Skip to main content
Log in

On Quantum Channels and Operations Preserving Finiteness of the von Neumann Entropy

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

We describe the class (semigroup) of quantum channels mapping states with finite entropy into states with finite entropy. We show, in particular, that this class is naturally decomposed into three convex subclasses, two of them are closed under concatenations and tensor products. We obtain asymptotically tight universal continuity bounds for the output entropy of two types of quantum channels: channels with finite output entropy and energy-constrained channels preserving finiteness of the entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is easy to see that \(S\) is the homogeneous extension of the ‘‘classical’’ Shannon entropy defined on the set of probability distributions to the positive cone of \(\ell_{1}\).

  2. The support \(\textrm{supp}\rho\) of a positive trace class operator \(\rho\) is the closed subspace spanned by the eigenvectors of \(\rho\) corresponding to its positive eigenvalues.

  3. In terms of the sequence \(\{E_{k}\}\) of eigenvalues of \(H_{A}\) condition (9) means that \(\lim_{k\rightarrow\infty}E_{k}/\ln k=+\infty\), while (10) is valid if \(\liminf_{k\rightarrow\infty}E_{k}/\ln^{q}k>0\) for some \(q>2\) [7, Section 2.2].

  4. Theorem 3 in [14] shows that \(F_{H_{A}}(E)=O(\ln E)\) as \(E\rightarrow+\infty\) provided that condition (15) holds.

  5. In [3, 5] these maps were called PCE-maps, since they also preserve local continuity of the entropy by Theorem 1 below.

  6. Pure states are rank-one projectors—extreme points of the convex set \(\mathfrak{S}(\mathcal{H}_{A})\).

  7. in the sense described at the begin of this subsection.

  8. It is shown in [15] that \(\sigma\textrm{-}\textrm{co}f\neq\overline{\textrm{co}}f\) for a particular lower semicontinuous concave nonnegative unitarily invariant function \(f\) on \(\mathfrak{S}(\mathcal{H})\), so the above conjecture can not be proved by using only general entropy-type properties of the function \(H_{\Phi}\).

  9. The convex roof extension is widely used for construction of different characteristics of states in finite-dimensional quantum systems [17, 19].

  10. In general, the discrete convex roof construction applied to an entropy type function (in the role of \(H\)) may give a function which is not equal to zero at countably non-decomposable separable states [15, Remark 6].

  11. By Proposition 1 in Section 2.2 this holds, in particular, if \(\hat{F}_{H_{A}}=\hat{F}^{*}_{H_{A}}\).

  12. A continuity bound \(\sup_{x,y\in S_{a}}|f(x)-f(y)|\leq B_{a}(x,y)\) depending on a parameter \(a\) is called asymptotically tight for large \(a\) if \(\limsup_{a\rightarrow+\infty}\sup_{x,y\in S_{a}}\frac{|f(x)-f(y)|}{B_{a}(x,y)}=1\).

REFERENCES

  1. A. S. Holevo, Quantum Systems, Channels, Information. A Mathematical Introduction (De Gruyter, Berlin, 2012)

    MATH  Google Scholar 

  2. M. M. Wilde Quantum Information Theory (Cambridge Univ. Press, Cambridge, 2013).

    Book  Google Scholar 

  3. M. E. Shirokov, ‘‘The continuity of the output entropy of positive maps,’’ Sb. Math. 202, 1537–1564 (2011).

    Article  MathSciNet  Google Scholar 

  4. A. S. Holevo and M. E. Shirokov, ‘‘Mutual and coherent information for infinite-dimensional quantum channels,’’ Problems Inform. Transmis. 46, 201–218 (2010).

    Article  MathSciNet  Google Scholar 

  5. M. E. Shirokov, ‘‘On characterization of positive maps preserving continuity of the von Neumann entropy,’’ Russ. Math. Surv. 71, 965–966 (2016).

    Article  MathSciNet  Google Scholar 

  6. A. S. Holevo, ‘‘Classical capacities of quantum channels with constrained inputs,’’ Prob. Theory Appl. 48, 359–374 (2003).

    Google Scholar 

  7. M. E. Shirokov, ‘‘Advanced Alicki–Fannes–Winter method for energy-constrained quantum systems and its use,’’ Quantum Inf. Process. 19 (164) (2020). https://doi.org/10.1007/s11128-020-2581-2

  8. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

    MATH  Google Scholar 

  9. G. Lindblad, ‘‘Expectation and entropy inequalities for finite quantum systems,’’ Commun. Math. Phys. 39, 111–119 (1974).

    Article  MathSciNet  Google Scholar 

  10. A. Wehrl, ‘‘General properties of entropy,’’ Rev. Mod. Phys. 50, 221–250 (1978).

    Article  MathSciNet  Google Scholar 

  11. M. Fannes, ‘‘A continuity property of the entropy density for spin lattice systems,’’ Commun. Math. Phys. 31, 291–294 (1973).

    Article  MathSciNet  Google Scholar 

  12. K. M. R. Audenaert, ‘‘A sharp continuity estimate for the von Neumann entropy,’’ J. Math. Phys. A: Math. Theor. 40, 8127–8136 (2007).

    MathSciNet  MATH  Google Scholar 

  13. A. Winter, ‘‘Tight uniform continuity bounds for quantum entropies: Conditional entropy, relative entropy distance and energy constraints,’’ Commun. Math. Phys. 347, 291–313 (2016).

    Article  MathSciNet  Google Scholar 

  14. S. Becker and N. Datta, ‘‘Convergence rates for quantum evolution and entropic continuity bounds in infinite dimensions,’’ Commun. Math. Phys. 374, 823–871 (2020).

    Article  MathSciNet  Google Scholar 

  15. M. E. Shirokov, ‘‘On properties of the space of quantum states and their application to construction of entanglement monotones,’’ Izv. Math. 74, 849–882 (2010).

    Article  MathSciNet  Google Scholar 

  16. J. Eisert, ‘‘Entanglement in quantum information theory,’’ arXiv: quant-ph/0610253.

  17. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, ‘‘Quantum entanglement,’’ Rev. Mod. Phys. 81, 865–942 (2009).

    Article  MathSciNet  Google Scholar 

  18. J. Eisert, Ch. Simon, and M. B. Plenio, ‘‘On the quantification of entanglement in infinite-dimensional quantum systems,’’ J. Phys. A 35, 3911–3923 (2002).

    Article  MathSciNet  Google Scholar 

  19. M. B. Plenio and S. Virmani, ‘‘An introduction to entanglement measures,’’ Quantum Inf. Comput. 7, 1–51 (2007).

    MathSciNet  MATH  Google Scholar 

  20. G. Vidal, ‘‘Entanglement monotones,’’ J. Mod. Opt. 47, 355–376 (2000).

    Article  MathSciNet  Google Scholar 

  21. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, ‘‘Mixed state entanglement and quantum error correction,’’ Phys. Rev. A 54, 3824–3851 (1996).

    MathSciNet  MATH  Google Scholar 

  22. M. E. Shirokov, ‘‘Measures of correlations in infinite-dimensional quantum systems,’’ Sb. Math. 207, 724–768 (2016).

    Article  MathSciNet  Google Scholar 

  23. A. S. Holevo, ‘‘Additivity conjecture and covariant channels,’’ Int. J. Quant. 3, 41–48 (2005).

    Article  Google Scholar 

  24. G. G. Amosov, ‘‘On Weyl channels being covariant with respect to the maximum commutative group of unitaries,’’ J. Math. Phys. 48, 012104 (2007).

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.S. Holevo and to the participants of his seminar ‘‘Quantum probability, statistic, information’’ (the Steklov Mathematical Institute) for useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. E. Shirokov or A. V. Bulinski.

Additional information

(Submitted by A. S. Holevo)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shirokov, M.E., Bulinski, A.V. On Quantum Channels and Operations Preserving Finiteness of the von Neumann Entropy. Lobachevskii J Math 41, 2383–2396 (2020). https://doi.org/10.1134/S1995080220120392

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080220120392

Keywords:

Navigation