Skip to main content
Log in

Characterization of a Recombinant d-Allulose 3-epimerase from Thermoclostridium caenicola with Potential Application in d-Allulose Production

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

In recent years, with the increasing public health awareness, low-calorie rare sugars have received more attention on a global scale. d-Allulose, the C-3 epimer of d-fructose, is a representative rare sugar. It displays high sweetness and excellent physiological functions, but only provides a caloric value of 0.4 kcal/g. d-Allulose 3-epimerase (DAEase) is indispensable in d-allulose production. In this study, a putative DAEase from Thermoclostridium caenicola was identified and characterized. The novel T. caenicola DAEase displayed maximum activity at pH 7.5 and 65 °C in the presence of 1 mM Co2+. The half-life (t1/2) at 50 °C was 13.6 h, and the melting temperature (Tm) was 62.4 °C. It was strictly metal-dependent, and the addition of Co2+ remarkably enhanced its thermostability, with a 5.4-fold increase in t1/2 value at 55 °C and 4.8 °C increase in Tm. Furthermore, DAEase displayed high relative activity (89.0%) at a weakly acidic pH 6.5 and produced 139.8 g/L d-allulose from 500 g/L d-fructose, achieving a conversion ratio of 28.0%. These findings suggest that T. caenicola DAEase is a promising biocatalyst for the production of d-allulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Van Laar, A. D. E., Grootaert, C., & Van Camp, J. (2018). Rare mono- and disaccharides as healthy alternative for traditional sugars and sweeteners? Critical Reviews in Food Science and Nutrition, 61(5), 713–741.

    Article  CAS  Google Scholar 

  2. Bilal, M., Iqbal, H. M. N., Hu, H. B., Wang, W., & Zhang, X. H. (2018). Metabolic engineering pathways for rare sugars biosynthesis, physiological functionalities, and applications—A review. Critical Reviews in Food Science and Nutrition, 58, 2768–2778.

    Article  CAS  PubMed  Google Scholar 

  3. Jiang, S. W., Xiao, W., Zhu, X. X., Yang, P. Z., Zheng, Z., Lu, S. H., Jiang, S. T., Zhang, G. C., & Liu, J. J. (2020). Review on D-allulose: In vivo metabolism, catalytic mechanism, engineering strain construction, bio-production technology. Frontiers in Bioengineering and Biotechnology, 8, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mu, W. M., Zhang, W. L., Feng, Y. H., Jiang, B., & Zhou, L. (2012). Recent advances on applications and biotechnological production of D-psicose. Applied Microbiology and Biotechnology, 94, 1461–1467.

    Article  CAS  PubMed  Google Scholar 

  5. Emmadi, M., & Kulkarni, S. S. (2014). Recent advances in synthesis of bacterial rare sugar building blocks and their applications. Natural Products Reports, 31, 870–879.

    Article  CAS  Google Scholar 

  6. Granstrom, T. B., Takata, G., Tokuda, M., & Izumori, K. (2004). Izumoring: A novel and complete strategy for bioproduction of rare sugars. Journal of Bioscience and Bioengineering, 97, 89–94.

    Article  PubMed  Google Scholar 

  7. Zhang, W. L., Yu, S. H., Zhang, T., Jiang, B., & Mu, W. M. (2016). Recent advances in D-allulose: Physiological functionalities, applications, and biological production. Trends in Food Science & Technology, 54, 127–137.

    Article  CAS  Google Scholar 

  8. Kim, H. J., Hyun, E. K., Kim, Y. S., Lee, Y. J., & Oh, D. K. (2006). Characterization of an Agrobacterium tumefaciens D-psicose 3-epimerase that converts D-fructose to D-psicose. Applied and Environment Microbiology, 72, 981–985.

    Article  CAS  Google Scholar 

  9. Mu, W. M., Chu, F. F., Xing, Q. C., Yu, S. H., Zhou, L., & Jiang, B. (2011). Cloning, expression, and characterization of a D-psicose 3-epimerase from Clostridium cellulolyticum H10. Journal of Agriculture and Food Chemistry, 59, 7785–7792.

    Article  CAS  Google Scholar 

  10. Zhu, Y. M., Men, Y., Bai, W., Li, X. B., Zhang, L. L., Sun, Y. X., & Ma, Y. H. (2012). Overexpression of D-psicose 3-epimerase from Ruminococcus sp. in Escherichia coli and its potential application in D-psicose production. Biotechnology Letters, 34, 1901–1906.

    Article  PubMed  Google Scholar 

  11. Mu, W. M., Zhang, W. L., Fang, D., Zhou, L., Jiang, B., & Zhang, T. (2013). Characterization of a D-psicose-producing enzyme, D-psicose 3-epimerase, from Clostridium sp. Biotechnology Letters, 35, 1481–1486.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang, W. L., Fang, D., Xing, Q. C., Zhou, L., Jiang, B., & Mu, W. M. (2013). Characterization of a novel metal-dependent D-psicose 3-epimerase from Clostridium scindens 35704. PLoS ONE, 8, e62987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang, W. L., Fang, D., Zhang, T., Zhou, L., Jiang, B., & Mu, W. M. (2013). Characterization of a metal-dependent D-psicose 3-epimerase from a novel strain, Desmospora sp 8437. Journal of Agriculture and Food Chemistry, 61, 11468–11476.

    Article  CAS  Google Scholar 

  14. Jia, M., Mu, W. M., Chu, F. F., Zhang, X. M., Jiang, B., Zhou, L. L., & Zhang, T. (2014). A D-psicose 3-epimerase with neutral pH optimum from Clostridium bolteae for D-psicose production: Cloning, expression, purification, and characterization. Applied Microbiology and Biotechnology, 98, 717–725.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, W. L., Li, H., Zhang, T., Jiang, B., Zhou, L., & Mu, W. M. (2015). Characterization of a D-psicose 3-epimerase from Dorea sp CAG317 with an acidic pH optimum and a high specific activity. Journal of Molecular Catalysis B: Enzymatic, 120, 68–74.

    Article  CAS  Google Scholar 

  16. Park, C. S., Kim, T., Hong, S. H., Shin, K. C., Kim, K. R., & Oh, D. K. (2016). D-Allulose production from D-fructose by permeabilized recombinant cells of Corynebacterium glutamicum cells expressing D-allulose 3-epimerase Flavonifractor plautii. PLoS ONE, 11, e0160044.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Zhang, W. L., Zhang, T., Jiang, B., & Mu, W. M. (2016). Biochemical characterization of a D-psicose 3-epimerase from Treponema primitia ZAS-1 and its application on enzymatic production of D-psicose. Journal of the Science of Food and Agriculture, 96, 49–56.

    Article  CAS  PubMed  Google Scholar 

  18. Tseng, W. C., Chen, C. N., Hsu, C. T., Lee, H. C., Fang, H. Y., Wang, M. J., Wu, Y. H., & Fang, T. Y. (2018). Characterization of a recombinant D-allulose 3-epimerase from Agrobacterium sp ATCC 31749 and identification of an important interfacial residue. International Journal of Biological Macromolecules, 112, 767–774.

    Article  CAS  PubMed  Google Scholar 

  19. Yang, J. G., Tian, C. Y., Zhang, T., Ren, C. X., Zhu, Y. M., Zeng, Y., Men, Y., Sun, Y. X., & Ma, Y. H. (2019). Development of food-grade expression system for D-allulose 3-epimerase preparation with tandem isoenzyme genes in Corynebacterium glutamicum and its application in conversion of cane molasses to D-allulose. Biotechnology and Bioengineering, 116, 745–756.

    Article  CAS  PubMed  Google Scholar 

  20. Mao, S. H., Cheng, X. T., Zhu, Z. L., Chen, Y., Li, C., Zhu, M. L., Liu, X., Lu, F. P., & Qin, H. M. (2020). Engineering a thermostable version of D-allulose 3-epimerase from Rhodopirellula baltica via site-directed mutagenesis based on B-factors analysis. Enyzme and Microbial Technology, 132, 109441.

    Article  CAS  Google Scholar 

  21. Patel, S. N., Kaushal, G., & Singh, S. P. (2020). A novel D-allulose 3-epimerase gene from the metagenome of a thermal aquatic habitat and D-allulose production by Bacillus subtilis whole-cell catalysis. Applied and Environment Microbiology, 86, e02605.

    CAS  Google Scholar 

  22. Bosshart, A., Panke, S., & Bechtold, M. (2013). Systematic optimization of interface interactions increases the thermostability of a multimeric enzyme. Angewandte Chemie-Internaional Edition, 52, 9673–9676.

    Article  CAS  Google Scholar 

  23. Choi, J. G., Ju, Y. H., Yeom, S. J., & Oh, D. K. (2011). Improvement in the thermostability of D-psicose 3-epimerase from Agrobacterium tumefaciens by random and site-directed mutagenesis. Applied and Environment Microbiology, 77, 7316–7320.

    Article  CAS  Google Scholar 

  24. Zhang, W. L., Jia, M., Yu, S. H., Zhang, T., Zhou, L., Jiang, B., & Mu, W. M. (2016). Improving the thermostability and catalytic efficiency of the D-psicose 3-epimerase from Clostridium bolteae ATCC BAA-613 using site-directed mutagenesis. Journal of Agriculture and Food Chemistry, 64, 3386–3393.

    Article  CAS  Google Scholar 

  25. Zhang, W. L., Zhang, Y. M., Huang, J. W., Chen, Z. W., Zhang, T., Guang, C., & Mu, W. M. (2018). Thermostability improvement of the D-allulose 3-epimerase from Dorea sp CAG317 by site-directed mutagenesis at the interface regions. Journal of Agriculture and Food Chemistry, 66, 5593–5601.

    Article  CAS  Google Scholar 

  26. Zhang, W. L., Zhang, T., Jiang, B., & Mu, W. M. (2017). Enzymatic approaches to rare sugar production. Biotechnology Advances, 35, 267–274.

    Article  CAS  PubMed  Google Scholar 

  27. Samuel, J., & Tanner, M. E. (2002). Mechanistic aspects of enzymatic carbohydrate epimerization. Natural Products Reports, 19, 261–277.

    Article  CAS  Google Scholar 

  28. Shin, S. M., Cao, T. P., Choi, J. M., Kim, S. B., Lee, S. J., Lee, S. H., & Lee, D. W. (2017). TM0416, a hyperthermophilic promiscuous nonphosphorylated sugar isomerase, catalyzes various C-5 and C-6 epimerization reactions. Applied and Environment Microbiology, 83, e03291.

    Article  CAS  Google Scholar 

  29. Li, C. C., Wang, J., Li, Y., Chen, B., Tao, J., Wang, X. Y., Yang, H. Z., Liu, Y. R., Tong, Y., & Han, W. W. (2020). Molecular mechanisms of metal ions in regulating the catalytic efficiency of D-psicose 3-epimerase revealed by multiple short molecular dynamic simulations and free energy predictions. Journal of Biomolecular Structure and Dynamics, 39, 11.

    Google Scholar 

  30. Men, Y., Zhu, Y. M., Zeng, Y., Izumori, K., Sun, Y. X., & Ma, Y. H. (2014). Co-expression of D-glucose isomerase and D-psicose 3-epimerase: Development of an efficient one-step production of D-psicose. Enyzme and Microbial Technology, 64, 1–5.

    Google Scholar 

  31. Chen, X. Y., Wang, W., Xu, J. L., Yuan, Z. H., Yuan, T., Zhang, Y., Liang, C. Y., He, M. C., & Guo, Y. (2017). Production of D-psicose from D-glucose by co-expression of D-psicose 3-epimerase and xylose isomerase. Enyzme and Microbial Technology, 105, 18–23.

    Article  CAS  Google Scholar 

  32. Zhu, P., Zeng, Y., Chen, P., Men, Y., Yang, J. G., Yue, X. P., Zhang, J. G., Zhu, Y. M., & Sun, Y. X. (2020). A one-pot two-enzyme system on the production of high value-added D-allulose from Jerusalem artichoke tubers. Process Biochemistry, 88, 90–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (No. 31801583), the Natural Science Foundation of Jiangsu Province (No. BK20180607), the Key Technology R&D Program of Jiangsu Province (BE2019629), Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project (TSBICIP-KJGG-003), and Key-Area Research and Development Program of Guangdong Province (2020B020226007).

Author information

Authors and Affiliations

Authors

Contributions

JJC: conceptualization, experimentation, investigation, methodology and wrote original manuscript. DC: formal analysis, corrected the original manuscript and data processing and data curation. MYK, SYY, and XYW: performed the experiments and analyzed the data. WLZ and WMM: supervise the project, gave major comments, reviewed the manuscript and project administration.

Corresponding author

Correspondence to Wenli Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 379 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Chen, D., Ke, M. et al. Characterization of a Recombinant d-Allulose 3-epimerase from Thermoclostridium caenicola with Potential Application in d-Allulose Production. Mol Biotechnol 63, 534–543 (2021). https://doi.org/10.1007/s12033-021-00320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-021-00320-z

Keywords

Navigation