016)

    Article  MathSciNet  Google Scholar 

  61. Z.H. Jiang et al., Broadband and wide field-of-view plasmonic metasurface-enabled waveplates. Sci. Rep. 4(1), 1–8 (2014)

    Google Scholar 

  62. D. Katrodiya, C. Jani, V. Sorathiya, S.K. Patel, Metasurface based broadband solar absorber. Opt. Mater. 89, 34–41 (2019)

    Article  ADS  Google Scholar 

  63. W. Li et al., Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26(47), 7959–7965 (2014)

    Article  ADS  Google Scholar 

  64. E.D. Palik, Handbook of optical constants of solids (Academic press, Cambridge, 1998)

    Google Scholar 

  65. W.L. Barnes, Surface plasmon–polariton length scales: a route to sub-wavelength optics. J. Opt. A Pure Appl. Opt. 8(4), S87 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  66. M. Olsen et al., A high-temperature, high-efficiency solar thermoelectric generator prototype. Energy Procedia 49, 1460–1469 (2014)

    Article  Google Scholar 

  67. M. Lobet, M. Lard, M. Sarrazin, O. Deparis, L. Henrard, Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption. Opt. Express 22(10), 12678–12690 (2014)

    Article  ADS  Google Scholar 

  68. D. Ji et al., Broadband absorption engineering of hyperbolic metafilm patterns. Sci. Rep. 4(1), 1–7 (2014)

    Google Scholar 

  69. S. Mahmud, S.S. Islam, K. Mat, M.E. Chowdhury, H. Rmili, M.T. Islam, Design and parametric analysis of a wide-angle polarization-insensitive metamaterial absorber with a star shape resonator for optical wavelength applications. Results Phys. 18, 103259 (2020)

    Article  Google Scholar 

  70. M.L. Hakim et al., Wide-oblique-incident-angle stable polarization-insensitive ultra-wideband metamaterial perfect absorber for visible optical wavelength applications. Materials 15(6), 2201 (2022)

    Article  ADS  Google Scholar 

  71. X. Zhang, Y. Fan, L. Qi, H. Li, Broadband plasmonic metamaterial absorber with fish-scale structure at visible frequencies. Opt. Mater. Express 6(7), 2448–2457 (2016)

    Article  ADS  Google Scholar 

  72. D. Hu, H.-Y. Wang, Q.-F. Zhu, Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator. J. Nanophotonics 10(2), 026021 (2016)

    Article  ADS  Google Scholar 

  73. P. Wu, C. Zhang, Y. Tang, B. Liu, L. Lv, A perfect absorber based on similar fabry-perot four-band in the visible range. Nanomaterials 10(3), 488 (2020)

    Article  Google Scholar 

  74. F. Xu et al., Broadband Solar Absorber Based on Square Ring cross Arrays of ZnS. Micromachines 12(8), 909 (2021)

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors (L. Mortazavifar, M. Salehi, M. Shahraki) contributed equally to the paper.

Corresponding author

Correspondence to Seyedeh Leila Mortazavifar.

Ethics declarations

Conflict of interest

We have no conflict of interest to declare.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortazavifar, S.L., Salehi, M.R. & Shahraki, M. Ultrathin nano-ring metasurface absorber in visible regime based on circuit model. Eur. Phys. J. Plus 137, 1072 (2022). https://doi.org/10.1140/epjp/s13360-022-03272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03272-8

Navigation