Skip to main content
Log in

Categories of quantum and classical channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We introduce a construction that turns a category of pure state spaces and operators into a category of observable algebras and superoperators. For example, it turns the category of finite-dimensional Hilbert spaces into the category of finite-dimensional C*-algebras and completely positive maps. In particular, the new category contains both quantum and classical channels, providing elegant abstract notions of preparation and measurement. We also consider nonstandard models that can be used to investigate which notions from algebraic quantum information theory are operationally justifiable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By an abstract C*-algebra, we mean an object in a monoidal category satisfying certain requirements. By a concrete one, we mean an object satisfying those requirements in the category of (finite-dimensional) Hilbert spaces. This is not to be confused with terminology from functional analysis. There, a concrete C*-algebra is a *-subalgebra of the algebra \(\mathcal {B}(H)\) of bounded operators on a Hilbert space \(H\) that is uniformly closed, whereas an abstract C*-algebra is any Banach algebra with an involution satisfying \(\Vert a^*a\Vert =\Vert a\Vert ^2\); these notions are equivalent by the Gelfand–Naimark–Segal construction; see e.g.  [16, Theorem I.9.12].

  2. There is a closely related notion called specialness. A dagger Frobenius algebra is normal if and only if it is special and symmetric. In \(\mathbf {FHilb} \), normal and special coincide for dagger Frobenius algebras.

  3. Commutativity might be too strong a notion of “completely classical” system in the abstract. A weaker notion of broadcastability, that coincides with commutativity in \(\mathbf {FHilb} \), seems more reasonable. Subsequent work will investigate such more operational notions of classicality.

  4. Notice also that \(\mathbb {R}_{\ge 0}\) is not a quantale under its usual ordering.

References

  1. Abramsky, S., Coecke, B.: Categorical Quantum Mechanics. Elsevier, Amsterdam (2008)

    MATH  Google Scholar 

  2. Abramsky, S., Heunen, C.: H*-algebras and nonunital frobenius algebras: first steps in infinite-dimensional categorical quantum mechanics. Clifford Lect. 71, 1–24 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Alicki, R.: Comment on ‘reduced dynamics need not be completely positive’. Phys. Rev. Lett. 75, 3020 (1995)

    Article  ADS  Google Scholar 

  4. Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  5. Boixo, S., Heunen, C.: Entangled and sequential quantum protocols with dephasing. Phys. Rev. Lett. 108, 120–402 (2012)

    Article  Google Scholar 

  6. Choi, M.D.: Completely positive linear maps on complex matrices. Linear Algebra Appl. 10(3), 285–290 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  7. Coecke, B.: Axiomatic description of mixed states from Selinger’s CPM-construction. Electron. Notes Theor. Comput. Sci. 210, 3–13 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coecke, B. (ed.): New Structures for Physics. No. 813 in Lecture Notes in Physics. Springer, Berlin (2009).

  9. Coecke, B., Duncan, R.: Interacting quantum observables: categorical algebra and diagrammatics. New J. Phys. 13, 043,016 (2011).

  10. Coecke, B., Heunen, C.: Pictures of complete positivity in arbitrary dimension. Electron. Proc. Theor. Comput. Sci. 95, 27–35 (2012)

    Article  MATH  Google Scholar 

  11. Coecke, B., Heunen, C., Kissinger, A.: Compositional quantum logic. In: Coecke, B., Ong, L., Panangaden, P. (eds.) Computation, Logic, Games, and Quantum Foundationsno. 7860 in Lectures Notes in Computer Science, pp. 21–36. Springer, New York (2013).

  12. Coecke, B., Paquette, É.O., Pavlović, D.: Classical and quantum structuralism. In: Gay, S., Mackey, I. (eds.) Semantic Techniques in Quantum Computation, pp. 29–69. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  13. Coecke, B., Pavlović, D.: Quantum measurements without sums. Mathematics of Quantum Computing and Technology. Taylor and Francis, New York (2007)

    Book  MATH  Google Scholar 

  14. Coecke, B., Pavlović, D., Vicary, J.: A new description of orthogonal bases. Math. Struct. Comput. Sci. 23(3), 555–567 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Coecke, B., Perdrix, S.: Environment and classical channels in categorical quantum mechanics. Computer Science Logic, pp. 230–244. Springer, New York (2010).

  16. Davidson, K.R.: C*-algebras by Example. American Mathematical Society, Providence (1991)

    MATH  Google Scholar 

  17. Duncan, R.: Types for Quantum Computing. Ph.D. thesis, Oxford University, Oxford (2006).

  18. Heunen, C., Contreras, I., Cattaneo, A.S.: Relative frobenius algebras are groupoids. J. Pure Appl. Algebra 217, 114–124 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heunen, C., Kissinger, A., Selinger, P.: Completely positive projections and biproducts. In: Proceedings of Quantum Physics and Logic X (2013) (to appear) arxiv:1308.4557

  20. Heunen, C., Vicary, J.: Introduction to Categorical Quantum Mechanics. Oxford University Press (to appear)

  21. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102, 20–78 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Keyl, M.: Fundamentals of quantum information theory. Phys. Rep. 369, 431–548 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Keyl, M., Werner, R.F.: Channels and maps. In: Bruß, D., Leuchs, G. (eds.) Lectures on Quantum Information, pp. 73–86. Wiley, Hoboken (2007)

    Google Scholar 

  24. Li, B.: Real Operator Algebras. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  25. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, New York (1971).

  26. Panangaden, P., Paquette, É.O.: New structures for physics. In: Coecke, B. (ed.) New Structures for Physics. No. 813 in Lecture Notes in Physics, pp. 939–979. Springer, New York (2009).

  27. Paulsen, V.: Completely Bounded Maps and Operators Algebras. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  28. Pechukas, P.: Reduced dynamics need not be completely positive. Phys. Rev. Lett. 74, 1060–1062 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Redei, M.: Why John von Neumann did not like the Hilbert space formalism of quantum mechanics (and what he liked instead). Stud. Hist. Philos. Sci. Part B 27, 493–510 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rosenthal, K.I.: Quantales and their Applicatoins. Pitman Research Notes in Mathematics. Longman Scientific & Technical, Harlow (1990)

    Google Scholar 

  31. Ruan, Z.J.: On real operator spaces. Acta Math. Sinica 19(3), 485–496 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Selinger, P.: Dagger compact closed categories and completely positive maps. Quantum Programming Languages, Electronic Notices in Theoretical Computer Science, pp. 139–163. Elsevier, Amsterdam (2007).

  33. Selinger, P.: Idempotents in dagger categories. Quantum Programming Languages, Electronic Notes in Theoretical Computer Science, pp. 107–122. Elsevier, Amsterdam (2008).

  34. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B. (ed.) New Structures for Physics. No. 813 in Lecture Notes in Physics, pp. 289–356. Springer, New York (2009).

  35. Shaji, A., Sudarshan, E.C.G.: Who’s afraid of not completely positive maps? Phys. Lett. A 341(1–4), 48–54 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Stinespring, W.F.: Positive functions on C*-algebras. Proc. Am. Math. Soc. 6(2), 211–216 (1955)

    MathSciNet  MATH  Google Scholar 

  37. Størmer, E.: Positive Linear Maps of Operator Algebras. Springer, New York (2013).

  38. Vicary, J.: Categorical formulation of finite-dimensional quantum algebras. Commun. Math. Phys. 304(3), 765–796 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Zakrzewski, S.: Quantum and classical pseudogroups I. Commun. Math. Phys. 134, 347–370 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Życzkowski, K., Bengtsson, I.: On duality between quantum states and quantum maps. Open Syst. Inf. Dyn. 11, 3–42 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by the Engineering and Physical Sciences Research Council Fellowship EP/L002388/1, and the John Templeton Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Heunen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coecke, B., Heunen, C. & Kissinger, A. Categories of quantum and classical channels. Quantum Inf Process 15, 5179–5209 (2016). https://doi.org/10.1007/s11128-014-0837-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0837-4

Keywords

Mathematics Subject Classification

Navigation