Skip to main content
Log in

Numerical Modeling of Rock Bolt Support in Case of Rheological Behavior of Rock Mass in Deformation

  • GEOMECHANICS
  • Published:
Journal of Mining Science Aims and scope

Abstract

The article presents a geomechanical model of a tunnel with rock bolt support. The numerical modeling is performed in ANSYS. The effect of the rock bolt support on the tunnel stability is analyzed with regard to the rheological properties of rocks. The loading and functioning of rock bolts are actualized owing to joint deformation of the rock bolts and enclosing rock mass during their interaction with each other and with the anchoring grouting. The authors discuss feasibility of loss of the load-bearing capacity by the rock bolts because of their fracture. The algorithm of timing of a rock bolt to keep functioning and damage localization is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. Bobet, A. and Einstein, H.H., Tunnel Reinforcement with Rockbolts, Tunn. Undergr. Space Technol., 2011, vol. 26, pp. 100–23.

    Article  Google Scholar 

  2. Stillborg, B., Professional Users Handbook for Rock Bolting, Trans. Tech. Publications, 1986.

  3. Vlachopoulos, N., Cruz, D., Tatone, B.S.A., and Lisjak, A., The Performance of Axially Loaded, Fully Grouted Rock Bolts Based on Pull-Out Experiments Utilizing Fiber Optics Technology and Associated Numerical Modeling of such Support Elements, Geotech. Geol. Eng., 2020, vol. 38, pp. 1389–1407.

    Article  Google Scholar 

  4. Windsor, C.R., Rock Reinforcement Systems, Int. J. Rock Mech. Min. Sci., 1997, vol. 34, pp. 919–951.

    Article  Google Scholar 

  5. Li, C., A review on the Performance of Conventional and Energy-Absorbing Rockbolts, J. Rock Mech. Geotechnical Eng., 2014, pp. 315–327.

    Article  Google Scholar 

  6. Hoek, E., Kaiser, P.K., and Bawden, W.F., Support of Underground Excavations in Hard Rock, Balkema, Rotterdam, 1995.

    Google Scholar 

  7. Trofimov, V.A. and Filippov, Y.A., Contour Convergence Regularities for Openings in Coal, Saint Petersburg: APM Proceedings, 2020.

    Book  Google Scholar 

  8. Lisjak, A., Young-Schultz, T., Li, B., Liqiang, H., Tatone, B., and Mahabadi, O., A Novel Rockbolt Formulation for a GPU-Accelerated, Finite-Discrete Element Method Code and Its Application to Underground Excavations, Int. J. Rock Mech. Min. Sci., 2020, vol. 134. DOI: 10.1016/j.ijrmms.2020.104410.

    Article  Google Scholar 

  9. Bieniawski, Z.T., Engineering Classification of Jointed Rock Masses, Trans. S. Afr. Inst. Civ. Eng., 1973, vol. 15, pp. 335–344.

    Google Scholar 

  10. Barton, N.R., Lien, R., and Lunde, J., Engineering Classification of Rock Masses for the Design of Tunnel Support, Rock Mech., 1974, vol. 6, pp. 189–236.

    Article  Google Scholar 

  11. Lisjak, A., Tatone, B.S.A., Grasselli, G., and Vietor, T., Numerical Modeling of the Anisotropic Mechanical Behavior of Opalinus Clay at the Laboratory-Scale Using FEM/DEM, Rock Mech. Rock Eng., 2014, vol. 47, pp. 187–206.

    Article  Google Scholar 

  12. Forbes, B., Vlachopoulos, N., Diederichs, M.S., and Aubertin, J., Augmenting the In-Situ Rock Bolt Pull Test with Distributed Optical Fiber Strain Sensing, Int. J. Rock Mec. Min. Sci., 2020, vol. 126. DOI: 10.1016/j.ijrmms.2019.104202.

    Article  Google Scholar 

  13. Munjiza, A, Owen, D.R.J, and Bicanic, N., A Combined Finite-Discrete Element Method in Transient Dynamics of Fracturing Solids, Eng. Comput., 1995, vol. 12, pp. 145–174.

    Article  Google Scholar 

  14. Elmo, D., Stead, D., Eberhardt, E., and Vyazmensky, A., Applications of Finite-Discrete Element Modeling to Rock Engineering Problems, Int. J. Geo. Mech., 2013, vol. 13, pp. 565–580.

    Article  Google Scholar 

  15. Lisjak, A., Garitte, B., Grasselli, G., Müller, H.R, and Vietor, T., The Excavation of a Circular Tunnel in a Bedded Argillaceous Rock (Opalinus Clay): Short-Term Rock Mass Response and FDEM Numerical Analysis. Tunn. Undergr. Space Technol., 2015, vol. 45, pp. 227–248.

    Article  Google Scholar 

  16. Yan, C., Zheng, H., Sun, G., and Ge, X., Combined Finite-Discrete Element Method for Simulation of Hydraulic Fracturing, Rock Mech. Rock Eng., 2015, vol. 49, pp. 1389–1410.

    Article  Google Scholar 

  17. Profit, M., Dutko, M., Yu, J., Cole, S., Angus, D., and Baird, A., Complementary Hydro-Mechanical Coupled Finite-Discrete Element and Microseismic Modeling to Predict Hydraulic Fracture Propagation in Tight Shale, Computational Particle Mech., 2016, vol. 3, pp. 229–248.

    Article  Google Scholar 

  18. Lei, Q., Wang, X., Xiang, J., and Latham, J.P., Polyaxial Stress-Dependent Permeability of a Three-Dimensional Fractured Rock Layer, Hydrogeol. J., 2017, vol. 25, pp. 2251–2262.

    Article  Google Scholar 

  19. Vazaios, I., Vlachopoulos, N., and Diederichs, M., The Mechanical Analysis and Interpretation of the EDZ Formation around Deep Tunnels within Massive Rockmasses Using a Hybrid Finite-Discrete Element Approach: The Case of the AECL URL Test Tunnel, Can. Geotech. J., 2018. DOI: 10.1139/cgj-2017-0578.

    Article  Google Scholar 

  20. Li, X., Kim, E., and Walton, G., A Study of Rock Pillar Behaviors in Laboratory and In-Situ Scales Using Combined Finite-Discrete Element Method Models, Int. J. Rock Mech. Min. Sci., 2019, vol. 118, pp. 21–32.

    Article  Google Scholar 

  21. Kargar, A.R., An Analytical Solution for Circular Tunnels Excavated in Rock Masses Exhibiting Viscous Elastic-Plastic Behavior, Int. J. Rock Mech. Min. Sci., 2019, vol. 124, pp. 104–128.

    Article  Google Scholar 

  22. Sakcalia, A. and Yavuz, H., Estimation of Radial Deformations around Circular Tunnels in Weak Rock Masses through Numerical Modeling, Int. J. Rock Mech. Min. Sci., 2019, vol. 123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Zakharov.

Additional information

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2021, No. 6, pp. 6-17. https://doi.org/10.15372/FTPRPI20210601.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, V.N., Trofimov, V.A. & Filippov, Y.A. Numerical Modeling of Rock Bolt Support in Case of Rheological Behavior of Rock Mass in Deformation. J Min Sci 57, 883–893 (2021). https://doi.org/10.1134/S1062739121060016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739121060016

Keywords

Navigation