Skip to main content
Log in

Ultra-thin broadband metamaterial absorber

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The design, fabrication, and measurements of a broadband metamaterial absorber are reported. The proposed metamaterial absorber consists of circular metallic patches and a metallic ground plane separated by a dielectric layer. Increasing the number of metallic patches can broaden the frequency range when their resonances are closely packed together, thereby resulting in a broadband resonance. Experimental results show that the proposed absorber has high absorptivity, with a full width at half maximum absorption bandwidth of 2.8 GHz and the relative FWHM absorption bandwidth of 25.3 %. In addition, the absorber can operate at a wide range of incident angles under both transverse electric and transverse magnetic polarizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G.V. Eleftheriades, K.G. Balmain, Negative-Refraction Metamaterials: Fundamental Principles and Applications (Wiley, New York, 2005)

    Book  Google Scholar 

  2. J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs, Phys. Rev. Lett. 76, 4773 (1996)

    Article  ADS  Google Scholar 

  3. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47, 2075 (1999)

    Article  ADS  Google Scholar 

  4. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  5. Y. Cheng, H. Yang, J. Appl. Phys. 108, 034906 (2010)

    Article  ADS  Google Scholar 

  6. Y. Ma, Q. Chen, J. Grant, S.C. Saha, A. Khalid, D.R.S. Cumming, Opt. Lett. 36, 945 (2011)

    Article  ADS  Google Scholar 

  7. J. Lee, S. Lim, Electron. Lett. 47(1), 8 (2011)

    Article  Google Scholar 

  8. Q.Y. Wen, H.W. Zhang, Y.S. Xie, Q.H. Yang, Y.L. Liu, Appl. Phys. Lett. 95, 241111 (2009)

    Article  ADS  Google Scholar 

  9. X. Zhou, Y.H. Liu, X.P. Zhao, Appl. Phys. A 98, 643 (2010)

    Article  ADS  Google Scholar 

  10. H. Li, L.H. Yuan, B. Zhou, X.P. Shen, Q. Cheng, T.J. Cui, J. Appl. Phys. 110, 014909 (2011)

    Article  ADS  Google Scholar 

  11. S. Bao, C.R. Luo, Y.P. Zhang, X.P. Zhao, Acta Phys. Sin. 59, 3187 (2010)

    Google Scholar 

  12. S. Gu, J.P. Barrett, T.H. Hand, B.I. Popa, S.A. Cummer, J. Appl. Phys. 108, 064913 (2010)

    Article  ADS  Google Scholar 

  13. K.B. Alici, F. Bilotti, L. Vegni, E. Ozbay, J. Appl. Phys. 108, 083113 (2010)

    Article  ADS  Google Scholar 

  14. W.R. Zhu, X.P. Zhao, B.Y. Gong, J. Appl. Phys. 109, 093504 (2011)

    Article  ADS  Google Scholar 

  15. H. Tao, C.M. Bingham, A.C. Strikwerda, D. Pilon, D. Shrekenhamer, N.I. Landy, K. Fan, X. Zhang, W.J. Padilla, R.D. Averitt, Phys. Rev. B 78, 241103(R) (2008)

    ADS  Google Scholar 

  16. H. Tao, N.I. Landy, C.M. Bingham, X. Zhang, R.D. Averitt, W.J. Padilla, Opt. Express 16, 7181 (2008)

    Article  ADS  Google Scholar 

  17. Y. Avitzour, Y.A. Urzhumov, G. Shvets, Phys. Rev. B 79, 045131 (2009)

    Article  ADS  Google Scholar 

  18. C. Wu, B. Neuner III, G. Shvets, J. John, A. Milder, B. Zollars, S. Savoy, Phys. Rev. B 84, 075102 (2011)

    Article  ADS  Google Scholar 

  19. C. Wu, G. Shvets, Opt. Lett. 37, 308 (2012)

    Article  ADS  Google Scholar 

  20. Y. Cui, J. Xu, K.H. Fung, Y. Jin, A. Kumar, S. He, N.X. Fang, Appl. Phys. Lett. 99, 253101 (2011)

    Article  Google Scholar 

  21. X.P. Zhao, Q. Zhao, L. Kang, J. Song, Q.H. Fu, Phys. Lett. A 346, 87 (2005)

    Article  ADS  Google Scholar 

  22. W.R. Zhu, X.P. Zhao, N. Ji, Appl. Phys. Lett. 90, 011911 (2007)

    Article  ADS  Google Scholar 

  23. W.R. Zhu, X.P. Zhao, B.Y. Gong, L.H. Liu, B. Su, Appl. Phys. A 102, 147 (2011)

    Article  ADS  Google Scholar 

  24. M. Kafesaki, I. Tsiapa, N. Katsarakis, Th. Koschny, C.M. Soukoulis, E.N. Economou, Phys. Rev. B 75, 235114 (2007)

    Article  ADS  Google Scholar 

  25. V.M. Shalaev, W. Cai, U.K. Chettiar, H.K. Yuan, A.K. Sarychev, V.P. Drachev, A.V. Kildishev, Opt. Lett. 30, 3356 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grants 50872113, 50936002, and by the NPU Foundation for Basic Research under Grant JC201154.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Gu, S., Luo, C. et al. Ultra-thin broadband metamaterial absorber. Appl. Phys. A 108, 19–24 (2012). https://doi.org/10.1007/s00339-012-6936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6936-0

Keywords

Navigation