Skip to main content
Log in

Binding Energies in the Molten M–Al–Zr–O–F Systems (M = Li, Na, K)

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The binding energies in complex anions formed from the components Al–F, Zr–F, Al–O–F, and Zr–O–F are calculated by the ab initio Siesta molecular dynamics simulation. The formation of the anions is related to the dissolution of the ZrO2 and Al2O3 oxides in MF–AlF3 (M = Li, Na, K) fluoride melts. The influence of the element compositions of the anions and the cation from the second coordination sphere on the binding energies of the complex anions is determined. Among the oxygen-containing anions, the \({\text{A}}{{{\text{l}}}_{{\text{2}}}}{{{\text{O}}}_{{\text{2}}}}{\text{F}}_{{\text{6}}}^{{2 - }}\) and \({\text{Z}}{{{\text{r}}}_{{\text{2}}}}{{{\text{O}}}_{{\text{2}}}}{\text{F}}_{{\text{6}}}^{{2 - }}\) anions are shown to be most stable. Under identical conditions, the anions formed by zirconium are characterized by the lowest energy of the determining bond. The replacement of the cation in the second coordination sphere in the series from K to Li decreases the binding energy in the M2Al2O2F6 and M2Zr2O2F6 anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. V. Ogorodov, D. A. Popov, and A. V. Trapeznikov, “Methods of preparing an Al–Zr master alloy (review),” Trudy VIAM, No. 11, 2–11 (2015).

    Google Scholar 

  2. K. E. Knipling, D. N. Seidman, and D. C. Dunand, “Ambient- and high-temperature mechanical properties of isochronally aged Al–0.06Sc, Al–0.06Zr, and Al–0.06Sc–0.06Zr (at %) alloys,” Acta Mater. 59, 943–954 (2011).

    Article  CAS  Google Scholar 

  3. M. I. Gasik, N. P. Lyakishev, and B. I. Emlin, Theory and Practice of Manufacturing Ferroalloys (Metallurgiya, Moscow, 1988).

    Google Scholar 

  4. S. P. Yatsenko, B. V. Ovsyannikov, M. A. Ardashev, and A. N. Sabirzyanov, “Carbonization preparation of "master alloy” from fluoride–chloride melts,” Rasplavy, No. 5, 29–36 (2006).

    Google Scholar 

  5. V. I. Napalkov and S. V. Makhov, Alloying and Modification of Aluminum and Magnesium (MISIS, Moscow, 2002).

    Google Scholar 

  6. S. A. Krasikov, S. N. Agafonov, V. P. Chentsov, and E. M. Zhilina, “The effect of phase formation on the character of interphase interactions during aluminothermic reduction of zirconium from its dioxide,” Rasplavy, No. 2, 60–64 (2015).

    Google Scholar 

  7. S. N. Agafonov, S. A. Krasikov, A. A. Ponomarenko, and L. A. Ovchinnikova, “Phase formation in the aluminothermic reduction of ZrO2,” Neorg. Mater., 48, 927–934 (2012).

    Article  Google Scholar 

  8. J. M. Juneja, “Preparation of aluminium–zirconium master alloys,” Ind. J. Eng. Mater. Sci. 9, 187–190 (2002).

    CAS  Google Scholar 

  9. P. S. Pershin, A. A. Filatov, A. V. Suzdal’tsev, Yu. P. Zaikov, “Aluminothermic preparation of Al–Zr alloys in the KF–AlF3 melt,” Rasplavy, No. 5, 413–421 (2016).

    Google Scholar 

  10. P. S. Pershin, A. A. Kataev, A. A. Filatov, A. V. Suzdal’tsev, and Yu. P. Zaikov, “Synthesis of Al–Zr alloys via ZrO2 aluminium-thermal reduction in KF–AlF3-based melts,” Met. Mater. Trans. B 48, 1962–1969 (2017).

    Article  CAS  Google Scholar 

  11. A. A. Filatov, P. S. Pershin, A. Yu. Nikolaev, and A. V. Suzdal’tsev, “Synthesis of Al–Zr alloys and master alloys during the electrolysis of KF–NaF–AlF3–ZrO2 melts,” Tsvetn. Met., No. 11, 27–31 (2017).

  12. E. Kubinakova, V. Danielik, and J. Hives, “Advanced technology for Al–Zr alloy synthesis: Electrochemical investigation of suitable low-melting electrolytes,” J. Alloys Compd. 738, 151–157 (2018).

    Article  CAS  Google Scholar 

  13. A. A. Suzdal’tsev, A. A. Filatov, A. Yu. Nikolaev, A. A. Pankratov, N. G. Molchanova, and Yu. P. Zaikov, “Extraction of scandium and zirconium from their oxides during the electrolysis of oxide–fluoride melts,” Russ. Metall. (Metally), No. 1, 5–13 (2018).

  14. A. A. Filatov, P. S. Pershin, A. V. Suzdaltsev, A. Yu. Nikolaev, and Yu. P. Zaikov, “Synthesis of Al–Zr master alloys via the electrolysis of KF–NaF–AlF3–ZrO2 melts,” J. Electrochem. Soc. 165 (2), E28–E34 (2018).

    Article  CAS  Google Scholar 

  15. G. S. Picard, F. Seon, and B. Tremillon, “Oxoacidity reactions in molten lithium chloride + potassium chloride eutectic (at 470°C): potentiometric study of the equilibria of exchange of oxide ion between aluminum(III) systems and carbonate and water systems,” J. Electroanal. Chem. Interfac. Electrochem. 102 (1), 65–75 (1979).

    Article  CAS  Google Scholar 

  16. G. S. Picard, F. Seon, B. Tremillon, and Y. Bertaud, “Effect of the addition of fluoride on the conditional solubility of alumina in lithium chloride–potassium chloride eutectic melt,” Electrochim. Acta, 25 1453–1462 (1980).

    Article  CAS  Google Scholar 

  17. G. S. Picard, F. C. Bouyer, M. Leroy, Y. Bertaud, and S. Bouvet, “Structures of oxyfluoroaluminates in molten cryolite–alumina mixtures investigated by DFT-based calculations,” J. Mol. Struct. (Theochem) 368, 67–80 (1996).

    Article  CAS  Google Scholar 

  18. E. Robert, J. E. Olsen, V. Danek, E. Tixhon, T. Ostvold, and B. Gilbert, “Structure and thermodynamics of alkali fluoride–aluminum fluoride–alumina melts. Vapor pressure, solubility, and Raman spectroscopic studies,” J. Phys. Chem. B 101, 9447–9456 (1997).

    Article  CAS  Google Scholar 

  19. R. J. Thorne, C. Sommerseth, A. P. Ratvik, S. Rorvik, E. Sandnes, L. P. Lossius., H. Ling, and A. M. Svensson, “Correlation between coke type, microstructure, and anodic reaction overpotential in aluminium electrolysis,” J. Electrochem. Soc. 162 (12), E296–E306 (2015).

    Article  CAS  Google Scholar 

  20. A. Y. Galashev and O. R. Rakhmanova, “Computer modeling of oxygen migration accompanying aluminum production,” Lett. Mater. 7 (4), 373–379 (2017).

    Article  Google Scholar 

  21. A. Y. Galashev and O. R. Rakhmanova, “Computer study of oxygen release from Al melts,” Model. Simul. Mater. Sci. Eng. 26, 025003 (2017).

    Article  Google Scholar 

  22. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. B 136, 864–871 (1964).

    Article  Google Scholar 

  23. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. A 140, 1133–1138 (1965).

    Article  Google Scholar 

  24. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Suzdal’tsev.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vorob’ev, A.S., Suzdal’tsev, A.V. & Galashev, A.E. Binding Energies in the Molten M–Al–Zr–O–F Systems (M = Li, Na, K). Russ. Metall. 2019, 781–786 (2019). https://doi.org/10.1134/S0036029519080160

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029519080160

Keywords:

Navigation