Skip to main content
Log in

Structure of ethylammonium hydrogen sulfate protic ionic liquid through DFT calculations and MD simulations: the role of hydrogen bonds

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Understanding how structure and interactions between ions affect physicochemical properties is of great importance for the rational design, synthesis, and applications of new “target-specific” ionic liquids. Motivated by this need, in this paper, we present the results of density functional theory (DFT) studies of few small clusters including up to six ion pairs and molecular dynamics (MD) simulations of the bulk phase of ethylammonium hydrogen sulfate (EA/SA) protic ionic liquid. Special attention is being focused here on hydrogen bond properties and their role in the structure formation of ionic liquid. By using the DFT calculations, it was shown that an increase of the cluster size leads to a networked structure with as many as possible cation–anion hydrogen bonds, but these bonds are distorted. Similar results were obtained also through MD simulations of the bulk phase of the EA/SA. In addition, in the simulated liquid, the formation of anion–anion hydrogen bonds also is possible. On the basis of our calculations together with the literature data, a relationship between the structure and physicochemical properties of the EA/SA liquid was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

All data generated or analyzed during this study are included in this published article and its supplementary information file.

Code availability

Not applicable.

References

  1. Hamaguchi H, Ozawa R (2005) Structure of ionic liquids and ionic liquid compounds: Are ionic liquids genuine liquids in the conventional sense? Adv Chem Phys 131:85–104. https://doi.org/10.1002/0471739464.ch3

    Article  CAS  Google Scholar 

  2. Castner EW, Wishart JF (2010) Spotlight on ionic liquids. J Chem Phys 132(1–9):120901. https://doi.org/10.1063/1.3373178

  3. Hunt PA, Ashworth CR, Matthews RP (2015) Hydrogen bonding in ionic liquids. Chem Soc Rev 44:1257–1288. https://doi.org/10.1039/C4CS00278D

    Article  CAS  PubMed  Google Scholar 

  4. Weingärtner H (2008) Understanding ionic liquids at the molecular level: Facts, problems, and controversies. Angew Chem Int Ed 47:654–670. https://doi.org/10.1002/anie.200604951

    Article  CAS  Google Scholar 

  5. Fumino K, Ludwig R (2014) Analyzing the interaction energies between cation and anion in ionic liquids: the subtle balance between Coulomb forces and hydrogen bonding. J Mol Liq 192:94–102. https://doi.org/10.1016/j.molliq.2013.07.009

    Article  CAS  Google Scholar 

  6. Fumino K, Reimann S, Ludwig R (2014) Probing molecular interaction in ionic liquids by low frequency spectroscopy: Coulomb energy, hydrogen bonding and dispersion forces. Phys Chem Chem Phys 16:21903–21929. https://doi.org/10.1039/C4CP01476F

    Article  CAS  PubMed  Google Scholar 

  7. Dong K, Zhang S, Wang J (2016) Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions. Chem Commun 52:6744–6764. https://doi.org/10.1039/C5CC10120D

    Article  CAS  Google Scholar 

  8. Hayes R, Warr GG, Atkin R (2015) Structure and nanostructure in ionic liquids. Chem Rev 115:6357–6426. https://doi.org/10.1021/cr500411q

    Article  CAS  PubMed  Google Scholar 

  9. Plechkova NV, Seddon KR (2008) Application of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150. https://doi.org/10.1039/B006677J

    Article  CAS  PubMed  Google Scholar 

  10. Liu H, Yu H (2019) Ionic liquids for electrochemical energy storage devices applications. J Mater Sci Technol 35:674–686. https://doi.org/10.1016/j.jmst.2018.10.007

    Article  CAS  Google Scholar 

  11. Stoimenovski J, Dean PM, Izgorodina EI, MacFarlane DR (2012) Protic pharmaceuticallionic liquids and solids: Aspects of protonics. Faraday Discuss 154:335–352. https://doi.org/10.1039/C1FD00071C

    Article  CAS  PubMed  Google Scholar 

  12. Fernicola A, Scrosati B, Ohno H (2006) Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices. Ionics 12:95–102. https://doi.org/10.1007/s11581-006-0023-5

    Article  CAS  Google Scholar 

  13. Greaves TL, Drummond CJ (2015) Protic ionic liquids: Evolving structure–property relationships and expanding applications. Chem Rev 115:11379−11448. https://doi.org/10.1021/acs.chemrev.5b00158

  14. Greaves TL, Drummond CJ (2008) Protic ionic liquids: Properties and application. Chem Rev 108:206–237. https://doi.org/10.1021/cr068040u

    Article  CAS  PubMed  Google Scholar 

  15. Shmukler LE, Fedorova IV, Fadeeva YA, Safonova LP (2021) The physicochemical properties and structure of alkylammonium protic ionic liquids of RnH4-nNX (n=1–3) family. A mini–review. J Mol Liq 321(1–19):114350. https://doi.org/10.1016/j.molliq.2020.114350

  16. Silva W, Zanatta M, Ferreira AS, Corvo MC, Cabrita EJ (2020) Revisiting ionic liquid structure-property relationship: a critical analysis. Int J Mol Sci 21(1–37):7745. https://doi.org/10.3390/ijms21207745

  17. Hunt PA (2017) Quantum chemical modeling of hydrogen bonding in ionic liquids. Top Curr Chem (Z) 375(1–22):59. https://doi.org/10.1007/s41061-017-0142-7

  18. Kirchner B (2009) Ionic liquids from theoretical investigations. Top Curr Chem 290:213–262. https://doi.org/10.1007/128_2008_36

    Article  CAS  Google Scholar 

  19. Nuthakki B, Greaves TL, Krodkiewska I, Weerawardena A, Burgar MI, Mulder RJ, Drummond CJ (2007) Protic ionic liquids and ionicity. Aust J Chem 60:21–28. https://doi.org/10.1071/CH06363

    Article  Google Scholar 

  20. Yoshizawa M, Xu W, Angell CA (2003) Ionic liquids by proton transfer: vapor pressure, conductivity and the relevance of ΔpKa from aqueous solutions. J Am Chem Soc 125:15411–15419. https://doi.org/10.1021/ja035783d

    Article  CAS  PubMed  Google Scholar 

  21. Sun X, Cao B, Zhou X, Liu S, Zhu X, Fu Hu (2016) Theoretical and experimental studies on proton transfer in acetate-based protic ionic liquids. J Mol Liq 221:254–261. https://doi.org/10.1016/j.molliq.2016.05.080

    Article  CAS  Google Scholar 

  22. Fedorova IV, Krestyaninov MA, Safonova LP (2017) Ab initio study of structural features and H-bonding in alkylammonium-based protic ionic liquids. J Phys Chem A 121:7676–7683. https://doi.org/10.1021/acs.jpca.7b05393

    Article  CAS  Google Scholar 

  23. Bodo E, Bonomo M, Mariani A (2021) Assessing the structure of protic ionic liquids based on triethylammonium and organic acid anions. J Phys Chem B 125:2781–2792. https://doi.org/10.1021/acs.jpcb.1c00249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han J, Wang L, Zhang H, Su Q, Zhou X, Liu Sh (2020) Determinant factor for thermodynamic stability of sulfuric acid−amine complexes. J Phys Chem A 124:10246–10257. https://doi.org/10.1021/acs.jpca.0c07908

    Article  CAS  PubMed  Google Scholar 

  25. Verma PL, Gejji SP (2018) Modeling protic dicationic ionic liquids based on quaternary ammonium, imidazolium or pyrrolidinium cations and bis(trifluoromethanesulfonyl)imide anion: Structure and spectral characteristics. J Mol Graph Model 85:304–315. https://doi.org/10.1016/j.jmgm.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  26. Low K, Tan SYS, Izgorodina EI (2019) An ab initio study of the structure and energetics of hydrogen bonding in ionic liquids. Front Chem 7:1–16. https://doi.org/10.3389/fchem.2019.00208

    Article  CAS  Google Scholar 

  27. Wei Y, Xu T, Zhang X, Di Y, Zhang Q (2018) Thermodynamic properties and intermolecular interactions of a series of n-butylammonium carboxylate ionic liquids. J Chem Eng Data 63:4475–4483. https://doi.org/10.1021/acs.jced.8b00583

    Article  CAS  Google Scholar 

  28. Verma PL, Gejji SP (2018) Unveiling noncovalent interactions in imidazolium, pyrrolidinium, or quaternary ammonium cation and acetate anion based protic ionic liquids: Structure and spectral characteristics. J Phys Chem A 122:6225–6235. https://doi.org/10.1021/acs.jpca.8b04303

    Article  CAS  PubMed  Google Scholar 

  29. Fedorova IV, Safonova LP (2020) Ion pair structures and hydrogen bonding in RnNH3-n alkylammonium ionic liquids with hydrogen sulfate and mesylate anions by DFT computations. J Phys Chem A 124:3170–3179. https://doi.org/10.1021/acs.jpca.0c01282

    Article  CAS  PubMed  Google Scholar 

  30. Mora Cardozo JF, Burankova T, Embs JP, Benedetto A, Ballone P (2017) Density functional computations and molecular dynamics simulations of the triethylammonium triflate protic ionic liquid. J Phys Chem B 121:11410–11423. https://doi.org/10.1021/acs.jpcb.7b10373

    Article  CAS  PubMed  Google Scholar 

  31. Fumino K, Fossog V, Wittler K, Hempelmann R, Ludwig R (2013) Dissecting anion–cation interaction energies in protic ionic liquids. Angew Chem Int Ed 52:2368–2372. https://doi.org/10.1002/anie.201207065

    Article  CAS  Google Scholar 

  32. Bodo E, Mangialardo S, Ramondo F, Ceccacci F, Postorino P (2012) Unravelling the structure of protic ionic liquids with theoretical and experimental methods: ethyl-, propyl- and butylammonium nitrate explored by Raman spectroscopy and DFT calculations. J Phys Chem B 116:13878−13888. https://doi.org/10.1021/jp3052714

  33. Zahn S, Thar J, Kirchner B (2010) Structure and dynamics of the protic ionic liquid monomethylammonium nitrate ([CH3NH3][NO3]) from ab initio molecular dynamics simulations. J Chem Phys 132(1–13):124506. https://doi.org/10.1063/1.3354108

  34. Campetella M, Macchiagodena M, Gontrania L, Kirchner B (2017) Effect of alkyl chain length in protic ionic liquids: an AIMD perspective. Mol Phys 115:1582–1589. https://doi.org/10.1080/00268976.2017.1308027

    Article  CAS  Google Scholar 

  35. Fumino K, Wulf A, Ludwig R (2009) Hydrogen bonding in protic ionic liquids: Reminiscent of water. Angew Chem Int Ed 48:3184–3186. https://doi.org/10.1002/anie.200806224

    Article  CAS  Google Scholar 

  36. Fumino K, Wulf A, Ludwig R (2009) The potential role of hydrogen bonding in aprotic and protic ionic liquids. Phys Chem Chem Phys 11:8790−8794. https://doi.org/10.1039/b905634c

  37. Fumino K, Wulf A, Ludwig R (2008) The cation–anion interaction in ionic liquids probed by far-infrared spectroscopy. Angew Chem Int Ed 47:3830–3834. https://doi.org/10.1002/anie.200705736

    Article  CAS  Google Scholar 

  38. Fumino K, Reichert E, Wittler K, Hempelmann R, Ludwig R (2012) Low-frequency vibrational modes of protic molten salts and ionic liquids: detecting and quantifying hydrogen bonds. Angew Chem Int Ed 51:6236−6240. https://doi.org/10.1002/anie.201200508

  39. Tsuzuki S, Shinoda W, Miran MS, Kinoshita H, Yasuda T, Watanabe M (2013) Interaction in ion pairs of protic ionic liquids: Comparision with aprotic ionic liquids. J Phys Chem A 139(1–9):174504. https://doi.org/10.1063/1.4827519

  40. Fedorova IV, Krestyaninov MA, Safonova LP (2021) Structure and ion-ion interactions in trifluoroacetate-based ionic liquids: Quantum chemical and molecular dynamics simulation studies. J Mol Liq 328(1–10):115449. https://doi.org/10.1016/j.molliq.2021.115449

  41. Hoque M, Thomas ML, Miran MS, Akiyama M, Marium M, Ueno K, Dokko K, Watanabe M (2018) Protic ionic liquids with primary alkylamine-derived cations: the dominance of hydrogen bonding on observed physicochemical properties. RSC Adv 8:9790–9794. https://doi.org/10.1039/c8ra00402a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hayes R, Imberti S, Warr GG, Atkin R (2013) The nature of hydrogen bonding in protic ionic liquids. Angew Chem Int Ed 52:4623–4627. https://doi.org/10.1002/anie.201209273

    Article  CAS  Google Scholar 

  43. Belieres J-P, Angell CA (2007) Protic ionic liquids: Preparation, characterization, and proton free energy level representation. J Phys Chem B 111:4926–4937. https://doi.org/10.1021/jp067589u

    Article  CAS  PubMed  Google Scholar 

  44. Greaves TL, Weerawardena A, Krodkiewska I, Drummond CJ (2008) Protic ionic liquids: Physicochemical properties and behavior as amphiphile self-assembly solvents. J Phys Chem B 112:896–905. https://doi.org/10.1021/jp0767819

    Article  CAS  PubMed  Google Scholar 

  45. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.01. Gaussian, Inc., Wallingford

  46. Becke AD (1993) Density-functional thermochemistry. III. the role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  47. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  48. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(1–19):154104. https://doi.org/10.1063/1.3382344

  49. Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728. https://doi.org/10.1063/1.1674902

    Article  CAS  Google Scholar 

  50. Boys S, Bernardi F (2002) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566. https://doi.org/10.1080/00268977000101561

    Article  Google Scholar 

  51. Keith TA (2010) AIMAll, version 10.05.04. aim.tkgristmill.com

  52. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. J Chem Phys Lett 285:170–173. https://doi.org/10.1016/S0009-2614(98)00036-0

    Article  CAS  Google Scholar 

  53. Smith W, Todorov IT, Leslie M (2005) The DL_POLY molecular dynamics package. Z Kristallogr Cryst Mater 220(5–6):563–566

    Article  CAS  Google Scholar 

  54. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25:247–260. https://doi.org/10.1016/j.jmgm.2005.12.005

    Article  CAS  PubMed  Google Scholar 

  55. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  56. Sprenger KG, Jaeger VW, Pfaendtner J (2015) The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. J Phys Chem B 119:5882–5895. https://doi.org/10.1021/acs.jpcb.5b00689

    Article  CAS  PubMed  Google Scholar 

  57. Bing X, Wang Z, Wei F, Gao J, Xu D, Zhang L, Wang Y (2020) Separation of m-cresol from coal tar model oil using propylamine-based ionic liquids: Extraction and interaction mechanism exploration. ACS Omega 5:23090–23098. https://doi.org/10.1021/acsomega.0c02863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Reddy TDN, Mallik BS (2017) Structure and dynamics of hydroxyl-functionalized protic ammonium carboxylate ionic liquids. J Phys Chem A 121:8097–8107. https://doi.org/10.1021/acs.jpca.7b05995

    Article  CAS  Google Scholar 

  59. Besler BH, Merz KM, Kollman PA (1990) Atomic charges derived from semiempirical methods. J Comput Chem 11:431–439. https://doi.org/10.1002/jcc.540110404

    Article  CAS  Google Scholar 

  60. Singh UC, Kollman PA (1984) An approach to computing electrostatic charges for molecules. J Comput Chem 5:129–145. https://doi.org/10.1002/jcc.540050204

    Article  CAS  Google Scholar 

  61. Frisch MJ, Head-Gordon M, Pople JA (1990) A direct MP2 gradient method. Chem Phys Lett 166:275–280. https://doi.org/10.1016/0009-2614(90)80029-D

    Article  CAS  Google Scholar 

  62. Frisch MJ, Head-Gordon M, Pople JA (1990) Semi-direct algorithms for the MP2 energy and gradient. Chem Phys Lett 166:281–289. https://doi.org/10.1016/0009-2614(90)80030-H

    Article  CAS  Google Scholar 

  63. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  64. McLean AD, Chandler GS (1980) Contracted gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J Chem Phys 72:5639–5648. https://doi.org/10.1063/1.438980

  65. Youngs TG (2009) Aten – an application for the creation, editing, and visualization of coordinates for glasses, liquids, crystals, and molecules. J Comput Chem 31:639–648. https://doi.org/10.1002/jcc.21359

    Article  CAS  Google Scholar 

  66. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118

    Article  CAS  Google Scholar 

  67. Ewald P (1921) Evaluation of optical and electrostatic lattice potentials. Ann Phys Leipzig 64:253–287. https://doi.org/10.1002/andp.19213690304

    Article  Google Scholar 

  68. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics. J Mol Graphics 14:33–38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  69. Youngs TGA (2015) dlputils, Version 1.4.2. http://www.projectaten.com/dlputils

  70. Guthrie JP (1978) Hydrolysis of esters of oxy acids: pKa values for strong acids; Brønsted relationship for attack of water at methyl; free energies of hydrolysis of esters of oxy acids; and a linear relationship between free energy of hydrolysis and pKa holding over a range of 20 pK units. Can J Chem 56:2342–2354. https://doi.org/10.1139/v78-385

    Article  CAS  Google Scholar 

  71. Bodo E, Postorino P, Mangialardo S, Piacente G, Ramondo F, Bosi F, Ballirano P, Caminiti R (2011) Structure of the molten salt methyl ammonium nitrate explored by experiments and theory. J Phys Chem B 115:13149–13161. https://doi.org/10.1021/jp2070002

    Article  CAS  PubMed  Google Scholar 

  72. Bondi A (1964) Van der Waals volumes and radii. J Phys Chem 68:441–451. https://doi.org/10.1021/j100785a001

    Article  CAS  Google Scholar 

  73. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Definition of the hydrogen bond (IUPAC recommendations 2011). Pure Appl Chem 83:1637–1641. https://doi.org/10.1351/PAC-REC-10-01-02

    Article  CAS  Google Scholar 

  74. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  75. Fedorova IV, Safonova LP (2021) Comparisons of NH…O and OH…O hydrogen bonds in various ethanolammonium–based protic ionic liquids. Struct Chem 32:2061–2073. https://doi.org/10.1007/s11224-021-01792-0

    Article  CAS  Google Scholar 

  76. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15. https://doi.org/10.1021/ar00109a003

    Article  CAS  Google Scholar 

  77. Bader PFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  78. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  79. Bader RFW, Essen HJ (1984) The characterization of atomic interactions. J Chem Phys 80:1943–1960. https://doi.org/10.1063/1.446956

    Article  CAS  Google Scholar 

  80. Cremer D, Kraka E (1984) Chemical bonds without bonding electron density – does the difference electron-density analysis suffice for a description of the chemical bond? Angew Chem Int Ed Engl 23:627–628. https://doi.org/10.1002/anie.198406271

    Article  Google Scholar 

  81. Espinosa E, Alkorta I, Elguero J, Molins E (2002) From weak to strong interactions: a comprehensive analysis of the topological and energetic properties of the electron density distribution involving X-H···F–Y system. J Chem Phys 117:5529–5542. https://doi.org/10.1063/1.1501133

    Article  CAS  Google Scholar 

  82. Dong K, Zhang S, Wang Q (2015) A new class of ion-ion interaction: Z-bond. Sci China Chem 58:495–500. https://doi.org/10.1007/s11426-014-5147-2

    Article  CAS  Google Scholar 

  83. Dong K, Zhang S, Wang J (2019) Understanding the hydrogen bonds in ionic liquids and their roles in properties and reactions. Chem Commun 52:6744–6764. https://doi.org/10.1039/C5CC10120D

    Article  CAS  Google Scholar 

  84. Spohr HV, Patey GN (2010) Structural and dynamical properties of ionic liquids: competing influences of molecular properties. J Chem Phys 132(1–12):154504. https://doi.org/10.1063/1.3380830

  85. Nasrabadi AT, Gelb LD (2017) Structural and transport properties of tertiary ammonium triflate ionic liquids: a molecular dynamics study. J Phys Chem B 121:1908–1921. https://doi.org/10.1021/acs.jpcb.6b12418

    Article  CAS  PubMed  Google Scholar 

  86. Huang Y, Zhou G, Li Y, Yang Z, Shi M, Wang X, Chen X, Zhang F, Li W (2016) Molecular dynamics simulations of temperature-dependent structures and dynamics of ethylammonium nitrate protic ionic liquid: the role of hydrogen bond. Chem Phys 472:105–111. https://doi.org/10.1039/d0cp00736f

    Article  CAS  Google Scholar 

  87. Zhao W, Flood AH, White NG (2020) Recognition and applications of anion–anion dimers based on anti-electrostatic hydrogen bonds (AEHBs). Chem Soc Rev 49:7893–7906. https://doi.org/10.1039/d0cs00486c

    Article  CAS  PubMed  Google Scholar 

  88. Jeffrey GA (2003) Hydrogen-bonding: an update. Crystallogr Rev 9:135–176. https://doi.org/10.1080/08893110310001621754

    Article  CAS  Google Scholar 

  89. Canongia Lopes JN, Esperanca JMSS, Mao de Ferro A, Pereiro AB, Plechkova NV, Rebelo LPN, Seddon KR, Vazquez-Fernandez I (2016) Protonic ammonium nitrate ionic liquids and their mixtures: Insights into their thermophysical behavior. J Phys Chem B 120:2397–2406. https://doi.org/10.1021/acs.jpcb.5b11900

    Article  CAS  PubMed  Google Scholar 

  90. Henderson WA, Fylstra P, De Long HC, Trulove PC, Parsons S (2012) Crystal structure of the ionic liquid EtNH3NO3 − insights into the thermal phase behavior of protic ionic liquids. Phys Chem Chem Phys 14:16041–16046. https://doi.org/10.1039/C2CP43079G

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant No. 22-23-01155).

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and designed the calculations; analyzed and interpreted the data; contributed materials, analysis tools, or data and software; and wrote the paper.

Corresponding author

Correspondence to Irina V. Fedorova.

Ethics declarations

Ethics approval

The submission of this work is according to the ethics followed by the journal.

Consent to participate

Participation was consensual.

Consent for publication

All authors consent to publish.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 175 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, I.V., Krestyaninov, M.A. & Safonova, L.P. Structure of ethylammonium hydrogen sulfate protic ionic liquid through DFT calculations and MD simulations: the role of hydrogen bonds. Struct Chem 34, 879–890 (2023). https://doi.org/10.1007/s11224-022-02042-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-02042-7

Keywords

Navigation