Skip to main content
Log in

The Effects of Yttrium and Erbium on the Phase Composition and Aging of the Al–Zn–Mg–Cu–Zr Alloy with a High Copper Content

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Thermodynamic calculations, scanning electron microscopy, X-ray diffraction analysis, and differential scanning calorimetry have been used to study the phase composition of a Al–Zn–Mg–Cu–Zr alloy that is rich in copper, which was additionally alloyed with yttrium or erbium. There are (Al), T, Al8Cu4Y, and AlMgY phases of solidification origin in the AlZnMgCuZrY alloy. The erbium-bearing AlZnMgCuZrEr alloy contains three additional intermetallic phases in addition to the T phase: two intermetallic phases with a composition close to the Al8Cu4Er phase and one of the Al3Er composition. One of the Al8Cu4Er-phase particles contains approximately 2 wt % Fe. Aging at 150°C led to a greater increment in the hardness of the erbium alloy, while the hardness level achieved is the same for all alloys under study. Overaging at 210 and 250°C takes place significantly earlier in the alloy without yttrium and erbium additives, given the same level of hardening. Taking the fact into account that the kinetics of aging depend mainly on the (Al) composition, the differences in kinetics in the alloys with additions can be explained by dispersoids formed during homogenization before quenching and the solid solution depleted of the main elements (zinc, magnesium, and copper). The yield strength of the alloys with yttrium and erbium additives is insignificantly lower at high temperatures, which is likely due to the lower alloying of the aluminum matrix. However, these alloys are of a better technological effectiveness at casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Y. Zou, X. Wu, S. Tang, Q. Zhu, H. Song, M. Guo, and L. Cao, “Investigation on microstructure and mechanical properties of Al–Zn–Mg–Cu alloys with various Zn/Mg ratios,” J. Mater. Sci. Technol. 85, 106–117 (2021).

    Article  CAS  Google Scholar 

  2. V. S. Zolotorevskii, Doctoral Dissertation in Engineering (MISiS, Moscow, 1978) [in Russian].

  3. N. S. Gerchikova, I. N. Fridlyander, N. I. Zaitseva, and N. N. Kirkina, “Change in the structure and properties of Al–Zn–Mg alloys,” Met. Sci. Heat Treat. 14 (3), 233–236 (1972).

    Article  Google Scholar 

  4. I. I. Novikov, Hot Brittleness of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  5. V. V. Cheverikin Candidate’s Dissertation in Engineering (MISiS, Moscow, 2007) [in Russian].

  6. Y. Pan, D. Zhang, H. Liu, L. Zhuang, and J. Zhang, “Precipitation hardening and intergranular corrosion behavior of novel Al–Mg–Zn(–Cu) alloys,” J. Alloys Compd. 853, 157199 (2021).

    Article  CAS  Google Scholar 

  7. V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Zn–Mg matrix using thermodynamic calculations and mathematic modeling,” Phys. Met. Metallogr. 115 (3), 286–294 (2014).

    Article  Google Scholar 

  8. A. V. Pozdniakov, V. S. Zolotorevskiy, and O. I. Mamzurina, “Determining the hot cracking index of Al–Mg–Zn casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 28 (5), 318–321 (2015).

    Article  CAS  Google Scholar 

  9. P. K. Shurkin, T. K. Akopyan, S. P. Galkin, and A. S. Aleshchenko, “Effect of radial shear rolling on the structure and mechanical properties of a new-generation high-strength aluminum alloy based on the Al–Zn–Mg–Ni–Fe system,” Met. Sci. Heat Treat. 60, 764–769 (2019).

    Article  CAS  Google Scholar 

  10. N. Ryum, “Precipitation and recrystallization in an Al–0.5 wt % Zr-alloy,” Acta Metall. 17, 269–278 (1969).

    Article  CAS  Google Scholar 

  11. E. Nes and H. Billdal, “The mechanism of discontinuous precipitation of the metastable Al3Zr phase from an Al-Zr solid solution,” Acta Metall. 25, 1039–1046 (1977).

    Article  CAS  Google Scholar 

  12. K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Nucleation and precipitation strengthening in dilute Al–Ti and Al–Zr alloys,” Metall. Mater. Trans. A 38, 2552–2563 (2007).

    Article  Google Scholar 

  13. N. A. Belov, A. N. Alabin, and A. Yu. Prokhorov, “The influence that a zirconium additive has on the strength and electrical resistance of cold-rolled aluminum sheets,” Russ. J. Non-Ferrous Met. 50, 357–362 (2009).

    Article  Google Scholar 

  14. N. A. Belov, A. N. Alabin, and A. Yu. Prokhorov, “Annealing effect on electrical resistance and mechanical properties of cold + worked alloy Al–0.6% (wt) Zr,” Tsvetn. Met., No. 10, 65–68 (2009).

  15. P. H. L. Souza, C. A. S. de Oliveira, and J. M. do Vale Quaresma, “Precipitation hardening in dilute Al–Zr alloys,” J. Mater. Res. Technol. 7, 66–72 (2018).

    Article  CAS  Google Scholar 

  16. V. V. Zakharov and I. A. Fisenko, “Effect of homogenization on the structure and properties of alloy of the Al–Zn–Mg–Sc–Zr system,” Met. Sci. Heat Treat. 60, 354–359 (2018).

    Article  CAS  Google Scholar 

  17. A. V. Mikhaylovskaya, A. D. Kotov, A. V. Pozdniakov, and V. K. Portnoy, “A high-strength aluminium-based alloy with advanced superplasticity,” J. Alloys Compd. 599, 139–144 (2014).

    Article  CAS  Google Scholar 

  18. A. D. Kotov, A. V. Mikhaylovskaya, A. A. Borisov, O. A. Yakovtseva, and V. K. Portnoy, “High-strain-rate superplasticity of the Al–Zn–Mg–Cu alloys with Fe and Ni additions,” Phys. Met. Metallogr. 118, 913–921 (2017).

    Article  CAS  Google Scholar 

  19. A. D. Kotov, A. V. Mikhaylovskaya, and V. K. Portnoy, “Effect of the solid-solution composition on the superplasticity characteristics of Al–Zn–Mg–Cu–Ni–Zr alloys,” Phys. Met. Metallogr. 115, 730–735 (2014).

    Article  Google Scholar 

  20. A. N. Petrova, I. G. Brodova, S. V. Razorenov, E. V. Shorokhov, and T. K. Akopyan, “Mechanical properties of the Al–Zn–Mg–Fe–Ni alloy of eutectic type at different strain rates,” Phys. Met. Metallogr. 120, 1221–1227 (2019).

    Article  CAS  Google Scholar 

  21. I. G. Brodova, I. G. Shirinkina, D. Yu. Rasposienko, and T. K. Akopyan, “Structural evolution in the quenched Al–Zn–Mg–Fe–Ni alloy during severe plastic deformation and annealing,” Phys. Met. Metallogr. 121, 899–905 (2020).

    Article  CAS  Google Scholar 

  22. I. G. Shirinkina and I. G. Brodova, “Annealing-induced structural–phase transformations in an Al–Zn–Mg–Fe–Ni Alloy after high pressure torsion,” Phys. Met. Metallogr. 121, 344–351 (2020).

    Article  CAS  Google Scholar 

  23. A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterization of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34 (12), 1489–1496 (2018).

    Article  CAS  Google Scholar 

  24. S. M. Amer, R. Y. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121 (5), 476–482 (2020).

    Article  CAS  Google Scholar 

  25. A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a New Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120 (6), 614–619 (2019).

    Article  CAS  Google Scholar 

  26. A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).

    Article  CAS  Google Scholar 

  27. S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36 (4), 453–459 (2020).

    Article  CAS  Google Scholar 

  28. S. M. Amer, A. V. Mikhaylovskaya, R. Yu. Barkov, A. D. Kotov, A. G. Mochugovskiy, O. A. Yakovtseva, M. V. Glavatskikh, I. S. Loginova, S. V. Medvedeva, and A. V. Pozdniakov, “Effect of homogenization treatment regime on microstructure, recrystallization behavior, mechanical properties, and superplasticity of Al–Cu–Er–Zr alloy,” JOM 73 (10), 3092–3101 (2021).

    Article  CAS  Google Scholar 

  29. S. Amer, O. Yakovtseva, I. Loginova, S. Medvedeva, Al. Prosviryakov, A. Bazlov, R. Barkov, and A. Pozdniakov, “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10, 5345 (2020).

    Article  CAS  Google Scholar 

  30. S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr. 121 (2), 1227–1232 (2020).

    Article  CAS  Google Scholar 

  31. S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new heat-resistant cast alloys based on the Al–Cu–Y and Al–Cu–Er systems,” Phys. Met. Metallogr. 122, 908–914 (2021).

    Article  CAS  Google Scholar 

  32. S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new wrought Al–Cu–Y and Al–Cu–Er based alloys,” Phys. Met. Metallogr. 122, 915–922 (2021).

    Article  CAS  Google Scholar 

  33. R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).

    Article  CAS  Google Scholar 

  34. S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy,” Phys. Met. Metallogr. 121 (10), 1002–1007 (2020).

    Article  CAS  Google Scholar 

  35. S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of impurities on the phase composition and properties of a wrought Al–6% Cu–4.05% Er alloy,” Phys. Met. Metallogr. 121 (5), 495–499 (2020).

    Article  CAS  Google Scholar 

  36. A. Lotfy, A. V. Pozdniakov, V. S. Zolotorevskiy, E. Mohamed, M. T. Abou El-Khair, A. Daoud, and F. Fairouz, “Microstructure, compression and creep properties of Al–5% Cu–0.8Mn/5% B4C composites,” Mater. Res. Express 6, 095530 (2019).

    Article  CAS  Google Scholar 

  37. D. R. Manca, A. Yu. Churyumov, A. V. Pozdniakov, A. S. Prosviryakov, D. K. Ryabov, A. Yu. Krokhin, V. A. Korolev, and D. K. Daubarayte, “Microstructure and properties of novel heat resistant Al–Ce–Cu alloy for additive manufacturing,” Met. Mater. Int. 25 (3), 633–640 (2019).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-79-00305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Glavatskikh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Gapontseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glavatskikh, M.V., Barkov, R.Y., Khomutov, M.G. et al. The Effects of Yttrium and Erbium on the Phase Composition and Aging of the Al–Zn–Mg–Cu–Zr Alloy with a High Copper Content. Phys. Metals Metallogr. 123, 617–623 (2022). https://doi.org/10.1134/S0031918X22060060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22060060

Keywords:

Navigation