Skip to main content
Log in

Investigating the effects of updating rules on cooperation by incorporating interactive diversity

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

An Erratum to this article was published on 09 April 2021

This article has been updated

Abstract

In reality, most individuals are prone to vary strategies when interacting with their counterparts; thus, it is highly likely that different strategies will be applied when confronting with different players, being referred to as interactive diversity. Numerous scholars have devoted their endless efforts into the investigation of the emergence and maintenance of cooperation for interactive diversity scenarios and this becomes an interesting research topic recently. However, evolutionary dynamics of such games still needs to be further studied. Here, a co-evolving mechanism is proposed aiming to study the effects of applying different updating rules on the level of cooperation when considering interactive diversity. Teaching and learning updating rules are considered in the co-evolving mechanism. Then, we have done extensive experiments and corresponding simulation results are provided. Sufficient analyses of the simulation results are given in order to understand the origin of the observed experimental phenomena. We find the fact that with the increase of the proportion of Type-T players, individuals start to adopt the strategy of cooperation even if the temptation to defect is relatively large; this indicates players are inclined to cooperate under such scenario. All in all, we hope the findings in this manuscript are capable of providing some valuable and interesting insights to solve the social dilemmas.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data can be obtained through the MC simulations which is performed according to the mechanism provided in this manuscript.]

Change history

References

  1. K. Sigmund, The calculus of selfishness (Princeton University Press, Princeton, 2016)

    MATH  Google Scholar 

  2. M.A. Nowak, K. Sigmund, Evolutionary dynamics of biological games. Science 303(5659), 793–799 (2004)

    Article  ADS  Google Scholar 

  3. G. Szabó, G. Fath, Evolutionary games on graphs. Phys. Rep. 446(4–6), 97–216 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. M. Perc, J.J. Jordan, D.G. Rand et al., Statistical physics of human cooperation. Phys. Rep. 687, 1–51 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. H. Ohtsuki, M.A. Nowak, The replicator equation on graphs. J. Theor. Biol. 243(1), 86–97 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. C.P. Roca, J.A. Cuesta, A. Sánchez, Evolutionary game theory: temporal and spatial effects beyond replicator dynamics. Phys. Life Rev. 6(4), 208–249 (2009)

    Article  ADS  Google Scholar 

  7. Y. Han, Z. Song, J. Sun et al., Investing the effect of age and cooperation in spatial multigame. Phys. A 541, 123269 (2020)

    Article  Google Scholar 

  8. M.A. Nowak, R.M. May, Evolutionary games and spatial chaos. Nature 359(6398), 826–829 (1992)

    Article  ADS  Google Scholar 

  9. D. Vilone, V. Capraro, J.J. Ramasco, Hierarchical invasion of cooperation in complex networks. J. Phys. Commun. 2(2), 025019 (2018)

    Article  Google Scholar 

  10. M.G. Zimmermann, V.M. Eguíluz, Cooperation, social networks, and the emergence of leadership in a prisoner’s dilemma with adaptive local interactions. Phys. Rev. E 72(5), 056118 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. P. Zhu, H. Guo, H. Zhang et al., The role of punishment in the spatial public goods game. Nonlinear Dyn. 102(4), 2959–2968 (2020)

    Article  Google Scholar 

  12. M. Mosleh, D.G. Rand, Population structure promotes the evolution of intuitive cooperation and inhibits deliberation. Sci. Rep. 8(1), 1–8 (2018)

    Article  Google Scholar 

  13. X. Li, M. Jusup, Z. Wang et al., Punishment diminishes the benefits of network reciprocity in social dilemma experiments. Proc. Natl. Acad. Sci. 115(1), 30–35 (2018)

    Article  ADS  Google Scholar 

  14. J.M. Pacheco, A. Traulsen, H. Ohtsuki et al., Repeated games and direct reciprocity under active linking. J. Theor. Biol. 250(4), 723–731 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. H. Ohtsuki, Y. Iwasa, The leading eight: social norms that can maintain cooperation by indirect reciprocity. J. Theor. Biol. 239(4), 435–444 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Z. Wang, M. Jusup, L. Shi et al., Exploiting a cognitive bias promotes cooperation in social dilemma experiments. Nat. Commun. 9(1), 1–7 (2018)

    ADS  Google Scholar 

  17. A. Szolnoki, M. Perc, Vortices determine the dynamics of biodiversity in cyclical interactions with protection spillovers. New J. Phys. 17(11), 113033 (2015a)

    Article  ADS  Google Scholar 

  18. J. Shi, D. Hu, R. Tao et al., Interaction between populations promotes cooperation in voluntary prisoner’s dilemma. Appl. Math. Comput. 392, 125728 (2021)

    MathSciNet  MATH  Google Scholar 

  19. C. Liu, H. Guo, Z. Li et al., Coevolution of multi-game resolves social dilemma in network population. Appl. Math. Comput. 341, 402–407 (2019)

    MathSciNet  MATH  Google Scholar 

  20. X.P. Li, S.W. Sun, C.Y. Xia, Reputation-based adaptive adjustment of link weight among individuals promotes the cooperation in spatial social dilemmas. Appl. Math. Comput. 361, 810–82 (2019)

    MathSciNet  MATH  Google Scholar 

  21. J. Liu, H. Meng, W. Wang et al., Synergy punishment promotes cooperation in spatial public good game. Chaos Solitons Fractals 109, 214–218 (2018)

    Article  ADS  MATH  Google Scholar 

  22. C.Y. Xia, X.P. Li, Z. Wang, M. Perc, Doubly effects of information sharing on interdependent network reciprocity. New J. Phys. 20(7), 0750025 (2018)

    Article  Google Scholar 

  23. C. Chu, X. Hu, C. Shen et al., Self-organized interdependence among populations promotes cooperation by means of coevolution. Chaos 29(1), 013139 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. X.P. Li, H.B. Wang, C.Y. Xia, M. Perc, Effects of reciprocal rewarding on the evolution of cooperation in voluntary social dilemmas. Front. Phys. 7, 125 (2019)

    Article  Google Scholar 

  25. M. Perc, A. Szolnoki, Coevolutionary games–a mini review. BioSystems 99(2), 109–125 (2010)

    Article  Google Scholar 

  26. A. Szolnoki, M. Perc, Promoting cooperation in social dilemmas via simple coevolutionary rules. Eur. Phys. J. B 67(3), 337–344 (2009)

    Article  ADS  MATH  Google Scholar 

  27. C. Vertebrates, Breeding together: Kin selection and mutualism. Science 296, 69 (2002)

    Article  Google Scholar 

  28. M.A. Nowak, Five rules for the evolution of cooperation. Science 314(5805), 1560–1563 (2006)

    Article  ADS  Google Scholar 

  29. S.A. West, A.S. Griffin, A. Gardner, Social semantics: altruism, cooperation, mutualism, strong reciprocity and group selection. J. Evol. Biol. 20(2), 415–432 (2007)

    Article  Google Scholar 

  30. M.A. Nowak, K. Sigmund, Evolution of indirect reciprocity by image scoring. Nature 393(6685), 573–577 (1998)

    Article  ADS  Google Scholar 

  31. F.C. Santos, J.M. Pacheco, T. Lenaerts, Evolutionary dynamics of social dilemmas in structured heterogeneous populations. Proc. Natl. Acad. Sci. 103(9), 3490–3494 (2006)

    Article  ADS  Google Scholar 

  32. B. Allen, G. Lippner, Y.T. Chen et al., Evolutionary dynamics on any population structure. Nature 544(7649), 227–230 (2017)

    Article  ADS  Google Scholar 

  33. P. Zhu, Z. Song, H. Guo et al., Adaptive willingness resolves social dilemma in network populations. Chaos 29(11), 113114 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  34. A. Szolnoki, G. Szabó, Diversity of reproduction rate supports cooperation in the prisoner’s dilemma game on complex networks. Eur. Phys. J. B 61, 505–509 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. A. Szolnoki, G. Szabó, Cooperation enhanced by inhomogeneous activity of teaching for evolutionary Prisoner’s Dilemma games. Europhys. Lett. 77(3), 30004 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  36. A. Szolnoki, X. Chen, Gradual learning supports cooperation in spatial prisoner’s dilemma game. Chaos Solitons Fractals 130, 109447 (2020)

    Article  MathSciNet  Google Scholar 

  37. A. Szolnoki, X. Chen, Strategy dependent learning activity in cyclic dominant systems. Chaos Solitons Fractals 138, 109935 (2020)

    Article  MathSciNet  Google Scholar 

  38. A. Szolnoki, M. Perc, Coevolution of teaching activity promotes cooperation. New J. Phys. 10(4), 043036 (2008)

    Article  ADS  Google Scholar 

  39. J. Vukov, G. Szabó, A. Szolnoki, Cooperation in the noisy case: prisoner’s dilemma game on two types of regular random graphs. Phys. Rev. E 73(6), 067103 (2006)

    Article  ADS  Google Scholar 

  40. Z. Danku, Z. Wang, A. Szolnoki, Imitate or innovate: competition of strategy updating attitudes in spatial social dilemma games. Europhys. Lett. 121(1), 18002 (2018)

    Article  ADS  Google Scholar 

  41. A. Szolnoki, M. Perc, Conformity enhances network reciprocity in evolutionary social dilemmas. J. R. Soc. Interface 12(103), 20141299 (2015)

    Article  Google Scholar 

  42. A. Szolnoki, M. Perc, Leaders should not be conformists in evolutionary social dilemmas. Sci. Rep. 6, 23633 (2016)

    Article  ADS  Google Scholar 

  43. L. Gao, Q. Pan, M. He, Changeable updating rule promotes cooperation in well-mixed and structured populations. Phys. A 547, 124446 (2020)

  44. A. Szolnoki, Z. Danku, Dynamic-sensitive cooperation in the presence of multiple strategy updating rules. Phys. A 511, 371–377 (2018)

    Article  Google Scholar 

  45. D. Jia, X. Wang, Z. Song et al., Evolutionary dynamics drives role specialization in a community of players. J. R. Soc. Interface 17(168), 20200174 (2020)

    Article  Google Scholar 

  46. A. Szolnoki, M. Perc, Coevolutionary success-driven multigames. Europhys. Lett. 108(2), 28004 (2014)

    Article  ADS  Google Scholar 

  47. G. Szabó, A. Szolnoki, J. Vukov, Selection of dynamical rules in spatial prisoner’s dilemma games. Europhys. Lett. 87(1), 18007 (2009)

    Article  ADS  Google Scholar 

  48. H. Takesue, Effects of updating rules on the coevolving prisoner’s dilemma. Phys. A 513, 399–408 (2019)

    Article  Google Scholar 

  49. P. Zhu, X. Wang, D. Jia et al., Investigating the co-evolution of node reputation and edge-strategy in prisoner’s dilemma game. Appl. Math. Comput. 386, 125474 (2020)

    MathSciNet  MATH  Google Scholar 

  50. Q. Su, A. Li, L. Wang, Evolutionary dynamics under interactive diversity. New J. Phys. 19(10), 103023 (2017)

    Article  ADS  Google Scholar 

  51. X. Wang, G. Zhang, W. Kong, Evolutionary dynamics of the prisoner’s dilemma with expellers. J. Phys. Commun. 3(1), 015011 (2019)

    Article  Google Scholar 

  52. M. Perc, A. Szolnoki, Social diversity and promotion of cooperation in the spatial prisoner’s dilemma game. Phys. Rev. E 77(1), 011904 (2008)

    Article  ADS  Google Scholar 

  53. G. Ichinose, Y. Satotani, H. Sayama, How mutation alters the evolutionary dynamics of cooperation on networks. New J. Phys. 20(5), 053049 (2018)

    Article  ADS  Google Scholar 

  54. M. Pereda, V. Capraro, A. Sánchez, Group size effects and critical mass in public goods games. Sci. Rep. 9, 5503 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

This work was supported in part by Science and Technology Innovation 2030 “New Generation Artificial Intelligence” Major Project (Grant no. 2020AAA0107704), Technology-Scientific and Technological Innovation Team of Shaanxi Province (Grant no. 2020TD-013), National Natural Science Foundation of China (Grant no. 62073263, 61866039), National Key Scientific Research Project (Grant nos. MJ-2016-S-42, MJ-2018-S-34), Shaanxi Science and Technology Program (Grant no. 2019PT-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peican Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Hou, X., Guo, Y. et al. Investigating the effects of updating rules on cooperation by incorporating interactive diversity. Eur. Phys. J. B 94, 58 (2021). https://doi.org/10.1140/epjb/s10051-021-00059-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-021-00059-1

Navigation