Skip to main content
Log in

Influence of manganese on the phase composition and mechanical properties of Al-Zn-Mg-Cu-Zr-Y(Er) alloys

  • Published:
Metallurgist Aims and scope

Abstract

The effect of alloying with manganese and titanium on phase composition and mechanical properties of new Al-Zn-Mg-Cu-Zr-Y(Er) alloys is studied using thermodynamic calculations, scanning electron microscopy, and X-ray phase analysis. Introduction of manganese into AlZnMgCuZrY and AlZnMgCuZrEr alloys leads to formation of (Al,Cu)11Y3, Al25Cu4Mn2Y, and Al25Cu4Mn2Er phases respectively, in which up to 12 wt.% Zn is dissolved, which replaces aluminum atoms within the phase lattice. In the process of homogenization for phases enriched in yttrium or erbium hardly change their morphology, while T(Al,Zn,Mg,Cu) phase dissolves and transforms into the S(Al2CuMg) phase. In this case, according to calculations, Al6Mn, Al3Zr, and Al3Ti phases are present in equilibrium with (Al). Microstructural studies confirm presence of particles within aluminum solid solution (Al), i.e. heterogenization proceeds in parallel with homogenization. The course of heterogenization provides 7–15 HV greater hardness for alloys with manganese in a quenched condition, but they have a less alloyed solid solution in terms of Zn, Mg, and Cu, which reduces hardening during aging. Alloys doped with manganese and titanium are hardly inferior in terms of yield strength, and when temperature rises to 300–350 °C, they slightly surpass alloys without them. Modification with titanium leads to grain refinement, which contributes to yield strength, partly compensating for the lower alloying (Al).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gerchikova NS, Fridlyander IN, Zaitseva NI, Kirkina NN (1972) Change in the structure and properties of Al-Zn-Mg alloys. Met Sci Heat Treat 14(3):233–236

    Article  Google Scholar 

  2. Zolotorevskii VS (1978) Aluminum Alloy Microstructure and Mechanical Properties. MISiS, Moscow (Diss. Doc. Techn. Sci)

    Google Scholar 

  3. Zou Y, Wu X, Tang S, Zhu Q, Song H, Guo M, Cao I (2021) Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios. J Mater Sci Tech 85:106–117

    Article  CAS  Google Scholar 

  4. Novikov II (1966) Nonferrous metal and alloy heat capacity. Nauka, Moscow (in Russian)

    Google Scholar 

  5. Cheverikin VV (2007) Effect of element eutectic formation on properties of high-strength alloys of the Al-Zn-Mg system. MISiS, Moscow (Diss. Cand. Techn. Sci)

    Google Scholar 

  6. Pan Y, Zhang D, Liu H, Zhuang L, Zhang J (2021) Precipitation hardening and intergranular corrosion behavior of novel Al-Mg-Zn(‑Cu) alloys. J All Comp 853:157199

    Article  CAS  Google Scholar 

  7. Zolotorevskiy VS, Pozdniakov AV, Yu A (2014) Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al-Zn-Mg matrix using thermodynamic calculations and mathematic modelling,”. Phys Met Metallogr 115(3):286–294

    Article  Google Scholar 

  8. Pozdniakov AV, Zolotorevskiy VS, Mamzurina OI (2015) Determining the hot cracking index of Al-Mg-Zn casting alloys calculated using the effective solidification range. Int J Cast Met Res 28(5):318–321

    Article  CAS  Google Scholar 

  9. Shurkin PK, Akopyan TK, Galkin SP, Aleshchenko AS Effect of radial shear rolling on the structure and mechanical properties of a new-generation high-strength aluminum alloy based on the Al-Zn-Mg-Ni-Fe system. Met Sci Heat Treat 60:764–769

  10. Belov NA, Zolotozarevskii VS (2003) Cast alloys based upon aluminum-nickel eutectic (nickalins) as a possible alternative to silumin. Tsvet Met (2):99–105

  11. Belov NA, Zolotozarevskii VS (2003) New high strength cast alloys based upon aluminum-nickel eutectic (nikalins). Scientific and technological provision of activity of enterprises, institutes and firms: Mater. Seminar. MGIU, Moscow

    Google Scholar 

  12. Ryum N (1969) Precipitation and recrystallization in an Al‑0.5 wt.% Zr-alloy. Acta Met 17:269–278

    Article  CAS  Google Scholar 

  13. Nes E, Billdal H (1977) The mechanism of discontinuous precipitation of the metastable Al3Zr phase from an Al-Zr solid solution. Acta Met 25:1039–1046

    Article  CAS  Google Scholar 

  14. Knipling KE, Dunand DC, Seidman DN (2007) Nucleation and precipitation strengthening in dilute Al-Ti and Al-Zr alloys. Met Mater Trans A 38:2552–2563

    Article  Google Scholar 

  15. Belov NA, Alabin AN, Yu. Prokhorov A (2009) Effect of adding zirconium on strength and electrical resistance of cold-rolled aluminum sheets. Izv Vuzov Tsvet Met (4):42–47

  16. Belov NA, Alabin AN, Yu. Prokhorov A (2009) Effect of annealing on electrical resistance and mechanical properties of cold deformed alloy Al‑0.6% (wt.) Zr. Tsvet Met (10):65–68

  17. Souza PHL, de Oliveira CAS, do Vale Quaresma JM (2018) Precipitation hardening in dilute Al-Zr alloys. J Mater Res Tech 7:66–72

    Article  CAS  Google Scholar 

  18. Zakharov VV, Fisenko IA (2018) Effect of homogenization on the structure and properties of alloy of the Al-Zn-Mg-Sc-Zr system. Met Sci Heat Treat 60:354–359

    Article  CAS  Google Scholar 

  19. Knipling KE, Dunand DC, Seidman DN (2008) Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during isothermal aging at 375–425 °C. Acta Mater 56:114–127

    Article  CAS  Google Scholar 

  20. Knipling K (2008) Precipitation evolution in Al-Zr and Al-Zr-Ti alloys during aging at 450–600 °C. Acta Mater 56:1182–1195

    Article  CAS  Google Scholar 

  21. Fuller CB, Seidman DN, Dunand DC (2003) Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures. Acta Mater 51(16):4803–4814

    Article  CAS  Google Scholar 

  22. Robson JD (2004) A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium. Acta Mater 52:1409–1421

    Article  CAS  Google Scholar 

  23. Belov NA, Alabin AN, Eskin DG, Istomin-Kastrovskii VV (2006) Optimization of hardening of Al-Zr-Sc cast alloys. j Mater Sci 41:5890–5899

    Article  CAS  Google Scholar 

  24. Knipling KE, Karnesky RA, Lee CP, Seidman DN (2010) Precipitation evolution in Al‑0.1Sc, Al‑0.1Zr and Al‑0.1Sc‑0.1Zr (at.%) alloys during isochronal aging. Acta Mater 58(15):5184–5195

    Article  CAS  Google Scholar 

  25. Rokhlin LL, Bochvar NR, Leonova NP (2011) Study of decomposition of oversaturated solid solution in Al-Sc-Zr alloys at different ratio of scandium and zirconium. Inorg Materials: Appl Res 2:517–520

    Google Scholar 

  26. Knipling KE, Dunand DC (2008) Creep resistance of cast and aged Al‑0.1Zr and Al‑0.1Zr‑0.1Ti (at.%) alloys at 300–400 °C. Scr Mater 59(4):387–390

    Article  CAS  Google Scholar 

  27. Wen SP, Gao KY, Li Y, Huang H, Nie ZR (2011) Synergetic effect of Er and Zr on the precipitation hardening of Al-Er-Zr alloy. Scr Mater 65(7):592–595

    Article  CAS  Google Scholar 

  28. Li H, Bin J, Liu J, Gao Z, Lu X (2012) Precipitation evolution and coarsening resistance at 400 °C of Al microalloyed with Zr and Er. Scr Mater 67(1):73–76

    Article  CAS  Google Scholar 

  29. Wen SP, Gao KY, Huang H, Wang W, Nie ZR (2013) Precipitation evolution in Al-Er-Zr alloys during aging at elevated temperature. J All Comp 574:92–97

    Article  CAS  Google Scholar 

  30. Li H, Gao Z, Yin H, Jiang H, Su X, Bin J (2013) Effects of Er and Zr additions on precipitation and recrystallization of pure aluminum. Scr Mater 68(1):59–62

    Article  CAS  Google Scholar 

  31. Gao H, Feng W, Wang Y, Gu J, Zhang Y, Wang J, Sun B (2016) Structural and compositional evolution of Al3(Zr,Y) precipitates in Al-Zr‑Y alloy. Mater Charact 121:195–198

    Article  CAS  Google Scholar 

  32. Huang H, Wen SP, Gao KY, Wan W, Nie ZR (2013) Age hardening behavior and corresponding microstructure of dilute Al-Er-Zr alloys. Metall Mater Trans A 44:2849–2856

    Article  CAS  Google Scholar 

  33. Gao Z, Li H, Lai Y, Ou Y, Li D (2013) Effects of minor Zr and Er on microstructure and mechanical properties of pure aluminum. Mater Sci Eng A 580:92–98

    Article  CAS  Google Scholar 

  34. Mikhaylovskaya AV, Kotov AD, Pozdniakov AV, Portnoy VK (2014) A high-strength aluminium-based alloy with advanced superplasticity. J All Comp 599:139–144

    Article  CAS  Google Scholar 

  35. Kotov AD, Mikhaylovskaya AV, Borisov AA, Yakovtseva OA, Portnoy VA (2017) High-strain-rate superplasticity of the Al-Zn-Mg-Cu alloys with Fe and Ni additions. Phys Met Met 118:913–921

    Article  CAS  Google Scholar 

  36. Kotov AD, Mikhaylovskaya AV, Portnoy VK (2014) Effect of the solid-solution composition on the superplasticity characteristics of Al-Zn-Mg-Cu-Ni-Zr alloys. Phys Met Met 115:730–735

    Article  Google Scholar 

  37. Petrova AN, Brodova IG, Razorenov SV, Shorokhov EV, Akopyan TK (2019) Mechanical properties of the Al-Zn-Mg-Fe-Ni alloy of eutectic type at different strain Rates. Phys Met Met 120:1221–1227

    Article  CAS  Google Scholar 

  38. Brodova IG, Shirinkina IG, Yu. Rasposienko D, Akopyan TK (2020) Structural evolution in the quenched Al-Zn-Mg-Fe-Ni Alloy during severe plastic deformation and annealing. Phys Met Met 121:899–905

    Article  CAS  Google Scholar 

  39. Shirinkina IG, Brodova IG (2020) Annealing-induced structural-phase transformations in an Al-Zn-Mg-Fe-Ni alloy after high pressure torsion. Phys Met Met 121:344–351

    Article  CAS  Google Scholar 

  40. Pozdniakov AV, Barkov RY (2018) Microstructure and materials characterisation of the novel Al-Cu‑Y alloy. Mater Sci Tech 34(12):1489–1496

    Article  CAS  Google Scholar 

  41. Amer SM, Barkov RY, Yakovtseva OA, Pozdniakov AV (2020) Comparative analysis of structure and properties of quasibinary Al‑6.5Cu‑2.3Y and Al-6Cu‑4.05Er alloys. Phys Met Met 121(5):476–482

    Article  CAS  Google Scholar 

  42. Pozdnyakov AV, Barkov RYu , Sarsenbaev Z, Amer SM, Prosviryakov AS (2019) Evolution of microstructure and mechanical properties of a new Al-Cu-Er wrought alloy. Phys Met Met 120(6):614–619

    Article  CAS  Google Scholar 

  43. Pozdniakov AV, Barkov RY, Amer SM, Levchenko VS, Kotov AD, Mikhaylovskaya AV (2019) Microstructure, mechanical properties and superplasticity of the Al-Cu-Y-Zr alloy. Mater Sci Eng A 758:28–35

    Article  CAS  Google Scholar 

  44. Amer SM, Barkov RYu , Yakovtseva OA, Loginova IS, Pozdniakov AV (2020) Effect of Zr on microstructure and mechanical properties of the Al-Cu-Er alloy. Mater Sci Tech 36(4):453–459

    Article  CAS  Google Scholar 

  45. Amer SM, Mikhaylovskaya AV, Barkov RYu , Kotov AD, Mochugovskiy AG, Yakovtseva OA, Glavatskikh MV, Loginova IS, Medvedeva SV, Pozdniakov AV (2021) Effect of homogenization treatment regime on microstructure, recrystallization behavior, mechanical properties, and superplasticity of Al-Cu-Er-Zr alloy. JOM 73(10):3092–3101

    Article  CAS  Google Scholar 

  46. Amer SM, Barkov RYu , Pozdniakov AV (2020) Effect of Mn on the phase composition and properties of Al-Cu-Y-Zr alloy. Phys Met Met 121(12):1227–1232

    Article  CAS  Google Scholar 

  47. Amer S, Yakovtseva O, Loginova I, Medvedeva S, Al. Prosviryakov, Bazlov A, Barkov R, Pozdniakov A (2020) The phase composition and mechanical properties of the novel precipitation-strengthening Al-Cu-Er-Mn-Zr alloy. Appl Sci 10:5345

    Article  CAS  Google Scholar 

  48. Amer SM, Barkov RY, Prosviryakov AS, Pozdniakov AV (2021) Structure and properties of new heat-resistant cast alloys based on the Al-Cu‑Y and Al-Cu-Er systems. Phys Met Met 122:908–914

    Article  CAS  Google Scholar 

  49. Amer SM, Barkov RY, Prosviryakov AS, Pozdniakov AV (2021) Structure and properties of new wrought Al-Cu‑Y and Al-Cu-Er based alloys. Phys Met Met 122:915–922

    Article  CAS  Google Scholar 

  50. Glavatskikh MV, Barkov RYu , Khomutov MG, Pozdniakov AV (2022) The effects of yttrium and erbium on the phase composition and aging of the Al-Zn-Mg-Cu-Zr Alloy with a high copper content. Phys Met Met 123:617–623

    Article  CAS  Google Scholar 

  51. Zolotarevskii VS, Belov NA (2005) Material science of cast aluminum alloys. MISiS, Moscow (in Russian)

    Google Scholar 

  52. Kaufman JG (1999) Properties of aluminum alloys: tensile, creep, and fatigue data at high and low temperatures. ASM Intern.

    Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation grant No. 22–79–10142, https://rscf.ru/project/22-79-10142/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Glavatskikh.

Additional information

Translated from Metallurg, No. 12, pp. 47–53, December, 2023.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glavatskikh, M.V., Barkov, R.Y., Khomutov, M.G. et al. Influence of manganese on the phase composition and mechanical properties of Al-Zn-Mg-Cu-Zr-Y(Er) alloys. Metallurgist (2024). https://doi.org/10.1007/s11015-024-01683-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11015-024-01683-9

Keywords

UDC

Navigation