Skip to main content
Log in

First-Principles Molecular Dynamics Study of a NaF–AlF3 Molten Salt with a Low Molecular Ratio

  • CHEMOINFORMATICS AND COMPUTER MODELING
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

This paper reports-the results of the first-principles molecular dynamics calculations of the NaF–AlF3 electrolyte molten salt system with a low molecular ratio (1.3). The local ion structures of the NaF–AlF3 molten salt system mainly included four-coordination [AlF4], five-coordination [AlF5]2–, and a few six-coordination [AlF6]3– structures. The first peak of the radial distribution function of the Al–F ion pair was the highest, and the interactions between Al and F ions were strong, which made the molten salt structure complex. The average coordination number of the Al–F ion pair was 4.53. The coordination distribution of the ion structure was that four-coordination [AlF4] and five-coordination [AlF5]2– structures accounted for more than 90%, while six-coordination [AlF6]3– structures accounted for less than 10%. The F ion type distribution was mainly terminal fluorine Ft, while bridge fluorine Fb and free fluorine Ff accounted for less.The angular distribution of the Al–F–Al bond was 94°, 114°, and 171°. The Al–F bond has ionic properties, but because F-2p is hybridized with Al-3s and 3p orbitals, Al–F ions also have covalent properties. The average Mulliken bond population of Al–F was 0.29, which is much larger than that of F–F and Na–F. Therefore, the covalent interactions between Al–F ion pairs were strong. The order of ion diffusion ability in the NaF–AlF3 molten salt was Na+ > F > Al3+. The viscosity of the molten salt was 1.479 mPa s, and the ionic conductivity was 1.306 S/cm. These calculation results provide data support for the application of the NaF–AlF3 low-temperature aluminum electrolyte system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. R. Mukhlis, M. A. Rhamdhani, and G. Brooks, TMS Light Met. 2010, 883 (2010).

    Google Scholar 

  2. Z. G. Li, China Nonferr. Met., No. 5 (2), 38 (2022).

  3. Y. X. Liu and J. Li, Modern Aluminum Electrolysis (Metallurgical Industry Press, 2008), p. 3.

    Google Scholar 

  4. B. Gilbert, G. Mamantov, and G. M. Begun, Inorg. Nucl. Chem. Lett. 10, 1123 (1974). https://doi.org/10.1016/0020-1650(74)80177-7

  5. B. Gilbert and T. Materne, Appl. Spectrosc. 44, 299 (1990). https://doi.org/10.1366/0003702904085525

    Article  CAS  Google Scholar 

  6. B. Gilbert, E. Robert, E. Tixhon, et al., Inorg. Chem. 35, 4198 (1996). https://doi.org/10.1021/ic951660l

    Article  CAS  PubMed  Google Scholar 

  7. E. Tixhon, E. Robert, and B. Gilbert, Appl. Spectrosc. 48, 1477 (1994). https://doi.org/10.1366/0003702944027769

    Article  CAS  Google Scholar 

  8. C. Malherbe and B. Gilbert, Anal. Chem. 85 (18), 8669 (2013). https://doi.org/10.1021/ac401490j

  9. V. Lacassagne, C. Bessada, P. Florian, et al., J. Phys. Chem. B 106, 1862 (2002). https://doi.org/10.1021/jp013114l

    Article  CAS  Google Scholar 

  10. I. Nuta, E. Veron, G. Matzen, et al., Inorg. Chem. 50, 3304 (2011). https://doi.org/10.1021/ic1019845

    Article  CAS  PubMed  Google Scholar 

  11. J. F. Stebbins, I. Farnan, N. Dando, et al., J. Am. Ceram. Soc. 75, 3001 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb04378.x

  12. S. V. Abramov, N. S. Chilingarov, A. Y. Borshchevsky, et al., Int. J. Mass Spectrom. 231, 31 (2004). https://doi.org/10.1016/j.ijms.2003.09.006

    Article  CAS  Google Scholar 

  13. S. Cikit, Z. Akdeniz, and P. A. Madden, J. Phys. Chem. B 118, 1064 (2014). https://doi.org/10.1021/jp4080459

    Article  CAS  PubMed  Google Scholar 

  14. X. J. Lv, Z. M. Xu, J.Li, J. G. Chen, and Q. S. Liu, J. Fluorine Chem. 185, 42 (2016). https://doi.org/10.1016/j.jfluchem.2016.03.004

    Article  CAS  Google Scholar 

  15. X. J. Lv, Z. M. Xu, J. Li, et al., J. Mol. Liq. 221, 26 (2016). https://doi.org/10.1016/j.molliq.2016.05.064

    Article  CAS  Google Scholar 

  16. X. W. Liu, J. L. You, Y. Y. Wang, et al., J. Light Scatter. 26 (4), 6 (2014). https://doi.org/10.13883/j.issn1004-5929.201403009

    Article  Google Scholar 

  17. X. W. Liu, J. L. You, Y. Y. Wang, et al., Chin. J. Nonferr. Met. 24, 286 (2014).

    CAS  Google Scholar 

  18. T. Zhao, J. L. You, Y. Y. Wang, et al., J. Light Scatter. 24, 7 (2012). https://doi.org/10.3969/j.issn.1004-5929.2012.01.001

    Article  Google Scholar 

  19. L. Cassayre, P. Palau, P. Chamelot, et al., J. Chem. Eng. Data 55, 4549 (2010). https://doi.org/10.1021/je100214x

    Article  CAS  Google Scholar 

  20. C. H. Zhou, S. L. Ma, and J. Y. Shen, Nonferr. Met. 50, 81 (1998).

    CAS  Google Scholar 

  21. Z. Rong, J. Ding, W. Wang, et al., Sol. Energy Mater. Sol. Cells 216, 110696 (2020). https://doi.org/10.1016/j.solmat.2020.110696

  22. H. Guo, J. Li, H. Zhang, et al., Chem. Phys. Lett. 730, 587 (2019). https://doi.org/10.1016/j.cplett.2019.06.060

    Article  CAS  Google Scholar 

  23. A. Bengtson, H. O. Nam, S. Saha, et al., Comput. Mater. Sci. 83, 362 (2014). https://doi.org/10.1016/j.commatsci.2013.10.043

    Article  CAS  Google Scholar 

  24. R. Vuilleumier, A. Seitsonen, N. Sator, et al., Geochim. Cosmochim. Acta 141, 547 (2014). https://doi.org/10.1016/j.gca.2014.06.037

    Article  CAS  Google Scholar 

  25. X. J. Lv, Z. Xun, et al., Phys. Chem. Chem. Phys. 21, 7474 (2019). https://doi.org/10.1039/c9cp00377k

  26. W. Brockner, K. Tørklep, and H. A. Øye, Ber. Bunsenges. Phys. Chem. 83, 12 (2010). https://doi.org/10.1002/bbpc.19790830103

  27. J. Híve and J. Thonstad, Electrochim. Acta 49, 5111 (2004). https://doi.org/10.1016/j.electacta.2004.06.022

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Financial supported by NSFC 52064030, Yunnan Major Scientific and Technological Projects (grant nos. 202202AG050007, 202202AG050017), and Yunnan Industrial Talent project YNQR-CYRC-2018-003 are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hengwei Yan or Zhanwei Liu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Chen, X., Yan, H. et al. First-Principles Molecular Dynamics Study of a NaF–AlF3 Molten Salt with a Low Molecular Ratio. Russ. J. Phys. Chem. 97, 1558–1566 (2023). https://doi.org/10.1134/S0036024423070142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423070142

Keywords:

Navigation