Skip to main content
Log in

Total, classical and quantum uncertainties generated by channels

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

States and channels are fundamental and instrumental ingredients of quantum mechanics. Their interplay not only encodes information about states but also reflects uncertainties of channels. In order to quantify intrinsic uncertainties generated by channels, we exploit the action of a channel on an orthonormal basis in the space of observables from three different perspectives. The first concerns the uncertainty generated by a channel via noncommutativity between the Kraus operators of the channel and an orthonormal basis of observables, which can be interpreted as a kind of quantifier of the total uncertainty generated by a channel. The second concerns the uncertainty in terms of the Tsallis-\(2\) entropy of the Jamiołkowski–Choi state associated with the channel via the channel–state duality, which can be interpreted as a quantifier of the classical uncertainty generated by a channel. The third concerns the uncertainty of a channel as the deviation from the identity channel in terms of the Hilbert–Schmidt distance, which can be interpreted as a kind of quantifier of the quantum uncertainty generated by a channel. We reveal basic properties of these quantifiers of uncertainties and establish a relation between them. We identify channels producing the minimal/maximal uncertainties for these three quantifiers. Finally, we explicitly evaluate these uncertainty quantifiers for various important channels, use them to gain insights into the channels from an information-theoretic perspective, and comparatively study the quantifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Heisenberg, “Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik,” Z. Phys., 43, 172–198 (1927).

    ADS  MATH  Google Scholar 

  2. H. P. Robertson, “The uncertainty principle,” Phys. Rev., 34, 163–164 (1929).

    ADS  Google Scholar 

  3. E. Schrödinger, “About Heisenberg uncertainty relation,” Sitzungsber. Preuß. Akad. Wiss. Berlin Math. Phys., 19, 296–303 (1930).

    Google Scholar 

  4. S. Luo, “Quantum versus classical uncertainty,” Theoret. Math. Phys., 143, 681–688 (2005).

    MathSciNet  MATH  Google Scholar 

  5. K. Korzekwa, M. Lostaglio, D. Jennings, and T. Rudolph, “Quantum and classical entropic uncertainty relations,” Phys. Rev. A, 89, 042122, 9 pp. (2014); arXiv: 1402.1143.

    ADS  Google Scholar 

  6. M. L. W. Basso and J. Maziero, “An uncertainty view on complementarity and a complementarity view on uncertainty,” Quant. Inf. Process., 20, 201, 21 pp. (2021); arXiv: 2007.05053.

    ADS  MathSciNet  Google Scholar 

  7. S. Fu and S. Luo, “From wave-particle duality to wave-particle-mixedness triality: an uncertainty approach,” Commun. Theor. Phys., 74, 035103, 9 pp. (2022).

    ADS  MathSciNet  Google Scholar 

  8. S. Luo, “Quantum uncertainty of mixed states based on skew information,” Phys. Rev. A, 73, 022324, 4 pp. (2006).

    ADS  MathSciNet  Google Scholar 

  9. S. Luo and Y. Sun, “Quantum coherence versus quantum uncertainty,” Phys. Rev. A, 96, 022130, 5 pp. (2017).

    ADS  MathSciNet  Google Scholar 

  10. S. Luo and Y. Sun, “Coherence and complementarity in state-channel interaction,” Phys. Rev. A, 98, 012113, 8 pp. (2018).

    ADS  Google Scholar 

  11. Y. Zhang and S. Luo, “Quantum states as observables: their variance and nonclassicality,” Phys. Rev. A, 102, 062211, 6 pp. (2020).

    ADS  MathSciNet  Google Scholar 

  12. Y. Sun and S. Luo, “Coherence as uncertainty,” Phys. Rev. A, 103, 042423, 9 pp. (2021).

    ADS  MathSciNet  Google Scholar 

  13. C. A. Fuchs and A. Peres, “Quantum-state disturbance versus information gain: Uncertainty relations for quantum information,” Phys. Rev. A, 53, 2038–2045 (1996); arXiv: quant-ph/9512023.

    ADS  Google Scholar 

  14. L. Maccone, “Entropic information-disturbance tradeoff,” Europhys. Lett., 77, 40002, 5 pp. (2007); arXiv: quant-ph/0604038.

    ADS  MathSciNet  Google Scholar 

  15. S. Luo, “Information conservation and entropy change in quantum measurements,” Phys. Rev. A, 82, 052103, 5 pp. (2010).

    ADS  MathSciNet  Google Scholar 

  16. Y. W. Cheong and S.-W. Lee, “Balance between information gain and reversibility in weak measurement,” Phys. Rev. Lett., 109, 150402, 5 pp. (2012); arXiv: 1203.4909.

    ADS  Google Scholar 

  17. T. Shitara, Y. Kuramochi, and M. Ueda, “Trade-off relation between information and disturbance in quantum measurement,” Phys. Rev. A, 93, 032134, 5 pp. (2016); arXiv: 1505.01320.

    ADS  MathSciNet  Google Scholar 

  18. H. Terashima, “Information, fidelity, and reversibility in general quantum measurements,” Phys. Rev. A, 93, 022104, 12 pp. (2016); arXiv: 1511.05308.

    ADS  MathSciNet  Google Scholar 

  19. S.-W. Lee, J. Kim, and H. Nha, “Complete information balance in quantum measurement,” Quantum, 5, 414, 13 pp. (2021); arXiv: 1912.10592.

    Google Scholar 

  20. Č. Brukner and A. Zeilinger, “Operationally invariant information in quantum measurements,” Phys. Rev. Lett., 83, 3354–3357 (1999); arXiv: quant-ph/0005084.

    ADS  MathSciNet  MATH  Google Scholar 

  21. Č. Brukner and A. Zeilinger, “Conceptual inadequacy of the Shannon information in quantum measurements,” Phys. Rev. A, 63, 022113, 10 pp. (2001), arXiv: quant-ph/0006087; Erratum, Phys. Rev. A, 67, 049901, 1 pp. (2003).

    ADS  Google Scholar 

  22. S. Luo, “Brukner–Zeilinger invariant information,” Theoret. Math. Phys., 151, 693–699 (2007).

    MathSciNet  MATH  Google Scholar 

  23. A. E. Rastegin, “Uncertainty relations for MUBs and SIC-POVMs in terms of generalized entropies,” Eur. Phys. J. D, 67, 269, 14 pp. (2013); arXiv: 1303.4467.

    ADS  Google Scholar 

  24. A. E. Rastegin, “On the Brukner–Zeilinger approach to information in quantum measurements,” Proc. R. Soc. A, 471, 0435, 17 pp. (2015).

    Google Scholar 

  25. B. Chen and S.-M. Fei, “Total variance and invariant information in complementary measurements,” Commun. Theor. Phys., 72, 065106, 5 pp. (2020); arXiv: 2005.11521.

    ADS  MathSciNet  MATH  Google Scholar 

  26. S. Lloyd, “Capacity of the noisy quantum channel,” Phys. Rev. A, 55, 1613–1622 (1997).

    ADS  MathSciNet  Google Scholar 

  27. P. Zanardi, C. Zalka, and L. Faoro, “Entangling power of quantum evolutions,” Phys. Rev. A, 62, 030301, 4 pp. (2000); arXiv: quant-ph/0005031.

    ADS  MathSciNet  Google Scholar 

  28. D. K. L. Oi, “Interference of quantum channels,” Phys. Rev. Lett., 91, 067902, 4 pp. (2003); arXiv: quant-ph/0303178.

    ADS  Google Scholar 

  29. T. Abad, V. Karimipour, and L. Memarzadeh, “Power of quantum channels for creating quantum correlations,” Phys. Rev. A, 86, 062316, 9 pp. (2012); arXiv: 1211.4805.

    ADS  Google Scholar 

  30. X. Hu, H. Fan, D. L. Zhou, and W.-M. Liu, “Quantum correlating power of local quantum channels,” Phys. Rev. A, 87, 032340, 5 pp. (2013); arXiv: 1203.6149.

    ADS  Google Scholar 

  31. A. Mani and V. Karimipour, “Cohering and decohering power of quantum channels,” Phys. Rev. A, 92, 032331, 9 pp. (2015); arXiv: 1506.02304.

    ADS  Google Scholar 

  32. K. Bu, A. Kumar, L. Zhang, and J. Wu, “Cohering power of quantum operations,” Phys. Lett. A, 381, 1670–1676 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  33. N. Li, S. Luo, and Y. Mao, “Quantumness-generating capability of quantum dynamics,” Quantum Inf. Process., 17, 74, 18 pp. (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  34. F. Shahbeigi and S. J. Akhtarshenas, “Quantumness of quantum channels,” Phys. Rev. A, 98, 042313, 7 pp. (2018); arXiv: 1808.00754.

    ADS  Google Scholar 

  35. G. Gour and M. M. Wilde, “Entropy of a quantum channel,” Phys. Rev. Res., 3, 023096, 26 pp. (2021).

    Google Scholar 

  36. A. Jamiołkowski, “Linear transformations which preserve trace and positive semidefinitness of operators,” Rep. Math. Phys., 3, 275–278 (1972).

    ADS  MATH  Google Scholar 

  37. M.-D. Choi, “Completely positive maps on complex matrices,” Linear Algebra Appl., 10, 285–290 (1975).

    MathSciNet  MATH  Google Scholar 

  38. M. Jiang, S. Luo, and S. Fu, “Channel-state duality,” Phys. Rev. A, 87, 022310, 8 pp. (2013).

    ADS  Google Scholar 

  39. Á. Rivas and M. Müller, “Quantifying spatial correlations of general quantum dynamics,” New J. Phys., 17, 062001, 11 pp. (2015).

    ADS  MathSciNet  MATH  Google Scholar 

  40. K. Korzekwa, S. Czachórski, Z. Puchała, and K. Życzkowski, “Coherifying quantum channels,” New J. Phys., 20, 043028, 26 pp. (2018).

    ADS  Google Scholar 

  41. C. Datta, S. Sazim, A. K. Pati, and P. Agrawal, “Coherence of quantum channels,” Ann. Phys. (N. Y.), 397, 243–258 (2018); arXiv: 1710.05015.

    ADS  MathSciNet  MATH  Google Scholar 

  42. J. Xu, “Coherence of quantum channels,” Phys. Rev. A, 100, 052311, 8 pp. (2019); arXiv: 1907.07289.

    ADS  MathSciNet  Google Scholar 

  43. S. Luo, “Heisenberg uncertainty relation for mixed states,” Phys. Rev. A, 72, 042110, 3 pp. (2005).

    ADS  Google Scholar 

  44. Y. Sun and N. Li, “The uncertainty of quantum channels in terms of variance,” Quantum Inf. Process., 20, 25, 15 pp. (2021).

    ADS  MathSciNet  Google Scholar 

  45. C. Tsallis, “Possible generalization of Boltzmann–Gibbs statistics,” J. Stat. Phys., 52, 479–487 (1988).

    ADS  MathSciNet  MATH  Google Scholar 

  46. M. L. Lyra and C. Tsallis, “Nonextensivity and multifractality in low-dimensional dissipative systems,” Phys. Rev. Lett., 80, 53–56 (1998); arXiv: cond-mat/9709226.

    ADS  Google Scholar 

  47. D. Pérez-Garc\’ia, M. M. Wolf, D. Petz, and M. B. Ruskai, “Contractivity of positive and trace-preserving maps under \(L_p\) norms,” J. Math. Phys., 47, 083506, 5 pp. (2006); arXiv: math-ph/0601063.

    ADS  MathSciNet  MATH  Google Scholar 

  48. L. Henderson and V. Vedral, “Classical, quantum and total correlations,” J. Phys. A: Math. Gen., 34, 6899–6905 (2001); arXiv: quant-ph/0105028.

    ADS  MathSciNet  MATH  Google Scholar 

  49. H. Ollivier and W. H. Zurek, “Quantum discord: a measure of the quantumness of correlations,” Phys. Rev. Lett., 88, 017901, 4 pp. (2001); arXiv: quant-ph/0105072.

    ADS  MATH  Google Scholar 

  50. S. Luo, “Quantum discord for two-qubit systems,” Phys. Rev. A, 77, 042303, 6 pp. (2008).

    ADS  Google Scholar 

  51. S. Luo, “Statistics of local value in quantum mechanics,” Inter. J. Theor. Phys., 41, 1713–1731 (2002).

    MathSciNet  MATH  Google Scholar 

  52. G. Lüders, “Über die Zustandsänderung durch den Meßprozeß,” Ann. Physik, 8, 322–328 (1951).

    MathSciNet  MATH  Google Scholar 

  53. S. Luo, “Using measurement-induced disturbance to characterize correlations as classical or quantum,” Phys. Rev. A, 77, 022301, 5 pp. (2008).

    ADS  Google Scholar 

  54. J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, “Symmetric informationally complete quantum measurements,” J. Math. Phys, 45, 2171–2180 (2004); arXiv: quant-ph/0310075.

    MathSciNet  MATH  Google Scholar 

  55. R. F. Werner and A. S. Holevo, “Counterexample to an additivity conjecture for output purity of quantum channels,” J. Math. Phys., 43, 4353–4357 (2002); arXiv: quant-ph/0203003.

    ADS  MathSciNet  MATH  Google Scholar 

  56. F. Buscemi, G. Chiribella, and G. M. D’Ariano, “Inverting quantum decoherence by classical feedback from the environment,” Phys. Rev. Lett., 95, 090501, 4 pp. (2005); arXiv: quant-ph/0504195.

    ADS  Google Scholar 

  57. K. Brádler, P. Hayden, D. Touchette, and M. M. Wilde, “Trade-off capacities of the quantum Hadamard channels,” Phys. Rev. A, 81, 062312, 23 pp. (2010); arXiv: 1001.1732.

    ADS  Google Scholar 

  58. S. Luo, S. Fu, and N. Li, “Decorrelating capabilities of operations with application to decoherence,” Phys. Rev. A, 82, 052122, 12 pp. (2010).

    ADS  Google Scholar 

  59. Y. Aharonov, D. Z. Albert, and L. Vaidman, “How the result of a measurement of a component of the spin of a spin-\(1/2\) particle can turn out to be 100,” Phys. Rev. Lett., 60, 1351–1354 (1998).

    Google Scholar 

  60. O. Oreshkov and T. A. Brun, “Weak measurements are universal,” Phys. Rev. Lett., 95, 110409, 4 pp. (2005); arXiv: quant-ph/0503017.

    ADS  Google Scholar 

  61. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels,” Phys. Rev. Lett., 70, 1895–1899 (1993).

    ADS  MathSciNet  MATH  Google Scholar 

  62. M. Horodecki, P. Horodecki, and R. Horodecki, “General teleportation channel, singlet fraction, and quasidistillation,” Phys. Rev. A, 60, 1888–1898 (1999).

    ADS  MathSciNet  MATH  Google Scholar 

  63. M. Horodecki and P. Horodecki, “Reduction criterion of separability and limits for a class of distillation protocols,” Phys. Rev. A, 59, 4206–4216 (1999).

    ADS  Google Scholar 

  64. K. Banaszek, “Optimal quantum teleportation with an arbitrary pure state,” Phys. Rev. A, 62, 024301, 4 pp. (2000); arXiv: quant-ph/0002088.

    ADS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (grant No. 2020YFA0712700), the National Natural Science Foundation of China (grant Nos. 11875317 and 61833010), and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (grant No. 20KJB140028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunlong Luo.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 213, pp. 347–369 https://doi.org/10.4213/tmf10310.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Luo, S. & Sun, Y. Total, classical and quantum uncertainties generated by channels. Theor Math Phys 213, 1613–1631 (2022). https://doi.org/10.1134/S0040577922110071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922110071

Keywords

Navigation