Skip to main content
Log in

Structural and Functional Features of Ketose-3-Epimerases and Their Use for D-Allulose Production

  • REVIEW
  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Rare sugars attract more and more attention as safe low-calorie sweeteners and functional compounds in the food, pharmaceutical and medical industries. D-Allulose, first discovered in wheat over 70 years ago, has significant application potential but its widespread use is limited by high production costs. The epimerization reactions of available sugars resulting in D-allulose production are catalyzed by enzymes of the epimerase group, ketose-3-epimerases. The key tasks of the study of the ketose-3-epimerases family enzymes are defining the exact mechanisms of their action, the improvement of enzymatic activity and stability in order to achieve a higher efficiency of D-allulose production. The review summarizes the latest innovations in the use of ketose-3-epimerases and optimization of D-allulose manufacturing processes. The structural features of the main enzymes explored in the production of the rare sugar, molecular modifications of biocatalysts, and prospects for the practical use of discussed in this work enzyme pathways are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Karabinos, J.V., Adv. Carbohydr. Chem., 1952, vol. 7, pp. 99–136. https://doi.org/10.1016/s0096-5332(08)60083-1

    Article  CAS  PubMed  Google Scholar 

  2. Oshima, H., Kimura, I., and Izumori, K., Food Sci. Technol. Res., 2006, vol. 12, pp. 137–143. https://doi.org/10.3136/fstr.12.137

    Article  CAS  Google Scholar 

  3. Fukada, K., Ishii, T., Tanaka, K., Yamaji, M., Yamaoka, Y., Kobashi, K., and Izumori, K., Bull. Chem. Soc. Jpn., 2010, vol. 83, pp. 1193–1197. https://doi.org/10.1246/bcsj.20100148

    Article  CAS  Google Scholar 

  4. O’Charoen, S., Hayakawa, S., and Ogawa, M., Int. J. Food Sci. Technol., 2014, vol. 50, pp. 194–202. https://doi.org/10.1111/ijfs.12607

    Article  CAS  Google Scholar 

  5. Zhang, W., Yu, S., Zhang, T., Jiang, B., and Mu, W., Trends Food Sci. Technol., 2016, vol. 54, pp. 127–137. https://doi.org/10.1016/j.tifs.2016.06.004

    Article  CAS  Google Scholar 

  6. Mu, W., Zhang, W., Feng, Y., Jiang, B., and Zhou, L., Appl. Microbiol. Biotechnol., 2012, vol. 94, pp. 1461–1467. https://doi.org/10.1007/s00253-012-4093-1

    Article  CAS  PubMed  Google Scholar 

  7. Nishii, N., Nomizo, T., Takashima, S., Matsubara, T., Tokuda, M., and Kitagawa, H., J. Vet. Med. Sci., 2016, vol. 78, pp. 1079–1083. https://doi.org/10.1292/jvms.15-0676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yagi, K. and Matsuo, T., J. Clin. Biochem. Nutr., 2009, vol. 45, pp. 271–277. https://doi.org/10.3164/jcbn.08-191

    Article  PubMed  PubMed Central  Google Scholar 

  9. Harada, M., Kondo, E., Hayashi, H., Suezawa, C., Suguri, S., and Arai, M., Parasitol. Res., 2012, vol. 110, pp. 1565–1567. https://doi.org/10.1007/s00436-011-2660-5

    Article  PubMed  Google Scholar 

  10. Chung, M.-Y., Oh, D.-K., and Lee, K.W., J. Agric. Food Chem., 2012, vol. 60, pp. 863–869. https://doi.org/10.1021/jf204050w

    Article  CAS  PubMed  Google Scholar 

  11. Murao, K., Yu, X., Cao, W.M., Imachi, H., Chen, K., Muraoka, T., Kitanaka, N., Li, J., Ahmed, R.A.M., Matsumoto, K., Nishiuchi, T., Tokuda, M., and Ishida, T., Life Sci., 2007, vol. 81, pp. 592–599. https://doi.org/10.1016/j.lfs.2007.06.019

    Article  CAS  PubMed  Google Scholar 

  12. Iida, T., Kishimoto, Y., Yoshikawa, Y., Hayashi, N., Okuma, K., Tohi, M., Yagi, K., Matsuo, T., and Izumori, K., J. Nutr. Sci. Vitaminol. (Tokyo), 2008, vol. 54, pp. 511–514. https://doi.org/10.3177/jnsv.54.511

    Article  CAS  PubMed  Google Scholar 

  13. Hayashi, N., Iida, T., Yamada, T., Okuma, K., Takehara, I., Yamamoto, T., Yamada, K., and Tokuda, M., Biosci. Biotechnol. Biochem., 2010, vol. 74, pp. 510–519. https://doi.org/10.1271/bbb.90707

    Article  CAS  PubMed  Google Scholar 

  14. Hossain, M.A., Kitagaki, S., Nakano, D., Nishiyama, A., Funamoto, Y., Matsunaga, T., Tsukamoto, I., Yamaguchi, F., Kamitori, K., Dong, Y., Hirata, Y., Murao, K., Toyoda, Y., and Tokuda, M., Biochem. Biophys. Res. Commun., 2011, vol. 405, pp. 7–12. https://doi.org/10.1016/j.bbrc.2010.12.091

    Article  CAS  PubMed  Google Scholar 

  15. Baek, S.H., Park, S.J., and Lee, H.G., J. Food Sci., 2010, vol. 75, pp. H49–H53. https://doi.org/10.1111/j.1750-3841.2009.01434.x

    Article  CAS  PubMed  Google Scholar 

  16. Itoh, K., Mizuno, S., Hama, S., Oshima, W., Kawamata, M., Hossain, A., Ishihara, Y., and Tokuda, M., J. Food Sci., 2015, vol. 80, pp. H1619–H1626. https://doi.org/10.1111/1750-3841.12908

    Article  CAS  PubMed  Google Scholar 

  17. Chen, J., Huang, W., and Jiang, B., FASEB J., 2017, vol. 31, pp. 798.1. https://doi.org/10.1096/fasebj.31.1_supplement.798.1

  18. Ochiai, M., Onishi, K., Yamada, T., Iida, T., and Matsuo, T., Int. J. Food Sci. Nutr., 2014, vol. 65, pp. 245–250. https://doi.org/10.3109/09637486.2013.845653

    Article  CAS  PubMed  Google Scholar 

  19. Iwasaki, Y., Sendo, M., Dezaki, K., Hira, T., Sato, T., Nakata, M., Goswami, C., Aoki, R., Arai, T., Kumari, P., Hayakawa, M., Masuda, C., Okada, T., Hara, H., Drucker, D.J., Yamada, Y., Tokuda, M., and Yada, T., Nat. Commun., 2018, vol. 9, p. 113. https://doi.org/10.1038/s41467-017-02488-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Matsuo, T., Suzuki, H., Hashiguchi, M., and Izumori, K., J. Nutr. Sci. Vitaminol. (Tokyo), 2002, vol. 48, pp. 77–80. https://doi.org/10.3177/jnsv.48.77

    Article  CAS  PubMed  Google Scholar 

  21. Matsuo, T., Tanaka, T., Hashiguchi, M., Izumori, K., and Suzuki, H., Asia Pac. J. Clin. Nutr., 2003, vol. 12, pp. 225–231.

    CAS  PubMed  Google Scholar 

  22. Iida, T., Hayashi, N., Yamada, T., Yoshikawa, Y., Miyazato, S., Kishimoto, Y., Okuma, K., Tokuda, M., and Izumori, K., Metabolism, 2010, vol. 59, pp. 206–214. https://doi.org/10.1016/j.metabol.2009.07.018

    Article  CAS  PubMed  Google Scholar 

  23. Kimura, T., Kanasaki, A., Hayashi, N., Yamada, T., Iida, T., Nagata, Y., and Okuma, K., Nutrition, 2017, vols. 43–44, pp. 16–20. https://doi.org/10.1016/j.nut.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  24. Hofer, S.J., Davinelli, S., Bergmann, M., Scapagnini, G., and Madeo, F., Front. Nutr., 2021, vol. 8, p. 717343. https://doi.org/10.3389/fnut.2021.717343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mooradian, A.D., Smith, M., and Tokuda, M., Clin. Nutr. ESPE, vol. 18, no. 2017, pp. 1–8. https://doi.org/10.1016/j.clnesp.2017.01.004

  26. Lê, K.A., Robin, F., and Roger, O., Curr. Opin. Clin. Nutr. Metab. Care, 2016, vol. 19, pp. 310–315. https://doi.org/10.1097/mco.0000000000000288

    Article  PubMed  Google Scholar 

  27. Bilik, V. and Tihlarik, K., Chem. Pap., vol. 28, pp. 106–109. https://chempap.org/file_access.php?file=281a106.pdf

  28. McDonald, E.J., Carbohydr. Res., 1967, vol. 5, pp. 106–108. https://doi.org/10.1016/0008-6215(67)85014-6

    Article  CAS  Google Scholar 

  29. Doner, L.W., Carbohydr. Res., 1979, vol. 70, pp. 209–216. https://doi.org/10.1016/S0008-6215(00)87101-3

    Article  CAS  Google Scholar 

  30. Kumar, S., Sharma, S., Kansal, S.K., and Elumalai, S., ACS Omega, 2020, vol. 5, pp. 2406–2418. https://doi.org/10.1021/acsomega.9b03918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Izumori, K., Khan, A.R., Okaya, H., and Tsumura, T., Biosci. Biotechnol. Biochem., 1993, vol. 57, pp. 1037–1039. https://doi.org/10.1271/bbb.57.1037

    Article  CAS  Google Scholar 

  32. Itoh, H., Okaya, H., Khan, A.R., Tajima, S., Hayakawa, S., and Izumori, K., Biosci. Biotechnol. Biochem., 1994, vol. 58, pp. 2168–2171. https://doi.org/10.1271/bbb.58.2168

    Article  CAS  Google Scholar 

  33. Kim, H.-J., Hyun, E.-K., Kim, Y.-S., Lee, Y.-J., and Oh, D.-K., Appl. Environ. Microbiol., 2006, vol. 72, pp. 981–985. https://doi.org/10.1128/aem.72.2.981-985.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, L., Mu, W., Jiang, B., and Zhang, T., Biotechnol. Lett., 2009, vol. 31, pp. 857–862. https://doi.org/10.1007/s10529-009-9942-3

    Article  CAS  PubMed  Google Scholar 

  35. Uechi, K., Takata, G., Fukai, Y., Yoshihara, A., and Morimoto, K., Biosci. Biotechnol. Biochem., 2013, vol. 77, pp. 511–515. https://doi.org/10.1271/bbb.120745

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, W., Li, H., Zhang, T., Jiang, B., Zhou, L., and Mu, W., J. Mol. Catal. B: Enzym., 2015, vol. 120, pp. 68–74. https://doi.org/10.1016/j.molcatb.2015.05.018

    Article  CAS  Google Scholar 

  37. Mu, W., Chu, F., Xing, Q., Yu, S., Zhou, L., and Jiang, B., J. Agric. Food Chem., 2011, vol. 59, pp. 7785–7792. https://doi.org/10.1021/jf201356q

    Article  CAS  PubMed  Google Scholar 

  38. Li, C., Li, L., Feng, Z., Guan, L., Lu, F., and Qin, H.-M., Food Chem., 2021, vol. 357, p. 129746. https://doi.org/10.1016/j.foodchem.2021.129746

    Article  CAS  PubMed  Google Scholar 

  39. Zhu, Z., Li, C., Liu, X., Gao, D., Wang, X., Tanokura, M., Qin, H.-M., and Lu, F., RSC Adv., 2019, vol. 9, pp. 2919–2927. https://doi.org/10.1039/c8ra10029b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen, J., Chen, D., Ke, M., Ye, S., Wang, X., Zhang, W., and Mu, W., Mol. Biotechnol., 2021, vol. 63, pp. 534–543. https://doi.org/10.1007/s12033-021-00320-z

    Article  CAS  PubMed  Google Scholar 

  41. Patel, S.N., Kaushal, G., and Singh, S.P., Microb. Cell Fact., 2021, vol. 20, p. 60. https://doi.org/10.1186/s12934-021-01550-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Patel, S.N., Kaushal, G., and Singh, S.P., Appl. Environ. Microbiol., 2020, vol. 86, p. e02605-19. https://doi.org/10.1128/AEM.02605-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, Z., Li, L., Zhang, W., Li, C., Mao, S., Lu, F., and Qin, H.-M., Enzyme Microb. Technol., 2021, vol. 149, p. 109850. https://doi.org/10.1016/j.enzmictec.2021.109850

    Article  CAS  PubMed  Google Scholar 

  44. Mu, W., Zhang, W., Fang, D., Zhou, L., Jiang, B., and Zhang, T., Biotechnol. Lett., 2013, vol. 35, pp. 1481–1486. https://doi.org/10.1007/s10529-013-1230-6

    Article  CAS  PubMed  Google Scholar 

  45. Park, C.-S., Kim, T., Hong, S.-H., Shin, K.-C., Kim, K.-R., and Oh, D.-K., PLoS One, 2016, vol. 11, p. e0160044. https://doi.org/10.1371/journal.pone.0160044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tseng, W.-C., Chen, C.-N., Hsu, C.-T., Lee, H.-C., Fang, H.-Y., Wang, M.-J., Wu, Y.-H., and Fang, T.-Y., Int. J. Biol. Macromol., 2018, vol. 112, pp. 767–774. https://doi.org/10.1016/j.ijbiomac.2018.02.036

    Article  CAS  PubMed  Google Scholar 

  47. Yoshihara, A., Kozakai, T., Shintani, T., Matsutani, R., Ohtani, K., Iida, T., Akimitsu, K., Izumori, K., and Gullapalli, P.K., J. Biosci. Bioeng., 2017, vol. 123, pp. 170–176. https://doi.org/10.1016/j.jbiosc.2016.09.004

    Article  CAS  PubMed  Google Scholar 

  48. Li, S., Chen, Z., Zhang, W., Guang, C., and Mu, W., Int. J. Biol. Macromol., 2019, vol. 138, pp. 536–545. https://doi.org/10.1016/j.ijbiomac.2019.07.112

    Article  CAS  PubMed  Google Scholar 

  49. Jia, M., Mu, W., Chu, F., Zhang, X., Jiang, B., Zhou, L.L., and Zhang, T., Appl. Microbiol. Biotechnol., 2014, vol. 98, pp. 717–725. https://doi.org/10.1007/s00253-013-4924-8

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, W., Fang, D., Xing, Q., Zhou, L., Jiang, B., and Mu, W., PLoS One, 2013, vol. 8, p. e62987. https://doi.org/10.1371/journal.pone.0062987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, W., Fang, D., Zhang, T., Zhou, L., Jiang, B., and Mu, W., J. Agric. Food Chem., 2013, vol. 61, pp. 11468–11476. https://doi.org/10.1021/jf4035817

    Article  CAS  PubMed  Google Scholar 

  52. Jia, D.-X., Sun, C.-Y., Jin, Y.-T., Liu, Z.-Q., Zheng, Y.-G., Li, M., Wang, H.-Y., and Chen, D.-S., Enzyme Microb. Technol., 2021, vol. 148, p. 109816. https://doi.org/10.1016/j.enzmictec.2021.109816

    Article  CAS  PubMed  Google Scholar 

  53. Yang, J., Tian, C., Zhang, T., Ren, C., Zhu, Y., Zeng, Y., Men, Y., Sun, Y., and Ma, Y., Biotechnol. Bioeng., 2019, vol. 116, pp. 745–756. https://doi.org/10.1002/bit.26909

    Article  CAS  PubMed  Google Scholar 

  54. Mao, S., Cheng, X., Zhu, Z., Chen, Y., Li, C., Zhu, M., Liu, X., Lu, F., and Qin, H.-M., Enzyme Microb. Technol., 2020, vol. 132, p. 109441. https://doi.org/10.1016/j.enzmictec.2019.109441

    Article  CAS  PubMed  Google Scholar 

  55. Zhu, Y., Men, Y., Bai, W., Li, X., Zhang, L., Sun, Y., and Ma, Y., Biotechnol. Lett., 2012, vol. 34, pp. 1901–1906. https://doi.org/10.1007/s10529-012-0986-4

    Article  PubMed  Google Scholar 

  56. Oh, D.-K., Kim, N.-H., Kim, H.-J., Park, C.-S., Kim, S.-W., Ko, M., Park, B., Jung, M., and Yoon, K.-H., J. Microbiol. Biotechnol., 2007, vol. 23, pp. 559–563. https://doi.org/10.1007/s11274-006-9265-7

    Article  CAS  Google Scholar 

  57. Zhu, Z., Gao, D., Li, C., Chen, Y., Zhu, M., Liu, X., Tanokura, M., Qin, H.-M., and Lu, F., Microb. Cell Fact., 2019, vol. 18, p. 59. https://doi.org/10.1186/s12934-019-1107-z

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhang, W., Zhang, T., Jiang, B., and Mu, W., J. Sci. Food Agric., 2016, vol. 96, pp. 49–56. https://doi.org/10.1002/jsfa.7187

    Article  CAS  PubMed  Google Scholar 

  59. Patel, S.N., Sharma, M., Lata, K., Singh, U., Kumar, V., Sangwan, R.S., and Singh, S.P., Bioresour. Technol., 2016, vol. 216, pp. 121–127. https://doi.org/10.1016/j.biortech.2016.05.053

    Article  CAS  PubMed  Google Scholar 

  60. Chan, H.-C., Zhu, Y., Hu, Y., Ko, T.-P., Huang, C.-H., Ren, F., Chen, C.-C., Ma, Y., Guo, R.-T., and Sun, Y., Protein Cell, 2012, vol. 3, pp. 123–131. https://doi.org/10.1007/s13238-012-2026-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Van Overtveldt, S., Verhaeghe, T., Joosten, H.-J., Bergh, T., Beerens, K., and Desmet, T., Biotechnol. Adv., 2015, vol. 33, pp. 1814–1828. https://doi.org/10.1016/j.biotechadv.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  62. Uechi, K., Sakuraba, H., Yoshihara, A., Morimoto, K., and Takata, G., Acta Crystallogr. D Biol. Crystallogr., 2013, vol. 69, pp. 2330–2339. https://doi.org/10.1107/s0907444913021665

    Article  CAS  PubMed  Google Scholar 

  63. Yoshida, H., Yamada, M., Nishitani, T., Takada, G., Izumori, K., and Kamitori, S., J. Mol. Biol., 2007, vol. 374, pp. 443–453. https://doi.org/10.1016/j.jmb.2007.09.033

    Article  CAS  PubMed  Google Scholar 

  64. Kim, K., Kim, H.-J., Oh, D.-K., Cha, S.-S., and Rhee, S., J. Mol. Biol., 2006, vol. 361, pp. 920–931. https://doi.org/10.1016/j.jmb.2006.06.069

    Article  CAS  PubMed  Google Scholar 

  65. Qi, Z., Zhu, Z., Wang, J., Li, S., Guo, Q., Xu, P., Lu, F., and Qin, H.-M., Microb. Cell Fact., 2017, vol. 16, p. 193. https://doi.org/10.1186/s12934-017-0808-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yoshida, H., Yoshihara, A., Gullapalli, P.K., Ohtani, K., Akimitsu, K., Izumori, K., and Kamitori, S., Acta Crystallogr. F Struct. Biol. Commun., 2018, vol. 74, pp. 669–676. https://doi.org/10.1107/s2053230x18011706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Carrell, H.L., Glusker, J.P., Burger, V., Manfre, F., Tritsch, D., and Biellmann, J.F., Proc. Natl. Acad. Sci. U. S. A., 1989, vol. 86, pp. 4440–4444. https://doi.org/10.1073/pnas.86.12.4440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carrell, H.L., Hoier, H., and Glusker, J.P., Acta Crystallogr. D Biol. Crystallogr., 1994, vol. 50, pp. 113–123. https://doi.org/10.1107/s0907444993009345

    Article  CAS  PubMed  Google Scholar 

  69. Collyer, C.A., Henrick, K., and Blow, D.M., J. Mol. Biol., 1990, vol. 212, pp. 211–235. https://doi.org/10.1016/0022-2836(90)90316-e

    Article  CAS  PubMed  Google Scholar 

  70. Whitlow, M., Howard, A.J., Finzel, B.C., Poulos, T.L., Winborne, E., and Gilliland, G.L., Proteins, 1991, vol. 9, pp. 153–173. https://doi.org/10.1002/prot.340090302

    Article  CAS  PubMed  Google Scholar 

  71. Fenn, T.D., Ringe, D., and Petsko, G.A., Biochemistry, 2004, vol. 43, pp. 6464–6474. https://doi.org/10.1021/bi049812o

    Article  CAS  PubMed  Google Scholar 

  72. Kovalevsky, A.Y., Hanson, L., Fisher, S.Z., Mustyakimov, M., Mason, S.A., Forsyth, V.T., Blakeley, M.P., Keen, D.A., Wagner, T., Carrell, H.L., Katz, A.K., Glusker, J.P., and Langan, P., Structure, 2010, vol. 18, pp. 688–699. https://doi.org/10.1016/j.str.2010.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yoshida, H., Yamaji, M., Ishii, T., Izumori, K., and Kamitori, S., FEBS J., 2010, vol. 277, pp. 1045–1057. https://doi.org/10.1111/j.1742-4658.2009.07548.x

    Article  CAS  PubMed  Google Scholar 

  74. Yoshida, H., Yoshihara, A., Teraoka, M., Terami, Y., Takata, G., Izumori, K., and Kamitori, S., FEBS J., 2014, vol. 281, pp. 3150–3164. https://doi.org/10.1111/febs.12850

    Article  CAS  PubMed  Google Scholar 

  75. Yoshida, H., Yoshihara, A., Teraoka, M., Yamashita, S., Izumori, K., and Kamitori, S., FEBS Open Bio, 2012, vol. 3, pp. 35–40. https://doi.org/10.1016/j.fob.2012.11.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Munshi, P., Snell, E.H., van der Woerd, M.J., Judge, R.A., Myles, D.A.A., Ren, Z., and Meilleur, F., Acta Cryst. D Biol. Crystallogr., 2014, vol. 70, pp. 414–420. https://doi.org/10.1107/s1399004713029684

    Article  CAS  Google Scholar 

  77. Langan, P., Sangha, A.K., Wymore, T., Parks, J.M., Yang, Z.K., Hanson, B.L., Fisher, Z., Mason, S.A., Blakeley, M.P., Forsyth, V.T., Glusker, J.P., Carrell, H.L., Smith, J.C., Keen, D.A., Graham, D.E., and Kovalevsky, A., Structure, 2014, vol. 22, pp. 1287–1300. https://doi.org/10.1016/j.str.2014.07.002

    Article  CAS  PubMed  Google Scholar 

  78. Terami, Y., Yoshida, H., Uechi, K., Morimoto, K., Takata, G., and Kamitori, S., Appl. Microbiol. Biotechnol., 2015, vol. 99, pp. 6303–6313. https://doi.org/10.1007/s00253-015-6417-4

    Article  CAS  PubMed  Google Scholar 

  79. Yoshida, H., Yamada, M., Nishitani, T., Takada, G., Izumori, K., and Kamitori, S., Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 2007, vol. 63, pp. 123–125. https://doi.org/10.1107/s1744309107001169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yoshida, H., Yoshihara, A., Ishii, T., Izumori, K., and Kamitori, S., Appl. Microbiol. Biotechnol., 2016, vol. 100, pp. 10403–10415. https://doi.org/10.1007/s00253-016-7673-7

    Article  CAS  PubMed  Google Scholar 

  81. Okada, G. and Hehre, E.J., J. Biol. Chem., 1974, vol. 249, pp. 126–135. https://doi.org/10.1016/S0021-9258(19)43100-1

    Article  CAS  PubMed  Google Scholar 

  82. Bosshart, A., Panke, S., and Bechtold, M., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, pp. 9673–9676. https://doi.org/10.1002/anie.201304141

    Article  CAS  PubMed  Google Scholar 

  83. Bosshart, A., Hee, C.S., Bechtold, M., Schirmer, T., and Panke, S., Chembiochem, 2015, vol. 16, pp. 592–601. https://doi.org/10.1002/cbic.201402620

    Article  CAS  PubMed  Google Scholar 

  84. Zhang, W., Zhang, Y., Huang, J., Chen, Z., Zhang, T., Guang, C., and Mu, W., J. Agric. Food Chem., 2018, vol. 66, pp. 5593–5601. https://doi.org/10.1021/acs.jafc.8b01200

    Article  CAS  PubMed  Google Scholar 

  85. Zhang, W., Jia, M., Yu, S., Zhang, T., Zhou, L., Jiang, B., and Mu, W., J. Agric. Food Chem., 2016, vol. 64, pp. 3386–3393. https://doi.org/10.1021/acs.jafc.6b01058

    Article  CAS  PubMed  Google Scholar 

  86. Choi, J.-G., Ju, Y.-H., Yeom, S.-J., and Oh, D.-K., Appl. Environ. Microbiol., 2011, vol. 77, pp. 7316–7320. https://doi.org/10.1128/aem.05566-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was carried out within the framework of the state task on the topic “Functional and Structural Organization of Complex, Multicomponent Systems and Their Dynamics” (registration number 121060200127-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shvetsova.

Ethics declarations

The authors declare no conflicts of interest.

This article does not contain descriptions of studies involving humans or using animals as research subjects.

Additional information

Abbreviations: CEP2, carbohydrate epimerases family 2 (carbohydrate epimerases); DAE, D-allulose-3-epimerase; DFE, D-fructose-3-epimerase; DTE, D-tagatose-3-epimerase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, N.S., Kulminskaya, A.A. & Shvetsova, S.V. Structural and Functional Features of Ketose-3-Epimerases and Their Use for D-Allulose Production. Russ J Bioorg Chem 49, 731–741 (2023). https://doi.org/10.1134/S106816202304012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106816202304012X

Keywords:

Navigation