Skip to main content

Advertisement

Log in

A broadband plasmonic light absorber based on a tungsten meander-ring-resonator in visible region

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present the design and numerical simulations of a broadband plasmonic light absorber (PLA) based on a tungsten meander-ring-resonator (MRR) structure in visible region. The proposed PLA is composed of a periodic MRR array and a continuous tungsten (W) film separated by a dielectric substrate. Simulation results indicate that the absorbance of our PLA is up to 99.9% at 538 THz, and it is over 90% from 370 to 854 THz across the whole visible region. The simulated electric field distributions reveal that the stronger broadband absorption is caused by the excitation of localized surface plasmon (LSP), propagating surface plasmon (PSP) and guide mode resonances. Further simulation indicates that designed PLA is polarization insensitive and has a wide angle for both transverse electric (TE) and transverse magnetic (TM) modes. In addition, the impact of the geometric parameters of the designed PLA on the absorption spectrum was also studied systematically. Owing to its superior performance, the proposed PLA based on tungsten MRR can be a potential application in thermal imaging, emissivity control and solar energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. T. Maier, H. Brückl, Wavelength-tunable microbolometers with metamaterial absorbers. Opt. Lett. 34(19), 3012–3014 (2009)

    Article  ADS  Google Scholar 

  2. F.B.P. Niesler, J.K. Gansel, S. Fischbach, M. Wegener, Metamaterial metal-based bolometers. Appl. Phys. Lett. 100(20), 203508 (2012)

    Article  ADS  Google Scholar 

  3. Y. Qu, Q. L i, K. D u, L. Ca i, J. Lu, M. Qiu, Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST. Laser Photonics Rev. 11(5), 1700091 (2017)

    Article  ADS  Google Scholar 

  4. Y. Qu, Q. Li, L. Cai, M. Pan, P. Ghosh, K. Du, M. Qiu, Thermal camouflage based on the phase changing material GST. Light Sci. Appl. 7, 26 (2018)

    Article  ADS  Google Scholar 

  5. N. Landy, C.M. Bingham, T. Tyler, N. Jokerst, D.R. Smith, W.J. Padilla, Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Phys. Rev. B 79, 125104 (2009)

    Article  ADS  Google Scholar 

  6. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010)

    Article  ADS  Google Scholar 

  7. Q. Liang, T. Wang, Z. Lu, Q. Sun, Y. Fu, W. Yu, Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting. Adv. Opt. Mater. 1, 43–49 (2013)

    Article  Google Scholar 

  8. Y. Cheng, X.S. Mao, C. Wu, L. Wu, R.Z. Gong, Infrared non-planar plasmonic perfect absorber for enhanced sensitive refractive index sensing. Opt. Mater. 53, 195–200 (2016)

    Article  ADS  Google Scholar 

  9. J. Hao, J. Wang, X.L. Liu, W.J. Padilla, L. Zhou, M. Qiu, High performance optical absorber based on a plasmonic metamaterial. Appl. Phys. Lett. 96, 251103–251104 (2010)

    Article  ADS  Google Scholar 

  10. X. Chen, B. Jia, J.K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi, M. Gu, Broadband enhancement in thin-fim amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Lett. 12, 2187–2192 (2012)

    Article  ADS  Google Scholar 

  11. S. Butun, K. Aydin, Structurally tunable resonant absorption bands in ultrathin broadband plasmonic absorbers. Opt. Express 22, 19457–19468 (2014)

    Article  ADS  Google Scholar 

  12. W. Li, U. Guler, N. Kinsey, G.V. Naik, A. Boltasseva, J. Guan, V.M. Shalaev, A.V. Kildishev, Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959–7965 (2014)

    Article  Google Scholar 

  13. A. Vora, J. Gwamuri, N. Pala, A. Kulkarni, J.M. Pearce, D. Güney, Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics. Sci. Rep. 4(1), 4901 (2015)

    Article  Google Scholar 

  14. L. Zhou, Y. Zhou, Y.F. Zhu, X.X. Dong, B.L. Gao, Y.Z. Wang, S. Shen, Broadband bidirectional visible light absorber with wide angular tolerance. J. Mater. Chem. C. 4, 391 (2016)

    Article  Google Scholar 

  15. A.K. Azad, W.J.M. Kort-Kamp, M. Sykora, N.R. Weisse-Bernstein, T.S. Luk, A.J. Taylor, D.A.R. Dalvit, H.T. Chen, Metasurface broadband solar absorber. Sci. Rep. 6(1), 20347 (2016)

    Article  ADS  Google Scholar 

  16. H. Luo, Y.Z. Cheng, Design of an ultrabroadband visible metamaterial absorber based on three-dimensional metallic nanostructures. Mod. Phys. Lett. B 31, 1750231 (2017)

    Article  ADS  Google Scholar 

  17. D. Wu, C. Liu, Y. Liu, L. Yu, Z. Yu, L. Chen, R. Ma, H. Ye, Numerical study of an ultra-broadband near perfect solar absorber in the visible and near-infrared region. Opt. Lett. 42(3), 450–453 (2017)

    Article  ADS  Google Scholar 

  18. C. Cao, Y. Cheng, Quad-band plasmonic perfect absorber for visible light with a patchwork of silicon nanorod resonators. Materials 11(10), 1954 (2018)

    Article  ADS  Google Scholar 

  19. Z. Liu, G. Liu, Z. Huang, X. Liu, G. Fu, Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol. Energy Mater. Sol. Cell. 179, 346–352 (2018)

    Article  Google Scholar 

  20. J. Xu, Z. Zhao, H. Yu, L. Yang, P. Gou, J. Cao, Y. Zou, J. Qian, T. Shi, Q. Ren, Z. An, Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies. Opt. Express 24(22), 25742–25751 (2016)

    Article  ADS  Google Scholar 

  21. Y. Cheng, H. Zhang, X.S. Mao, R.Z. Gong, Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application. Mater. Lett. 219, 123–126 (2018)

    Article  Google Scholar 

  22. Y.K.H. Cui, J. Fung, H. Xu, Y. Ma, S. Jin, He, N.X. Fang, Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab. Nano Lett. 12, 1443–1447 (2012)

    Article  ADS  Google Scholar 

  23. J. Zhou, A.F. Kaplan, L. Chen, L.J. Guo, Experiment and theory of the broadband absorption by a tapered hyperbolic metamaterial array. ACS Photonics 1(7), 618–624 (2014)

    Article  Google Scholar 

  24. S. He, F. Ding, L. Mo, F. Bao Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films. Progr. Electromagn. Res. 147, 69–79 (2014)

    Article  Google Scholar 

  25. H. Ko, D.H. Ko, Y. Cho, I.K. Han, Broadband light absorption using a multilayered gap surface plasmon resonator. Appl. Phys. A 116, 857–861 (2014)

    Article  ADS  Google Scholar 

  26. X. Yin, L. Chen, X. Li, Ultra-broadband super light absorber based on multi-sized tapered hyperbolic metamaterial waveguide arrays. J. Lightwave Technol. 33(17), 3704–3710 (2015)

    Article  ADS  Google Scholar 

  27. J. Wu, Polarization-independent broadband absorber based on pyramidal metal-dielectric grating structure. Opt. Mater. 62, 47–51 (2016)

    Article  ADS  Google Scholar 

  28. P. Liu, T. Lan, Wide-angle, polarization-insensitive, and broadband metamaterial absorber based on multilayered metal-dielectric structures. Appl Opt 56(14), 4201–4205 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  29. D. Wu, C. Liu, Y. Liu, Z. Xu, Z. Yu, L. Yu, L. Chen, R. Ma, J. Zhang, H. Ye, Numerical study of a wide-angle polarization independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion. RSC Adv. 8, 21054 (2018)

    Article  Google Scholar 

  30. Y. Lu, W. Dong, Z. Chen, Z. Wang, S.I. Bozhevolnyi, Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Sci. Rep. 6, 30650 (2016)

    Article  ADS  Google Scholar 

  31. D. Hu, H.Y. Wang, Q.F. Zhu, Design of an ultra-broadband and polarization-insensitive solar absorber using a circular-shaped ring resonator. J. Nanophotonics 10(2), 026021 (2016)

    Article  ADS  Google Scholar 

  32. M. Luo, S. Shen, L. Zhou, S. Wu, Y. Zhou, L. Chen, Broadband, wide-angle, and polarization-independent metamaterial absorber for the visible regime. Opt. Express 25(14), 16715–16724 (2017)

    Article  ADS  Google Scholar 

  33. M. Zhong, S.J. Liu, B.L. Xu, J. Wang, H.Q. Huang, Single-band high absorption and coupling between localized surface plasmons modes in a metamaterials absorber. Opt. Mater. 72, 283–288 (2017)

    Article  ADS  Google Scholar 

  34. W. Wang, Y. Qu, K. Du, S. Bai, J. Tian, M. Pan, H. Ye, M. Qiu, Q. Li, Broadband optical absorption based on single-sized metal-dielectric-metal plasmonic nanostructures with high- ε ″ metals. Appl. Phys. Lett. 110, 101101 (2017)

    Article  ADS  Google Scholar 

  35. M. Prasanta, C.N. Rao, Period- and cavity-depth-dependent plasmonic metamaterial perfect absorber at visible frequency: design rule. J. Nanophoton. 11(3), 036003 (2017)

    Article  Google Scholar 

  36. Y. Huang, L. Liu, M. Pu, X. Li, X. Ma, X. Luo, A refractory metamaterial absorber for ultra-broadband, omnidirectional and polarization-independent absorption in the UV-NIR spectrum. Nanoscale 10, 8298–8303 (2018)

    Article  Google Scholar 

  37. L. Lei, S. Li, H. Huang, K. Tao, P. Xu, Ultra-broadband absorber from visible to near infrared using plasmonic metamaterial. Optic Express 26, 5686–5693 (2018)

    Article  ADS  Google Scholar 

  38. X. Chen, Y. Chen, M. Yan, M. Qiu, Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6, 2550–2557 (2012)

    Article  Google Scholar 

  39. C.J. Chen, J.S. Chen, Y.B. Chen, Optical responses from lossy metallic slit arrays under the excitation of a magnetic polariton. J. Opt. Soc. Am. B 28(8), 1798–1806 (2011)

    Article  ADS  Google Scholar 

  40. Z. Li, L. Stan, A. David, X. Czaplewski, J. Yang, Gao, Wavelength-selective mid-infrared metamaterial absorbers with multiple tungsten cross resonators. Opt. Express 26(5), 5616–5631 (2018)

    Article  ADS  Google Scholar 

  41. B. Wei, S. Jian, A near-infrared perfect absorber assisted by tungsten covered ridges. Plasmonics (2018). https://doi.org/10.1007/s11468-018-0791-6

    Article  Google Scholar 

  42. D. Govind, S.A. Ramakrishna, Multipolar localized resonances for multi-band metamaterial perfect absorbers. J. Opt. 16, 094016 (2014)

    Article  ADS  Google Scholar 

  43. J. Nath, S. Modak, I. Rezadad, D. Panjwani, F. Rezaie, J.W. Cleary, R.E. Peale, Far-infrared absorber based on standing-wave resonances in metal-dielectric-metal cavity. Opt. Express 23, 20366–20380 (2015)

    Article  ADS  Google Scholar 

  44. Y.Z. Cheng, M.L. Huang, H.R. Chen, Z.Z. Guo, R.Z. Gong, X.S. Mao, Ultrathin six-band polarization-insensitive perfect metamaterial absorber based on a cross-cave patch resonator for terahertz waves. Materials 10, 591 (2017)

    Article  ADS  Google Scholar 

  45. J.Y. Ou, E. Plum, J. Zhang, N.I. Zheludev, An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. Nat. Nanotechnol 8(4), 252–255 (2013)

    Article  ADS  Google Scholar 

  46. P. Fei, Z. Shen, X. Wen, F. Nian, A single-layer circular polarizer based on hybrid meander-line and loop configuration. IEEE Trans. Antennas Propag. 63(10), 4609–4614 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. Y.Z. Cheng, C. Fang, X.S. Mao, R.Z. Gong, L. Wu, Design of an ultrabroadband and high-efficiency reflective linear polarization convertor at optical frequency. IEEE Photonics J. 8(6), 1–9 (2016)

    Article  Google Scholar 

  48. M.A. Ordal, L.L. Long, R.J. Bell, S.E. Bell, R.R. Bell, R.W. Alexander Jr., C.A. Ward, Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. Appl. Opt. 22, 1099–1120 (1983)

    Article  ADS  Google Scholar 

  49. A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons. Phys. Rep. 408(3), 131–314 (2005)

    Article  ADS  Google Scholar 

  50. B. Gangadhar, S.A. Ramakrishna, Tri-layered composite plasmonic structure with a nanohole array for multiband enhanced absorption at visible to NIR frequencies: plasmonic and metamaterial resonances. J. Phys. D: Appl. Phys. 49, 075103 (2016)

    Article  Google Scholar 

  51. C. Cao, Y.Z. Cheng, Quad-band plasmonic perfect absorber for visible light with a patchwork of silicon nanorod resonators. Materials 11(10), 1954 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 61504171, 61605147), the Natural Science Foundation of Hubei China (Grant no. 2017CFB588), and the Science and Technology Research Project of Education Department of Hubei China (Grant no. D20181107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhi Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Cheng, Y. A broadband plasmonic light absorber based on a tungsten meander-ring-resonator in visible region. Appl. Phys. A 125, 15 (2019). https://doi.org/10.1007/s00339-018-2310-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2310-1

Navigation