Skip to main content
Log in

Mechanical Analysis of Rock Tunnels Reinforced by Grouted Rockbolts Considering the Blasting Damage Effect

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

Tunnelling using drilling and blasting method inevitably disturbs the surrounding rock and induces a blasting damaged zone around the tunnel. Conventional mechanical analyses assume that the entire ground is damaged, leading to an underestimation of the surrounding rock stability and a conservative support design of the tunnel. This study developed a new analytical model to analyze the displacement, stress, and plastic radius of tunnels reinforced by grouted rockbolts considering the blasting damage effect. The blasting damaged zone was assumed to take a cylindrical shape with a finite radius. First, four different states of an unsupported tunnel based on the plastic zone distribution within the damaged and undamaged zones were distinguished and solved. Subsequently, ten different forms of a bolt-supported tunnel considering the ground state at bolt installation and the relative ranges of the bolt length and plastic zone were established. A method for determining the evolution paths of these possible forms for a specific tunnel project was developed using the critical displacements and longitudinal positions that define the transition between the different states and forms. Finally, an analytical algorithm for the rockbolt–surrounding rock interaction was established by introducing the concept of a fictitious pressure to simulate tunnel advancement. The proposed analytical model was verified by 3D numerical simulation and field monitoring results. Illustrative examples were presented to investigate the effect of the bolt length on tunnel displacement in both hard and soft rocks. Finally, the performance and advantages of the proposed model were investigated by comparing with the conventional analytical model. The proposed method can be used in the rockbolt design of tunnels constructed using the drilling and blasting method.

Highlights

  • Interaction between rock and grouted rockbolts considering blasting damage zone is analyzed.

  • Ground reaction curves for four different ground states and ten forms are derived.

  • Analytical algorithm for possible evolution paths and critical transitions is presented.

  • Effects of blasting damage zone and bolt length on tunnel displacement is illustrated.

  • Proposed model validated by numerical and field test results excels existing models in rockbolts design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data are available from the corresponding author on reasonable request.

References

  • Ajirlou VS, Ranjbarnia M, Oreste P (2023) Theoretical modeling of the pre-cutting system performance for the tunnel face stability in very weak rock masses. Transp Geotech 42:101073

    Article  Google Scholar 

  • Alejano LR, Rodriguez DA, Alonso E, Fdez-Manin G (2009) Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behaviour. Tunn Undergr Space Technol 24:689–705

    Article  Google Scholar 

  • Alonso E, Alejano LR, Varas F, Fdez-Manín G, Carranza-Torres C (2003) Ground response curves for rock masses exhibiting strain-softening behaviour. Int J Numer Anal Meth Geomech 27:1153–1185

    Article  Google Scholar 

  • Arora K, Gutierrez M (2021) Viscous-elastic–plastic response of tunnels in squeezing ground conditions: analytical modeling and experimental validation. Int J Rock Mech Min 146:104888

    Article  Google Scholar 

  • Arora K, Gutierrez M, Hedayat A (2022) Physical model simulation of rock-support interaction for the tunnel in squeezing ground. J Rock Mech Geotech 14:82–92

    Article  Google Scholar 

  • Beackblom G, Martin CD (1999) Recent experiments in hard rocks to study the excavation response: implications for the performance of a nuclear waste geological repository. Tunn Undergr Space Technol 14(3):377–394

    Article  Google Scholar 

  • Bobet A, Einstein HH (2011) Tunnel reinforcement with rockbolts. Tunn Undergr Space Technol 26:100–123

    Article  Google Scholar 

  • Brown ET, Bray JW, Ladanyi B, Hoek E (1983) Ground response curves for rock tunnels. J Geotech Eng 109:15–39

    Article  Google Scholar 

  • Cai Y, Jiang YJ, Djamaluddin I, Iura T, Esaki T (2015) An analytical model considering interaction behavior of grouted rock bolts for convergence–confinement method in tunneling design. Int J Rock Mech Min Sci 76:112–126

    Article  Google Scholar 

  • Carlson SR, Young RP (1993) Acoustic emission and ultrasonic velocity study of excavation-induced microcrack damage at the underground research laboratory. Int J Rock Mech Min Sci Geomech Abstr 30(7):901–907

    Article  Google Scholar 

  • Carranza-Torres C, Fairhurst C (1999) The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek–Brown failure criterion. Int J Rock Mech Min Sci 3:777–809

    Article  Google Scholar 

  • Carranza-Torres C, Fairhust C (2000) Application of the convergence–confinement method of tunnel design to rock masses that satisfy the Hoek–Brown failure criterion. Tunn Undergr Space Technol 15:187–213

    Article  Google Scholar 

  • Chen FB (2012) Application and mechanism of initial support and surrounding rock in weak rock tunnel. Beijing Jiaotong University, Beijing

    Google Scholar 

  • Chu ZF, Wu ZJ, Liu QS, Liu BG (2021) Analytical solution for lined circular tunnels in deep viscoelastic Burgers rock considering the longitudinal discontinuous excavation and sequential installation of liners. J Eng Mech 147(4):1–22

    Article  Google Scholar 

  • Cui L, Sheng Q, Dong YK, Xie MX (2022) Unified elasto-plastic analysis of rock mass supported with fully grouted bolts for deep tunnels. Int J Numer Anal Meth Geomech 46(2):247–271

    Article  Google Scholar 

  • Dong FT, Song HW, Guo ZH, Lu SM, Liang SJ (1994) Roadway support theory based on broken rock zone. J China Coal Soc 19(1):21–32

    Google Scholar 

  • Fahimifar A, Ranjbarnia M (2009) Analytical approach for the design of active grouted rockbolts in tunnel stability based on convergence–confinement method. Tunn Undergr Space Technol 24(4):363–375

    Article  Google Scholar 

  • Fang Q, Zhang D, Zhou P, Wong LNY (2013) Ground reaction curves for deep circular tunnels considering the effect of ground reinforcement. Int J Rock Mech Min Sci 60:401–412

    Article  Google Scholar 

  • García Bastante F, Alejano L, González-Cao J (2012) Predicting the extent of blastinduced damage in rock masses. Int J Rock Mech Min Sci 56:44–53

    Article  Google Scholar 

  • GB 50086-2015 (2015) Technical code for engineering of ground anchorage and shotcrete support. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, Beijing, China

  • GB/T 50266-2013 (2013) Standard for test methods of engineering rock mass. Ministry of Housing and Urban-Rural Development of the People’s Republic of China, Beijing, China

  • Guan K, Zhu WC, Yu QL, Cui L, Song F (2022) A plasticdamage approach to the excavation response of a circular opening in weak rock. Tunn Undergr Space Technol 126:104538

    Article  Google Scholar 

  • Hedayat A, Weems J (2019) The elasto–plastic response of deep tunnels with damaged zone and gravity effects. Rock Mech Rock Eng 52(12):5123–5135

    Article  Google Scholar 

  • Hoek E, Brown ET (2019) The Hoek–Brown failure criterion and GSI-2018 edition. J Rock Mech Geotech 11(3):445–463

    Article  Google Scholar 

  • Hoek E, Carranza-Torres C, Corkum B (2002) Hoek–Brown failure criterion-2002 Edition. In: Proceedings of the North American rock mechanics society meeting in Toronto, pp 267–273

  • Hoek E (1999) Personal communication

  • Huang Z, Broch E, Lu M (2002) Cavern roof stability–mechanism of arching and stabilization by rockbolting. Tunn Undergr Space Technol 17:249–261

    Article  Google Scholar 

  • Indraratna B, Kaiser PK (1990) Analytical model for the design of grouted rock bolts. Int J Numer Anal Methods 14:227–251

    Article  Google Scholar 

  • Jakobsen PD, Grov E, Bruland A, Gjengedal S (2023) Validity of the NTNU prediction model for D&B tunnelling. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-023-03585-9

    Article  Google Scholar 

  • Kabwe E, Karakus M, Chanda EK (2020) Proposed solution for the ground reaction of noncircular tunnels in an elastic-perfectly plastic rock mass. Comput Geotech 119:103354

    Article  Google Scholar 

  • Kastner H (1971) Statik des tunnel-und stollenbaus auf der grundlage geomechanischer erkenntnisse. Zweite neubearbeitete Aufage. Springer, London

    Google Scholar 

  • Knox G, Hadjigeorgiou J (2022) Infuence of testing confguration on the performance of paddled energy-absorbing rockbolts under impact loading. Rock Mech Rock Eng 55:5705–5721

    Article  Google Scholar 

  • Kruschwitz S, Yaramanci U (2004) Detection and characterization of the disturbed rock zone in claystone with the complex resistivity method. J Appl Geophy 57(1):63–79

    Article  Google Scholar 

  • Li PF, Wang F, Fang Q (2018a) Undrained analysis of ground reaction curves for deep tunnels in saturated ground considering the effect of ground reinforcement. Tunn Undergr Space Technol 71:579–590

    Article  Google Scholar 

  • Li A, Fang Q, Zhang DL, Luo JW, Hong XF (2018b) Blast vibration of a largespan high-speed railway tunnel based on microseismic monitoring. Smart Struct Syst 21(5):561–569

    Google Scholar 

  • Li YH, Tang XJ, Yang S, Chen JW (2019) Evolution of the broken rock zone in the mixed ground tunnel based on the DSCM. Tunn Undergr Space Tech 84:248–258

    Article  Google Scholar 

  • Li R, Zhang DL, Fang Q, Liu DP, Luo JW, Fang HC (2020a) Mechanical responses of closely spaced large span triple tunnels. Tunn Undergr Space Technol 105:103574

    Article  Google Scholar 

  • Li A, Zhang DL, Fang Q, Sun ZY, Cao LQ, Liu DP, Yan WF (2020b) Distribution characteristics and evolution law of excavation damage zone in large-span transition section of high-speed railway tunnel based on microseismic monitoring. China Railw Sci 2:53–62

    Google Scholar 

  • Ling T, Li S, Liu D, Liang SF (2023) Blasting damage of tunnel rock mass based on cumulative effect. Rock Mech Rock Eng 56:1679–1695

    Article  Google Scholar 

  • Liu C, Zhang D, Zhang S, Sun Z (2023a) Interaction analysis between composite supports and rheological rock considering progressive hardening characteristic of shotcrete. Constr Build Mater 374:130876

    Article  Google Scholar 

  • Liu JY, Lu G, Yue L (2023b) Design concept and method of new generation underground station and tunnel project for high-speed railway. Railway Invest Surv 49(5):1–9 (in Chinese)

    CAS  Google Scholar 

  • Luga E, Periku E (2021) A pioneer in-situ investigation on the bearing capacity and failure causes of real scale fully grouted rockbolts. Constr Build Mater 310:124826

    Article  Google Scholar 

  • Luo JW, Zhang DL, Fang Q, Li A, Sun ZY, Cao LQ (2020) Analytical study on pretensioned bolt-cable combined support of large cross-section tunnel. Sci China Technol Sci 63(9):1808–1823

    Article  Google Scholar 

  • Luo JW, Zhang DL, Sun ZY, Fang Q, Liu DP, Xu T, Li R (2023) Numerical modelling and field monitoring study on large-span tunnelling using pretensioned bolt–cable combined support system. Tunn Undergr Space Tech 132:104911

    Article  Google Scholar 

  • Martino JB, Chandler NA (2004) Excavation-induced damage studies at the underground research laboratory. Int J Rock Mech Min Sci 41:1413–1426

    Article  Google Scholar 

  • Meng QB, Han LJ, Xiao Y, Li H, Wen SY, Zhang J (2016) Numerical simulation study of the failure evolution process and failure mode of surrounding rock in deep soft rock roadways. Int J Min Sci Technol 26(2):209–221

    Article  Google Scholar 

  • Oke J, Vlachopoulos N, Diederichs M (2018) Improvement to the convergence–confinement method: inclusion of support installation proximity and stiffness. Rock Mech Rock Eng 51:1495–1519

    Article  Google Scholar 

  • Oreste PP, Peila D (1996) Radial passive bolting in tunnelling design with a new convergence–confinement model. Int J Rock Mech Min Sci 33:443–454

    Article  Google Scholar 

  • Osgoui R, Oreste PP (2010) Elasto-plastic analytical model for the design of grouted bolts in a Hoek-Brown medium. Int J Numer Anal Methods 34:1651–1686

    Article  Google Scholar 

  • Osgoui RR, Ünal E (2009) An empirical method for design of grouted bolts in rock tunnels based on the Geological Strength Index (GSI). Eng Geol 107(3–4):154–166

    Article  Google Scholar 

  • Peila D, Oreste PP (1995) Axisymmetric analysis of ground reinforcing in tunneling design. Comput Geotech 17:253–274

    Article  Google Scholar 

  • Pomasoncco-Najarro A, Trujillo-Valerio C, Arauzo-Gallardo L, Raymundo C, Quispe G, Dominguez F (2022) Pre-split blasting design to reduce costs and improve safety in underground mining. Energy Rep 8:1208–1225

    Article  Google Scholar 

  • Read RS (2004) 20 years of excavation response studies at AECL’s Underground Research Laboratory. Int J Rock Mech Min Sci 41(8):1251–1275

    Article  Google Scholar 

  • Rocscience, RocLab (2002) Rocscience Inc., Toronto, Canada

  • Saiang D, Nordlund E (2009) Numerical analyses of the influence of blast-induced rock around shallow tunnels in brittle rock. Rock Mech Rock Eng 42:421–448

    Article  Google Scholar 

  • Singh P, Spearing AJS (2021) An improved analytical model for the elastic and plastic strain-hardening shear behaviour of fully grouted rockbolts. Rock Mech Rock Eng 54:3909–3925

    Article  Google Scholar 

  • SL264-2001 (2001) Specifications for rock tests in water conservancy and hydropower engineering. China Water & Power Press, Beijing

    Google Scholar 

  • Song F, Rodriguez-Dono A (2021) Numerical solutions for tunnels excavated in strainsoftening rock masses considering a combined support system. Appl Math Model 92:905–930

    Article  Google Scholar 

  • Stille H, Holmberg M, Nord G (1989) Support of weak rock with grouted bolts and shotcrete. Int J Numer Anal Met 26:99–113

    Google Scholar 

  • Su YH, He MC, Gao Q (2004) Application of Rosenblueth method in evaluating stability reliability of anchor-shotcrete net support system for soft-fracture surrounding rock. Chin J Geotech Eng 26(3):378–382

    Google Scholar 

  • Sun ZY, Zhang DL, Fang Q, Dui GS, Tai QM, Sun FW (2021a) Analysis of the interaction between tunnel support and surrounding rock considering pre-reinforcement. Tunn Undergr Space Technol 115:104074

    Article  Google Scholar 

  • Sun ZY, Zhang DL, Fang Q, Liu DP, Dui GS (2021b) Displacement process analysis of deep tunnels with grouted rockbolts considering bolt installation time and bolt length. Comput Geotech 140:104437

    Article  Google Scholar 

  • Sun ZY, Zhang DL, Fang Q, Huangfu NQ, Chu ZF (2022a) Convergence–confinement analysis for tunnels with combined bolt–cable system considering the effects of intermediate principal stress. Acta Geotech 2022:1

    Google Scholar 

  • Sun ZY, Zhang DL, Fang Q, Dui GS, Chu ZF (2022b) Analytical solutions for deep tunnels in strain-softening rocks modeled by different elastic strain definitions with the unified strength theory. Sci China Tech Sci 65:2503–2519

    Article  CAS  Google Scholar 

  • Sun ZY, Zhang DL, Fang Q, Hou YJ, Huangfu NQ (2024) Analysis of the interaction between bolt-reinforced rock and surface support in tunnels based on convergence-confinement method. J Rock Mech Geotech Eng. https://doi.org/10.1016/j.jrmge.2023.09.021

  • TB10003-2016 (2016) Code for design on tunnel of railway. Second Design Institute of China Railway, Beijing, China

  • Vlachopoulos N, Diederichs MS (2009) Improved longitudinal displacement profiles for convergence confinement analysis of deep tunnels. Rock Mech Rock Eng 42:131–146

    Article  Google Scholar 

  • Wang YH, Du W, Zhang GH, Song Y (2021a) The longitudinal deformation profile of a rock tunnel: an elastic analysis. Math Probl Eng 2021:6684035

    Google Scholar 

  • Wang ZL, Wang HC, Wang JG, Tian NC (2021b) Finite element analyses of constitutive models performance in the simulation of blast-induced rock cracks. Comput Geotech 135:104172

    Article  Google Scholar 

  • Wang TJ, Ma WB, Wang Y (2023) Key technologies for construction and operation of Badaling Great Wall underground station on Beijing-Zhangjiakou high-speed railway. Tunnel Constr 43(1):1–16 (in Chinese)

    Google Scholar 

  • Wong H, Subrin D, Dias D (2006) Convergence–confinement analysis of a bolt-supported tunnel using the homogenization method. Can Geotech J 43(5):462–483

    Article  Google Scholar 

  • Wong LNY, Fang Q, Zhang DL (2013) Mechanical analysis of circular tunnels supported by steel sets embedded in primary linings. Tunn Undergr Space Technol 37:80–88

    Article  Google Scholar 

  • Wong H, Larue E (1998) Modeling of bolting support in tunnels taking account of nonsimultaneous yielding of bolts and ground. In: Evangelista A, Picarelli L, Balkema AA (eds) Proceedings of the international conference on the geotechnics of hard soils–soft rocks, Napoli, Italy 12–14 October 1998, Rotterdam, The Netherlands, pp 1027–1038

  • Wu K, Shao Z, Sharifzadeh M, Hong S, Qin S (2022) Analytical computation of support characteristic curve for circumferential yielding lining in tunnel design. J Rock Mech Geotech Eng 14(1):144–152

    Article  Google Scholar 

  • Xie LX, Lu WB, Zhang QB, Jiang QH, Zhao J (2016) Damage evolution mechanisms of rock in deep tunnels induced by cut blasting. Tunn Undergr Space Technol 58:257–270

    Article  Google Scholar 

  • Yi K, Kang H, Ju W et al (2020) Synergistic efect of strain softening and dilatancy in deep tunnel analysis. Tunn Undergr Space Technol 97:103280

    Article  Google Scholar 

  • Zaheri M, Ranjbarnia M, Goudarzy M (2022) Analytical and numerical simulations to predict the long-term behavior of lined tunnels considering excavation-induced damaged zone. Rock Mech Rock Eng 50(10):5879–5904

    Article  Google Scholar 

  • Zareifard MR (2020) A new semi-numerical method for elastoplastic analysis of a circular tunnel excavated in a Hoek–Brown strain-softening rock mass considering the blast-induced damaged zone. Comput Geotech 122:103476

    Article  Google Scholar 

  • Zareifard MR, Fahimifar A (2016) Analytical solutions for the stresses and deformations of deep tunnels in an elastic–brittle–plastic rock mass considering the damaged zone. Tunn Undergr Space Technol 58:186–196

    Article  Google Scholar 

  • Zhou J, Yang XA (2021) An analysis of the support loads on composite lining of deep-buried tunnels based on the Hoek–Brown strength criterion. Tunn Undergr Space Technol 118:104174

    Article  Google Scholar 

Download references

Funding

Funding was provided by National Natural Science Foundation of China (Grant Nos. 52208382, 52278387, 51738002) and Opening fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) (Grant No. SKLGP2023K015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianbin Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1: GRC Solutions for Different Ground States

1.1 State A

The boundary conditions for State A are given by

$$\left\{ \begin{array}{l} \sigma_r \left| {_{r = r_0 } } \right. = p_i \hfill \\ \sigma_r \left| {_{r = \infty } } \right. = p_0 \hfill \\ u_r \left| {_{r = r_1 + {\text{d}}r} } \right. = u_r \left| {_{r = r_1 - {\text{d}}r} } \right. \hfill \\ \end{array} \right.$$
(44)

The radial displacement at the tunnel boundary can be written as

$$u_{r_0 } = \frac{{\left( {1 + \nu^{\prime}} \right)r_0 }}{{E^{\prime}(r_1^2 - r_0^2 )}}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {p_{r_1 } r_1^2 - p_i r_0^2 } \right) - \left( {p_i - p_{r_1 } } \right)r_1^2 } \right] - u_0$$
(45)

with

$$p_{r_1 } = \frac{{2E\left( {1 - \nu^{\prime2} } \right)r_0^2 p_i + E^{\prime}\left( {1 + \nu } \right)\left( {r_1^2 - r_0^2 } \right)p_0 }}{{E^{\prime}\left( {1 + \nu } \right)\left( {r_1^2 - r_0^2 } \right) + E\left( {1 + \nu^{\prime}} \right)\left[ {\left( {1 - 2\nu^{\prime}} \right)r_1^2 + r_0^2 } \right]}}$$
(46)

where \(p_{r_1 }\) is the radial stress at r = r1.

1.2 State B

The boundary conditions for State B are given by

$$\left\{ \begin{array}{l} \sigma_r \left| {_{r = r_0 } } \right. = p_i \hfill \\ \sigma_r \left| {_{r = \infty } } \right. = p_0 \hfill \\ \left( {\sigma_r + \sigma_\theta } \right)\left| {_{r = r_p - {\text{d}}r} } \right. = \left( {\sigma_r + \sigma_\theta } \right)\left| {_{r = r_p + {\text{d}}r} } \right. \hfill \\ u_r \left| {_{r = r_1 + {\text{d}}r} } \right. = u_r \left| {_{r = r_1 - {\text{d}}r} } \right. \hfill \\ u_r \left| {_{r = r_p + {\text{d}}r} } \right. = u_r \left| {_{r = r_p - {\text{d}}r} } \right. \hfill \\ \end{array} \right.$$
(47)

The radial displacement at the tunnel boundary can be written as

$$u_{r_0 } = \frac{{m^{\prime}\sigma^{\prime}_c r_0 }}{{4G^{\prime}\left( {K^{\prime}_\psi + 1} \right)}}\left( {A_i + \ln \frac{r_p }{{r_0 }}} \right)\left( {\frac{r_p }{{r_0 }}} \right)^{K^{\prime}_\psi + 1} + \frac{{\sigma^{\prime}_c r_0 }}{{2m^{\prime}G^{\prime}}}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_0^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_0 } \right] - u_0$$
(48)

where \(K^{\prime}_\psi = \frac{{1 + \sin \psi^{\prime}}}{{1 - \sin \psi^{\prime}}}\), \(A_i = 2\sqrt {{\frac{p_i }{{m^{\prime}\sigma^{\prime}_c }} + \frac{{s^{\prime}}}{{m^{\prime2} }}}} - \frac{1}{{K^{\prime}_\psi + 1}} + \nu^{\prime}\), \(D_0 = \sqrt {{p_i \frac{{m^{\prime}}}{{\sigma^{\prime}_c }} + s^{\prime}}}\).

The plastic radius \(r_p\) is given by

$$\left\{ \begin{array}{l} r_p = r_1 \left[ {\frac{{2\sigma^{\prime}_c \left( {D_p^2 - s^{\prime}} \right) + \sigma^{\prime}_c D_p m^{\prime} - 2m^{\prime}p_{r_1 } }}{{2\sigma^{\prime}_c \left( {D_p^2 - s^{\prime}} \right) + \sigma^{\prime}_c D_p m^{\prime} - 2m^{\prime}p_{r_p } }}} \right]^{0.5} \hfill \\ p_{r_p } = \frac{{\sigma^{\prime}_c }}{{m^{\prime}}}\left( {D_p^2 - s^{\prime}} \right) \hfill \\ p_{r_1 } = \frac{{2E\left( {1 - \nu^{\prime2} } \right)r_p^2 p_{r_p } + E^{\prime}\left( {1 + \nu^{\prime}} \right)\left( {r_1^2 - r_p^2 } \right)p_0 }}{{E^{\prime}\left( {1 + \nu } \right)\left( {r_1^2 - r_p^2 } \right) + E\left( {1 + \nu^{\prime}} \right)\left[ {\left( {1 - 2\nu^{\prime}} \right)r_1^2 + r_p^2 } \right]}} \hfill \\ \end{array} \right.$$
(49)

where \(D_p = \left( {\frac{{m^{\prime}}}{2}{\text{ln}}\frac{r_p }{{r_0 }} + \sqrt {{p_i \frac{{m^{\prime}}}{{\sigma^{\prime}_c }} + s^{\prime}}} } \right)\), \(p_{r_p }\) is the radial stress at \(r = r_p\).

1.3 State C

The boundary conditions for State C are given by

$$\left\{ \begin{array}{l} \sigma_r \left| {_{r = r_0 } } \right. = p_i \hfill \\ \sigma_r \left| {_{r = \infty } } \right. = p_0 \hfill \\ u_r \left| {_{r = r_1 + {\text{d}}r} } \right. = u_r \left| {_{r = r_1 - {\text{d}}r} } \right. \hfill \\ \end{array} \right.$$
(50)

Given that \(\varepsilon_\theta^p \left| {_{r = r_1 } } \right.\) is nonzero, Eq. (18) is inapplicable in this case. By substituting Eqs. (15) and (16) into Eq. (3), the radial displacement \(u_{r_1 }\) at r = r1 can be expressed as

$$u_{r_1 } = r_1 \left\{ {C_1 r_1^{ - K^{\prime}_\psi - 1} - \frac{{m^{\prime}\sigma^{\prime}_c }}{{4G^{\prime}\left( {K^{\prime}_\psi + 1} \right)}}\left( {A_i + \ln \frac{r_1 }{{r_0 }}} \right) + \frac{{\sigma^{\prime}_c }}{{2m^{\prime}G^{\prime}}}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_1^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_1 } \right]} \right\}$$
(51)

where \(D_1 = \left( {\frac{{m^{\prime}}}{2}{\text{ln}}\frac{r_1 }{{r_0 }} + \sqrt {{p_i \frac{{m^{\prime}}}{{\sigma^{\prime}_c }} + s^{\prime}}} } \right)\), C1 is the undetermined coefficient.

For the UZ, Eq. (12) is used to obtain \(u_{r_1 }\) as

$$u_{r_1 } = \frac{1}{2G}\left( {p_0 - p_{r_1 } } \right)r_1$$
(52)

By combining Eqs. (51) and (52), the undetermined coefficient can be obtained by

$$C_1 = r_1^{K^{\prime}_\psi + 1} \left\{ {\frac{1}{2G}\left( {p_0 - p_{r_1 } } \right) - \frac{{\sigma^{\prime}_c }}{{2m^{\prime}G^{\prime}}}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_1^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_1 } \right] + \frac{{m^{\prime}\sigma^{\prime}_c }}{{4G^{\prime}\left( {K^{\prime}_\psi + 1} \right)}}\left( {A_i + \ln \frac{r_1 }{{r_0 }}} \right)} \right\}$$
(53)

By substituting Eq. (53) into Eq. (16) and considering Eqs. (3) and (15), the radial displacement at r = r0 can be written as

$$u_{r_0 } = r_0 \left\{ {C_1 r_0^{ - K^{\prime}_\psi - 1} - \frac{{m^{\prime}\sigma^{\prime}_c A_i }}{{4G^{\prime}\left( {K^{\prime}_\psi + 1} \right)}} + \frac{{\sigma^{\prime}_c }}{{2m^{\prime}G^{\prime}}}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_1^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_1 } \right]} \right\} - u_0$$
(54)

The radial stresses \(p_{r_1 }\) can be expressed as

$$p_{r_1 } = \frac{{\sigma^{\prime}_c }}{{m^{\prime}}}\left[ {\left( {\frac{{m^{\prime}}}{2}{\text{ln}}\frac{r_1 }{{r_0 }} + \sqrt {{p_i \frac{{m^{\prime}}}{{\sigma^{\prime}_c }} + s^{\prime}}} } \right)^2 - s^{\prime}} \right]$$
(55)

1.4 State D

The boundary conditions for State D are given by

$$\left\{ \begin{array}{l} \sigma_r \left| {_{r = r_0 } } \right. = p_i \hfill \\ \sigma_r \left| {_{r = \infty } } \right. = p_0 \hfill \\ \left( {\sigma_r + \sigma_\theta } \right)\left| {_{r = r_p - {\text{d}}r} } \right. = \left( {\sigma_r + \sigma_\theta } \right)\left| {_{r = r_p + {\text{d}}r} } \right. \hfill \\ u_r \left| {_{r = r_1 + {\text{d}}r} } \right. = u_r \left| {_{r = r_1 - {\text{d}}r} } \right. \hfill \\ u_r \left| {_{r = r_p + {\text{d}}r} } \right. = u_r \left| {_{r = r_p - {\text{d}}r} } \right. \hfill \\ \end{array} \right.$$
(56)

Based on Eq. (18), the radial displacement \(u_{r_1 }\) can be written as

$$u_{r_1 } = \frac{m\sigma_c r_1 }{{4G\left( {K_\psi + 1} \right)}}\left[ {\left( {A_1 + \ln \frac{r_p }{{r_1 }}} \right)\left( {\frac{r_p }{{r_1 }}} \right)^{K_\psi + 1} } \right] + \frac{\sigma_c r_1 }{{2mG}}\left[ {\left( {1 - 2\nu } \right)\left( {D_2^2 - s} \right) + \nu mD_2 } \right]$$
(57)

where \(A_1 = 2\sqrt {{\frac{{p_{r_1 } }}{m\sigma_c } + \frac{s}{m^2 }}} - \frac{1}{K_\psi + 1} + \nu\), \(D_2 = \sqrt {{p_{r_1 } \frac{m}{\sigma_c } + s}}\).

By combining Eqs. (51) and (54), the undetermined coefficient \(C_2\) can be obtained by

$$C_2 = r_1^{K^{\prime}_\psi + 1} \left\{ \begin{array}{l} \frac{m\sigma_c r_1 }{{4G\left( {K_\psi + 1} \right)}}\left[ {\left( {A_1 + \ln \frac{r_p }{{r_1 }}} \right)\left( {\frac{r_p }{{r_1 }}} \right)^{K_\psi + 1} } \right] + \frac{\sigma_c r_1 }{{2mG}}\left[ {\left( {1 - 2\nu } \right)\left( {D_2^2 - s} \right) + \nu mD_2 } \right] \hfill \\ - \frac{{\sigma^{\prime}_c }}{{2m^{\prime}G^{\prime}}}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_1^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_1 } \right] + \frac{{m^{\prime}\sigma^{\prime}_c }}{{4G^{\prime}\left( {K^{\prime}_\psi + 1} \right)}}\left( {A_i + \ln \frac{r_1 }{{r_0 }}} \right) \hfill \\ \end{array} \right\}$$
(58)

The radial displacement at the tunnel boundary can be written as

$$u_{r_0 } = r_0 \left\{ {C_2 r_0^{ - K^{\prime}_\psi - 1} - \frac{{m^{\prime}\sigma^{\prime}_c A_i }}{{4G^{\prime}\left( {K^{\prime}_\psi + 1} \right)}} + \frac{{\sigma^{\prime}_c }}{{2m^{\prime}G^{\prime}}}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_1^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_1 } \right]} \right\} - u_0$$
(59)

The variables \(p_{r_p }\), \(p_{r_1 }\) and \(r_p\) in Eq. (59) can be obtained by

$$\left\{ \begin{array}{l} p_{r_1 } = \frac{{\sigma^{\prime}_c }}{{m^{\prime}}}\left( {D_1^2 - s^{\prime}} \right) \hfill \\ p_{r_p } = \frac{\sigma_c }{m}\left[ {\left( {\sqrt {{\frac{{mp_{r_1 } }}{\sigma_c } + s}} + \frac{m}{2}{\text{ln}}\frac{r_p }{{r_1 }}} \right)^2 - s} \right] \hfill \\ 2\frac{\sigma_c }{m}\left( {D_3^2 - s} \right) + \sigma_c D_3 = 2p_0 \hfill \\ \end{array} \right.$$
(60)

where \(D_3 = \left( {\frac{m}{2}{\text{ln}}\frac{r_p }{{r_1 }} + \sqrt {{p_{r_1 } \frac{m}{\sigma_c } + s}} } \right)\).

Appendix 2: Solutions for Different Forms

2.1 Form 1

The boundary conditions for Form 1 are given by

$$\left\{ \begin{array}{l} \sigma_r \left| {_{r = r_0 } } \right. = p_i \hfill \\ \sigma_r \left| {_{r = \infty } } \right. = p_0 \hfill \\ u_r \left| {_{r = r_1 + {\text{d}}r} } \right. = u_r \left| {_{r = r_1 - {\text{d}}r} } \right. \hfill \\ u_r \left| {_{r = r_b + {\text{d}}r} } \right. = u_r \left| {_{r = r_b - {\text{d}}r} } \right. \hfill \\ \end{array} \right.$$
(61)

By referring to Eq. (20), the tunnel wall displacement can be given by

$$u_{r_0 } = \frac{{\left( {1 + \nu^{\prime}} \right)r_0 }}{{\left( {r_b^2 - r_0^2 } \right)E^{\prime}_c }}\left[ {\left( {p_{r_b } + p_i } \right)r_b^2 + \left( {1 - 2\nu^{\prime}} \right)\left( {p_{r_b } r_b^2 - p_i r_0^2 } \right)} \right] - u_0$$
(62)

where \(p_{r_b }\) is the radial stress at \(r = r_b\) which is given by

$$\left\{ \begin{array}{l} p_{r_b } = \frac{{2\left( {1 - \nu^{\prime}} \right)\left[ {p_{r_1 } r_1^2 + \alpha p_i r_0^2 } \right]}}{{\alpha \left[ {\left( {1 - 2\nu^{\prime}} \right)r_b^2 + r_0^2 } \right] + \left( {1 - 2\nu^{\prime}} \right)r_b^2 + r_1^2 }} \hfill \\ p_{r_1 } = \frac{{2E\left( {1 - \nu^{\prime2} } \right)r_b^2 p_{r_b } + E^{\prime}\left( {1 + \nu } \right)\left( {r_1^2 - r_b^2 } \right)p_0 }}{{E^{\prime}\left( {1 + \nu } \right)\left( {r_1^2 - r_b^2 } \right) + E\left( {1 + \nu^{\prime}} \right)\left[ {\left( {1 - 2\nu^{\prime}} \right)r_1^2 + r_b^2 } \right]}} \hfill \\ \end{array} \right.$$
(63)

where \(\alpha = \frac{{E^{\prime}\left( {r_1^2 - r_b^2 } \right)}}{{E^{\prime}_c \left( {r_b^2 - r_0^2 } \right)}}\), \(E^{\prime}_c = \frac{E_b A_b }{{S_c S_l }} + E^{\prime}\).

2.2 Form 2

The boundary conditions for Form 2 are given by

$$\left\{ \begin{array}{l} \sigma_r \left| {_{r = r_0 } } \right. = p_i \hfill \\ \sigma_r \left| {_{r = \infty } } \right. = p_0 \hfill \\ \sigma_r \left| {_{r = r_b + {\text{d}}r} } \right. = \sigma_r \left| {_{r_b - {\text{d}}r} = p_{r_b } } \right. \hfill \\ u_r \left| {_{r = r_1 + {\text{d}}r} } \right. = u_r \left| {_{r = r_1 - {\text{d}}r} } \right. \hfill \\ \end{array} \right.$$
(64)

By referring to Eq. (20), the tunnel wall displacement can be given by

$$u_{r_0 } = \frac{{\left( {1 + \nu^{\prime}} \right)r_0 }}{{\left( {r_1^2 - r_0^2 } \right)E^{\prime}_c }}\left[ {\left( {p_{r_1 } + p_i } \right)r_1^2 + \left( {1 - 2\nu^{\prime}} \right)\left( {p_{r_1 } r_1^2 - p_i r_0^2 } \right)} \right] - u_0$$
(65)

where \(p_{r_b }\) is the radial stress at \(r = r_b\) which is given by

$$\left\{ \begin{array}{l} p_{r_1 } = \frac{{2\left( {1 - \nu^{\prime}} \right)\left[ {p_{r_b } r_b^2 + \beta p_i r_0^2 } \right]}}{{\beta \left[ {\left( {1 - 2\nu^{\prime}} \right)r_1^2 + r_0^2 } \right] + \left( {1 - 2\nu^{\prime}} \right)r_1^2 + r_b^2 }} \hfill \\ p_{r_b } = \frac{{2E\left( {1 - \nu } \right)r_1^2 p_{r_1 } + E_c \left( {r_b^2 - r_1^2 } \right)p_0 }}{{E_c \left( {r_b^2 - r_1^2 } \right) + E\left[ {\left( {1 - 2\nu } \right)r_b^2 + r_1^2 } \right]}} \hfill \\ \end{array} \right.$$
(66)

where \(\beta = \frac{{E_c \left( {r_b^2 - r_1^2 } \right)}}{{E^{\prime}_c \left( {r_1^2 - r_0^2 } \right)}}\), \(E_c = \frac{E_b A_b }{{S_c S_l }} + E\).

2.3 Form 3

The boundary conditions for Form 3 are given by

$$\left\{ \begin{array}{l} \sigma_r \left| {_{r = r_0 } } \right. = p_i \hfill \\ \sigma_r \left| {_{r = \infty } } \right. = p_0 \hfill \\ \sigma_r \left| {_{r = r_b + {\text{d}}r} } \right. = \sigma_r \left| {_{r_b - {\text{d}}r} = p_{r_b } } \right. \hfill \\ \sigma_r \left| {_{r = r_p + {\text{d}}r} } \right. = \sigma_r \left| {_{r_p - {\text{d}}r} = p_{r_p } } \right. \hfill \\ u_r \left| {_{r = r_1 + {\text{d}}r} } \right. = u_r \left| {_{r = r_1 - {\text{d}}r} } \right. \hfill \\ \end{array} \right.$$
(67)

By referred to Eq. (48), the tunnel wall displacement is given by

$$u_{r_0 } = \frac{{m^{\prime}\sigma^{\prime}_c r_0 }}{{4G^{\prime}_c \left( {K^{\prime}_\psi + 1} \right)}}\left( {A_i + \ln \frac{r_p }{{r_0 }}} \right)\left( {\frac{r_p }{{r_0 }}} \right)^{K^{\prime}_\psi + 1} + \frac{{\sigma^{\prime}_c r_0 }}{{2m^{\prime}G^{\prime}}}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_0^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_0 } \right] - u_0$$
(68)

where \(G^{\prime}_c = \frac{{E^{\prime}_c }}{{2\left( {1 + \nu^{\prime}} \right)}}\).

The plastic radius \(r_p\) is given by

$$\left\{ \begin{array}{l} p_{r_b } = p_i + \frac{{m^{\prime}\sigma^{\prime}_c }}{4}\left\{ {\left[ {\ln r_b + \xi \left( {r_b } \right)} \right]^2 - \left[ {\ln r_0 + \xi \left( {r_0 } \right)} \right]^2 } \right\} - \frac{{f\left( {r_b } \right) - f\left( {r_0 } \right)}}{{m^{\prime}\sigma^{\prime}_c }} \hfill \\ r_p = r_1 \left[ {1 - \frac{{2\left( {p_{r_1 } - p_{r_p } } \right)}}{{\sqrt {{m^{\prime}\sigma^{\prime}_c p_{r_1 } + s^{\prime}\sigma^{\prime2}_c}} }}} \right]^{0.5} \hfill \\ p_{r_p } = \frac{{\sigma^{\prime}_c }}{{m^{\prime}}}\left( {D_p^2 - s^{\prime}} \right) \hfill \\ p_{r_1 } = \frac{{2E\left( {1 - \nu^{\prime2} } \right)r_p^2 p_{r_p } + E^{\prime}\left( {1 + \nu^{\prime}} \right)\left( {r_1^2 - r_p^2 } \right)p_0 }}{{E^{\prime}\left( {1 + \nu } \right)\left( {r_1^2 - r_p^2 } \right) + E\left( {1 + \nu^{\prime}} \right)\left[ {\left( {1 - 2\nu^{\prime}} \right)r_1^2 + r_p^2 } \right]}} \hfill \\ \end{array} \right.$$
(69)

2.4 Form 4

The boundary conditions for Form 4 are given by

$$\left\{ \begin{array}{l} \sigma_r \left| {_{r = r_0 } } \right. = p_i \hfill \\ \sigma_r \left| {_{r = \infty } } \right. = p_0 \hfill \\ \sigma_r \left| {_{r = r_b + {\text{d}}r} } \right. = \sigma_r \left| {_{r_b - {\text{d}}r} = p_{r_b } } \right. \hfill \\ \sigma_r \left| {_{r = r_p + {\text{d}}r} } \right. = \sigma_r \left| {_{r_p - {\text{d}}r} = p_{r_p } } \right. \hfill \\ u_r \left| {_{r = r_1 + {\text{d}}r} } \right. = u_r \left| {_{r = r_1 - {\text{d}}r} } \right. \hfill \\ \end{array} \right.$$
(70)

The tunnel wall displacement is given by

$$u_{r_0 } = \frac{{m^{\prime}\sigma^{\prime}_c r_0 }}{{4G^{\prime}_c \left( {K^{\prime}_\psi + 1} \right)}}\left( {A_i + \ln \frac{r_p }{{r_0 }}} \right)\left( {\frac{r_p }{{r_0 }}} \right)^{K^{\prime}_\psi + 1} + \frac{{\sigma^{\prime}_c r_0 }}{{2m^{\prime}G^{\prime}}}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_0^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_0 } \right] - u_0$$
(71)

The plastic radius \(r_p\) is given by

$$\left\{ \begin{array}{l} p_{r_p } = p_i + \frac{{m^{\prime}\sigma^{\prime}_c }}{4}\left\{ {\left[ {\ln r_p + \xi \left( {r_p } \right)} \right]^2 - \left[ {\ln r_0 + \xi \left( {r_0 } \right)} \right]^2 } \right\} - \frac{{f\left( {r_p } \right) - f\left( {r_0 } \right)}}{{m^{\prime}\sigma^{\prime}_c }} \hfill \\ r_p = r_b \left[ {1 - \frac{{2\left( {p_{r_b } - p_{r_p } } \right)}}{{\sqrt {{m^{\prime}\sigma^{\prime}_c p_{r_b } + s^{\prime}\sigma^{\prime2}_c}} }}} \right]^{0.5} \hfill \\ p_{r_b } = \frac{{p_{r_1 } r_1^2 \left( {r_b^2 - r_p^2 } \right) + p_{r_p } r_p^2 \left( {r_1^2 - r_b^2 } \right)}}{{\left( {r_1^2 - r_p^2 } \right)r_b^2 }} \hfill \\ p_{r_1 } = \frac{{2E\left( {1 - \nu^{\prime2} } \right)r_b^2 p_{r_b } + E^{\prime}\left( {1 + \nu^{\prime}} \right)\left( {r_1^2 - r_b^2 } \right)p_0 }}{{E^{\prime}\left( {1 + \nu } \right)\left( {r_1^2 - r_b^2 } \right) + E\left( {1 + \nu^{\prime}} \right)\left[ {\left( {1 - 2\nu^{\prime}} \right)r_1^2 + r_b^2 } \right]}} \hfill \\ \end{array} \right.$$
(72)

2.5 Form 5

The boundary conditions for Form 5 are given by

$$\left\{ \begin{array}{l} \sigma_r \left| {_{r = r_0 } } \right. = p_i \hfill \\ \sigma_r \left| {_{r = \infty } } \right. = p_0 \hfill \\ \sigma_r \left| {_{r = r_b + {\text{d}}r} } \right. = \sigma_r \left| {_{r_b - {\text{d}}r} = p_{r_b } } \right. \hfill \\ \sigma_r \left| {_{r = r_p + {\text{d}}r} } \right. = \sigma_r \left| {_{r_p - {\text{d}}r} = p_{r_p } } \right. \hfill \\ u_r \left| {_{r = r_1 + {\text{d}}r} } \right. = u_r \left| {_{r = r_1 - {\text{d}}r} } \right. \hfill \\ \end{array} \right.$$
(73)

The tunnel wall displacement is given by

$$u_{r_0 } = \frac{{m^{\prime}\sigma^{\prime}_c r_0 }}{{4G^{\prime}_c \left( {K^{\prime}_\psi + 1} \right)}}\left( {A_i + \ln \frac{r_p }{{r_0 }}} \right)\left( {\frac{r_p }{{r_0 }}} \right)^{K^{\prime}_\psi + 1} + \frac{{\sigma^{\prime}_c r_0 }}{{2m^{\prime}G^{\prime}}}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_0^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_0 } \right] - u_0$$
(74)

The plastic radius \(r_p\) is given by

$$\left\{ \begin{array}{l} p_{r_p } = p_i + \frac{{m^{\prime}\sigma^{\prime}_c }}{4}\left\{ {\left[ {\ln r_p + \xi \left( {r_p } \right)} \right]^2 - \left[ {\ln r_0 + \xi \left( {r_0 } \right)} \right]^2 } \right\} - \frac{{f\left( {r_p } \right) - f\left( {r_0 } \right)}}{{m^{\prime}\sigma^{\prime}_c }} \hfill \\ r_p = r_1 \left[ {1 - \frac{{2\left( {p_{r_1 } - p_{r_p } } \right)}}{{\sqrt {{m^{\prime}\sigma^{\prime}_c p_{r_1 } + s^{\prime}\sigma^{\prime2}_c}} }}} \right]^{0.5} \hfill \\ p_{r_b } = p_0 - \frac{r_1^2 }{{r_b^2 }}\left( {p_0 - p_{r_1 } } \right) \hfill \\ p_{r_1 } = \frac{{\eta p_{r_b } r_b^2 \left( {2 - 2\nu } \right) + p_{r_p } r_p^2 \left( {2 - 2\nu^{\prime}} \right)}}{{\eta r_b^2 + r_p^2 + \left( {\eta + 1 - 2\nu - 2\nu^{\prime}} \right)r_1^2 }} \hfill \\ \end{array} \right.$$
(75)

where \(\eta = \frac{{G^{\prime}_c \left( {r_1^2 - r_p^2 } \right)}}{{G_c \left( {r_b^2 - r_1^2 } \right)}}\), \(G_c = \frac{1 + \nu }{{2E_c }}\).

2.6 Form 6

The boundary conditions for Form 6 are given by

$$\left\{ \begin{array}{l} \sigma_r \left| {_{r = r_0 } } \right. = p_i \hfill \\ \sigma_r \left| {_{r = \infty } } \right. = p_0 \hfill \\ \sigma_r \left| {_{r = r_b + {\text{d}}r} } \right. = \sigma_r \left| {_{r_b - {\text{d}}r} = p_{r_b } } \right. \hfill \\ u_r \left| {_{r = r_1 + {\text{d}}r} } \right. = u_r \left| {_{r = r_1 - {\text{d}}r} } \right. \hfill \\ \end{array} \right.$$
(76)

The tunnel wall displacement is given by

$$u_{r_0 } = r_0 \left\{ {C_6 r_0^{ - K^{\prime}_\psi - 1} - \frac{{m^{\prime}\sigma^{\prime}_c A_i }}{{4G^{\prime}_c \left( {K^{\prime}_\psi + 1} \right)}} + \frac{{\sigma^{\prime}_c }}{{2m^{\prime}G^{\prime}_c }}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_1^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_1 } \right]} \right\} - u_0$$
(77)

with

$$C_6 = r_1^{K^{\prime}_\psi + 1} \left\{ {\frac{1}{2G}\left( {p_0 - p_{r_1 } } \right) - \frac{{\sigma^{\prime}_c }}{{2m^{\prime}G^{\prime}}}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_b^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_b } \right] + \frac{{m^{\prime}\sigma^{\prime}_c }}{{4G^{\prime}\left( {K^{\prime}_\psi + 1} \right)}}\left( {A^{\prime}_b + \ln \frac{r_1 }{{r_b }}} \right)} \right\}$$
(78)

where \(A^{\prime}_b = 2\sqrt {{\frac{{p_{r_b } }}{{m^{\prime}\sigma^{\prime}_c }} + \frac{{s^{\prime}}}{{m^{\prime2} }}}} - \frac{1}{{K^{\prime}_\psi + 1}} + \nu^{\prime}\), \(D_b = \left( {\frac{{m^{\prime}}}{2}{\text{ln}}\frac{r_1 }{{r_b }} + \sqrt {{p_{r_b } \frac{{m^{\prime}}}{{\sigma^{\prime}_c }} + s^{\prime}}} } \right)\).

The variables \(p_{r_1 }\) and \(p_{r_b }\) are given by

$$\left\{ \begin{array}{l} p_{r_b } = p_i + \frac{{m^{\prime}\sigma^{\prime}_c }}{4}\left\{ {\left[ {\ln r_b + \xi \left( {r_b } \right)} \right]^2 - \left[ {\ln r_0 + \xi \left( {r_0 } \right)} \right]^2 } \right\} - \frac{{f\left( {r_b } \right) - f\left( {r_0 } \right)}}{{m^{\prime}\sigma^{\prime}_c }} \hfill \\ p_{r_1 } = \frac{{2E\left( {1 - \nu^{\prime2} } \right)r_b^2 p_{r_b } + E^{\prime}\left( {1 + \nu^{\prime}} \right)\left( {r_1^2 - r_b^2 } \right)p_0 }}{{E^{\prime}\left( {1 + \nu } \right)\left( {r_1^2 - r_b^2 } \right) + E\left( {1 + \nu^{\prime}} \right)\left[ {\left( {1 - 2\nu^{\prime}} \right)r_1^2 + r_b^2 } \right]}} \hfill \\ \end{array} \right.$$
(79)

2.7 Form 7

The boundary conditions for Form 7 are given by

$$\left\{ \begin{array}{l} \sigma_r \left| {_{r = r_0 } } \right. = p_i \hfill \\ \sigma_r \left| {_{r = \infty } } \right. = p_0 \hfill \\ \sigma_r \left| {_{r = r_b + {\text{d}}r} } \right. = \sigma_r \left| {_{r_b - {\text{d}}r} = p_{r_b } } \right. \hfill \\ u_r \left| {_{r = r_1 + {\text{d}}r} } \right. = u_r \left| {_{r = r_1 - {\text{d}}r} } \right. \hfill \\ \end{array} \right.$$
(80)

The tunnel wall displacement is given by

$$u_{r_0 } = r_0 \left\{ {C_7 r_0^{ - K^{\prime}_\psi - 1} - \frac{{m^{\prime}\sigma^{\prime}_c A_i }}{{4G^{\prime}_c \left( {K^{\prime}_\psi + 1} \right)}} + \frac{{\sigma^{\prime}_c }}{{2m^{\prime}G^{\prime}_c }}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_1^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_1 } \right]} \right\} - u_0$$
(81)

with

$$C_7 = r_1^{K^{\prime}_\psi + 1} \left\{ {\frac{1}{2G_c }\left( {p_0 - p_{r_1 } } \right) - \frac{{\sigma^{\prime}_c }}{{2m^{\prime}G^{\prime}_c }}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_1^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_1 } \right] + \frac{{m^{\prime}\sigma^{\prime}_c }}{{4G^{\prime}_c \left( {K^{\prime}_\psi + 1} \right)}}\left( {A_i + \ln \frac{r_1 }{{r_0 }}} \right)} \right\}$$
(82)

The variables \(p_{r_1 }\) and \(p_{r_b }\) are given by

$$\left\{ \begin{array}{l} p_{r_1 } = p_i + \frac{{m^{\prime}\sigma^{\prime}_c }}{4}\left\{ {\left[ {\ln r_1 + \xi \left( {r_1 } \right)} \right]^2 - \left[ {\ln r_0 + \xi \left( {r_0 } \right)} \right]^2 } \right\} - \frac{{f\left( {r_1 } \right) - f\left( {r_0 } \right)}}{{m^{\prime}\sigma^{\prime}_c }} \hfill \\ p_{r_b } = \frac{{2E\left( {1 - \nu } \right)r_1^2 p_{r_1 } + E_c \left( {r_b^2 - r_1^2 } \right)p_0 }}{{E_c \left( {r_b^2 - r_1^2 } \right) + E\left[ {\left( {1 - 2\nu } \right)r_b^2 + r_1^2 } \right]}} \hfill \\ \end{array} \right.$$
(83)

2.8 Form 8

The boundary conditions for Form 8 are given by

$$\left\{ \begin{array}{l} \sigma_r \left| {_{r = r_0 } } \right. = p_i \hfill \\ \sigma_r \left| {_{r = \infty } } \right. = p_0 \hfill \\ \sigma_r \left| {_{r = r_b + {\text{d}}r} } \right. = \sigma_r \left| {_{r_b - {\text{d}}r} = p_{r_b } } \right. \hfill \\ \sigma_r \left| {_{r = r_p + {\text{d}}r} } \right. = \sigma_r \left| {_{r_p - {\text{d}}r} = p_{r_p } } \right. \hfill \\ u_r \left| {_{r = r_1 + {\text{d}}r} } \right. = u_r \left| {_{r = r_1 - {\text{d}}r} } \right. \hfill \\ u_r \left| {_{r = r_p + {\text{d}}r} } \right. = u_r \left| {_{r = r_p - {\text{d}}r} } \right. \hfill \\ \end{array} \right.$$
(84)

The radial displacement at the tunnel boundary can be expressed as

$$u_{r_0 } = r_0 \left\{ {C_8 r_0^{ - K^{\prime}_\psi - 1} - \frac{{m^{\prime}\sigma^{\prime}_c A_i }}{{4G^{\prime}_c \left( {K^{\prime}_\psi + 1} \right)}} + \frac{{\sigma^{\prime}_c }}{{2m^{\prime}G^{\prime}_c }}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_1^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_1 } \right]} \right\} - u_0$$
(85)

with

$$C_8 = r_1^{K^{\prime}_\psi + 1} \left\{ \begin{array}{l} \frac{m\sigma_c r_1 }{{4G\left( {K_\psi + 1} \right)}}\left[ {\left( {A_1 + \ln \frac{r_p }{{r_1 }}} \right)\left( {\frac{r_p }{{r_1 }}} \right)^{K_\psi + 1} } \right] + \frac{\sigma_c r_1 }{{2mG}}\left[ {\left( {1 - 2\nu } \right)\left( {D_2^2 - s} \right) + \nu mD_2 } \right] \hfill \\ - \frac{{\sigma^{\prime}_c }}{{2m^{\prime}G^{\prime}}}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_b^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_b } \right] + \frac{{m^{\prime}\sigma^{\prime}_c }}{{4G^{\prime}\left( {K^{\prime}_\psi + 1} \right)}}\left( {A^{\prime}_b + \ln \frac{r_1 }{{r_b }}} \right) \hfill \\ \end{array} \right\}$$
(86)

The variables \(p_{r_1 }\), \(p_{r_p }\), \(p_{r_b }\) and \(r_p\) are given by

$$\left\{ \begin{array}{l} p_{r_b } = p_i + \frac{{m^{\prime}\sigma^{\prime}_c }}{4}\left\{ {\left[ {\ln r_b + \xi \left( {r_b } \right)} \right]^2 - \left[ {\ln r_0 + \xi \left( {r_0 } \right)} \right]^2 } \right\} - \frac{{f\left( {r_b } \right) - f\left( {r_0 } \right)}}{{m^{\prime}\sigma^{\prime}_c }} \hfill \\ p_{r_1 } = \frac{{\sigma^{\prime}_c }}{{m^{\prime}}}\left( {D_b^2 - s^{\prime}} \right) \hfill \\ p_{r_p } = \frac{\sigma_c }{m}\left[ {\left( {\sqrt {{\frac{{mp_{r_b } }}{\sigma_c } + s}} + \frac{m}{2}{\text{ln}}\frac{r_p }{{r_b }}} \right)^2 - s} \right] \hfill \\ 2\frac{\sigma_c }{m}\left( {D_3^2 - s} \right) + \sigma_c D_3 = 2p_0 \hfill \\ \end{array} \right.$$
(87)

2.9 Form 9

The boundary conditions for Form 9 are given by

$$\left\{ \begin{array}{l} \sigma_r \left| {_{r = r_0 } } \right. = p_i \hfill \\ \sigma_r \left| {_{r = \infty } } \right. = p_0 \hfill \\ \sigma_r \left| {_{r = r_b + {\text{d}}r} } \right. = \sigma_r \left| {_{r_b - {\text{d}}r} = p_{r_b } } \right. \hfill \\ \sigma_r \left| {_{r = r_p + {\text{d}}r} } \right. = \sigma_r \left| {_{r_p - {\text{d}}r} = p_{r_p } } \right. \hfill \\ u_r \left| {_{r = r_1 + {\text{d}}r} } \right. = u_r \left| {_{r = r_1 - {\text{d}}r} } \right. \hfill \\ u_r \left| {_{r = r_p + {\text{d}}r} } \right. = u_r \left| {_{r = r_p - {\text{d}}r} } \right. \hfill \\ \end{array} \right.$$
(88)

The radial displacement at the tunnel boundary is written as

$$u_{r_0 } = r_0 \left\{ {C_9 r_0^{ - K^{\prime}_\psi - 1} - \frac{{m^{\prime}\sigma^{\prime}_c A_i }}{{4G^{\prime}_c \left( {K^{\prime}_\psi + 1} \right)}} + \frac{{\sigma^{\prime}_c }}{{2m^{\prime}G^{\prime}_c }}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_1^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_1 } \right]} \right\} - u_0$$
(89)

with

$$C_9 = r_1^{K^{\prime}_\psi + 1} \left\{ \begin{array}{l} \frac{m\sigma_c r_1 }{{4G_c \left( {K_\psi + 1} \right)}}\left[ {\left( {A_1 + \ln \frac{r_b }{{r_1 }}} \right)\left( {\frac{r_b }{{r_1 }}} \right)^{K_\psi + 1} } \right] + \frac{\sigma_c r_1 }{{2mG_c }}\left[ {\left( {1 - 2\nu } \right)\left( {D_9^2 - s} \right) + \nu mD_9 } \right] \hfill \\ - \frac{{\sigma^{\prime}_c }}{{2m^{\prime}G^{\prime}_c }}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_1^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_1 } \right] + \frac{{m^{\prime}\sigma^{\prime}_c }}{{4G^{\prime}_c \left( {K^{\prime}_\psi + 1} \right)}}\left( {A_i + \ln \frac{r_1 }{{r_0 }}} \right) \hfill \\ \end{array} \right\}$$
(90)

where \(D_9 = \left( {\frac{m}{2}{\text{ln}}\frac{r_1 }{{r_b }} + \sqrt {{p_{r_b } \frac{m}{\sigma_c } + s}} } \right)\).

The variables \(p_{r_1 }\), \(p_{r_p }\), \(p_{r_b }\) and \(r_p\) are given by

$$\left\{ \begin{array}{l} p_{r_1 } = p_i + \frac{{m^{\prime}\sigma^{\prime}_c }}{4}\left\{ {\left[ {\ln r_1 + \xi \left( {r_1 } \right)} \right]^2 - \left[ {\ln r_0 + \xi \left( {r_0 } \right)} \right]^2 } \right\} - \frac{{f\left( {r_1 } \right) - f\left( {r_0 } \right)}}{{m^{\prime}\sigma^{\prime}_c }} \hfill \\ p_{r_b } = \frac{{2E\left( {1 - \nu } \right)r_1^2 p_{r_1 } + E_c \left( {r_b^2 - r_1^2 } \right)p_0 }}{{E_c \left( {r_b^2 - r_1^2 } \right) + E\left[ {\left( {1 - 2\nu } \right)r_b^2 + r_1^2 } \right]}} \hfill \\ p_{r_p } = p_{r_b } + \frac{m\sigma_c }{4}\left\{ {\left[ {\ln r_p + \xi \left( {r_p } \right)} \right]^2 - \left[ {\ln r_b + \xi \left( {r_b } \right)} \right]^2 } \right\} - \frac{{f\left( {r_p } \right) - f\left( {r_b } \right)}}{m\sigma_c } \hfill \\ 2\frac{\sigma_c }{m}\left( {D_3^2 - s} \right) + \sigma_c D_3 = 2p_0 \hfill \\ \end{array} \right.$$
(91)

2.10 Form 10

The boundary conditions for Form 10 are given by

$$\left\{ \begin{array}{l} \sigma_r \left| {_{r = r_0 } } \right. = p_i \hfill \\ \sigma_r \left| {_{r = \infty } } \right. = p_0 \hfill \\ \sigma_r \left| {_{r = r_b + {\text{d}}r} } \right. = \sigma_r \left| {_{r_b - {\text{d}}r} = p_{r_b } } \right. \hfill \\ \sigma_r \left| {_{r = r_p + {\text{d}}r} } \right. = \sigma_r \left| {_{r_p - {\text{d}}r} = p_{r_p } } \right. \hfill \\ u_r \left| {_{r = r_1 + {\text{d}}r} } \right. = u_r \left| {_{r = r_1 - {\text{d}}r} } \right. \hfill \\ u_r \left| {_{r = r_p + {\text{d}}r} } \right. = u_r \left| {_{r = r_p - {\text{d}}r} } \right. \hfill \\ \end{array} \right.$$
(92)

The radial displacement at the tunnel boundary is written as

$$u_{r_0 } = r_0 \left\{ {C_9 r_0^{ - K^{\prime}_\psi - 1} - \frac{{m^{\prime}\sigma^{\prime}_c A_i }}{{4G^{\prime}_c \left( {K^{\prime}_\psi + 1} \right)}} + \frac{{\sigma^{\prime}_c }}{{2m^{\prime}G^{\prime}_c }}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_1^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_1 } \right]} \right\} - u_0$$
(93)

with

$$C_{10} = r_1^{K^{\prime}_\psi + 1} \left\{ \begin{array}{l} \frac{m\sigma_c r_1 }{{4G_c \left( {K_\psi + 1} \right)}}\left[ {\left( {A_1 + \ln \frac{r_p }{{r_1 }}} \right)\left( {\frac{r_p }{{r_1 }}} \right)^{K_\psi + 1} } \right] + \frac{\sigma_c r_1 }{{2mG_c }}\left[ {\left( {1 - 2\nu } \right)\left( {D_{10}^2 - s} \right) + \nu mD_{10} } \right] \hfill \\ - \frac{{\sigma^{\prime}_c }}{{2m^{\prime}G^{\prime}_c }}\left[ {\left( {1 - 2\nu^{\prime}} \right)\left( {D_1^2 - s^{\prime}} \right) + \nu^{\prime}m^{\prime}D_1 } \right] + \frac{{m^{\prime}\sigma^{\prime}_c }}{{4G^{\prime}_c \left( {K^{\prime}_\psi + 1} \right)}}\left( {A_i + \ln \frac{r_1 }{{r_0 }}} \right) \hfill \\ \end{array} \right\}$$
(94)

where \(D_{10} = \left( {\frac{m}{2}{\text{ln}}\frac{r_1 }{{r_p }} + \sqrt {{p_{r_p } \frac{m}{\sigma_c } + s}} } \right)\).

The variables \(p_{r_1 }\), \(p_{r_p }\), \(p_{r_b }\) and \(r_p\) are given by

$$\left\{ \begin{array}{l} p_{r_1 } = p_i + \frac{{m^{\prime}\sigma^{\prime}_c }}{4}\left\{ {\left[ {\ln r_1 + \xi \left( {r_1 } \right)} \right]^2 - \left[ {\ln r_0 + \xi \left( {r_0 } \right)} \right]^2 } \right\} - \frac{{f\left( {r_1 } \right) - f\left( {r_0 } \right)}}{{m^{\prime}\sigma^{\prime}_c }} \hfill \\ p_{r_b } = \frac{{2E\left( {1 - \nu } \right)r_1^2 p_{r_1 } + E_c \left( {r_b^2 - r_1^2 } \right)p_0 }}{{E_c \left( {r_b^2 - r_1^2 } \right) + E\left[ {\left( {1 - 2\nu } \right)r_b^2 + r_1^2 } \right]}} \hfill \\ p_{r_p } = p_{r_1 } + \frac{m\sigma_c }{4}\left\{ {\left[ {\ln r_p + \xi \left( {r_p } \right)} \right]^2 - \left[ {\ln r_1 + \xi \left( {r_1 } \right)} \right]^2 } \right\} - \frac{{f\left( {r_p } \right) - f\left( {r_1 } \right)}}{m\sigma_c } \hfill \\ 2\frac{\sigma_c }{m}\left( {D_3^2 - s} \right) + \sigma_c D_3 = 2\frac{{p_{r_b } r_b^2 - p_{r_p } r_p^2 }}{r_b^2 - r_p^2 } \hfill \\ \end{array} \right.$$
(95)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Zhang, D., Wang, J. et al. Mechanical Analysis of Rock Tunnels Reinforced by Grouted Rockbolts Considering the Blasting Damage Effect. Rock Mech Rock Eng (2024). https://doi.org/10.1007/s00603-024-03892-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00603-024-03892-9

Keywords

Navigation