Skip to main content
Log in

Nucleation and Precipitation Strengthening in Dilute Al-Ti and Al-Zr Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Two conventionally solidified Al-0.2Ti alloys (with 0.18 and 0.22 at. pct Ti) exhibit no hardening after aging up to 3200 hours at 375 °C or 425 °C. This is due to the absence of Al3Ti precipitation, as confirmed by electron microscopy and electrical conductivity measurements. By contrast, an Al-0.2Zr alloy (with 0.19 at. pct Zr) displays strong age hardening at both temperatures due to precipitation of Al3Zr (L12) within Zr-enriched dendritic regions. This discrepancy between the two alloys is explained within the context of the equilibrium phase diagrams: (1) the disparity in solid and liquid solubilities of Ti in α-Al is much greater than that of Zr in α-Al; and (2) the relatively small liquid solubility of Ti in α-Al limits the amount of solute retained in solid solution during solidification, while the comparatively high solid solubility reduces the supersaturation effecting precipitation during post-solidification aging. The lattice parameter mismatch of Al3Ti (L12) with α-Al is also larger than that of Al3Zr (L12), further hindering nucleation of Al3Ti. Classical nucleation theory indicates that the minimum solute supersaturation required to overcome the elastic strain energy of Al3Ti nuclei cannot be obtained during conventional solidification of Al-Ti alloys (unlike for Al-Zr alloys), thus explaining the absence of Al3Ti precipitation and the presence of Al3Zr precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. TenuPol is a trademark of Struers A/S, Ballerup, Denmark.

  2. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

  3. LEO is a trademark of Zeiss-Leica, Cambridge, England.

References

  1. K.E. Knipling, D.C. Dunand, D.N. Seidman: Z. Metallkd., 2006, vol. 97, pp. 246–65

    CAS  Google Scholar 

  2. H. Jones, W.M. Rainforth: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 419–21

    Article  CAS  Google Scholar 

  3. J.F. Nie, S. Sridhara, B.C. Muddle: Metall. Trans. A, 1992, vol. 23A, pp. 3193–205

    CAS  Google Scholar 

  4. J.F. Nie, A. Majumdar, B.C. Muddle: Mater. Sci. Eng. A, 1994, vol. 179, pp. 619–24

    Article  Google Scholar 

  5. J.F. Nie, B.C. Muddle: Mater. Sci. Eng. A, 1996, vol. 215, pp. 92–103

    Article  Google Scholar 

  6. W.E. Frazier, M.J. Koczak: in High Strength Powder Metallurgy Aluminum Alloys II, G.J. Hildeman, M.J. Koczak, eds., TMS, Warrendale, PA, 1986, pp. 353–66

    Google Scholar 

  7. J.M. Wu, S.L. Zheng, Z.Z. Li: Mater. Sci. Eng. A, 2000, vol. 289, pp. 246–54

    Article  Google Scholar 

  8. Y. Wang, Z. Zhang, W. Wang, X. Bian: Mater. Sci. Eng. A, 2004, vol. 366, pp. 17–24

    Article  CAS  Google Scholar 

  9. G.X. Liang, Z.C. Li, E. Wang: J. Mater. Sci., 1996, vol. 31, pp. 901–04

    Article  CAS  Google Scholar 

  10. W.E. Frazier, M.J. Koczak: Scripta Metall., 1987, vol. 21, pp. 129–34

    Article  CAS  Google Scholar 

  11. G.S. Murty, M.J. Koczak, W.E. Frazier: Scripta Metall., 1987, vol. 21, pp. 141–46

    Article  CAS  Google Scholar 

  12. J.A. Hawk, P.K. Mirchandani, R.C. Benn, H.G.F. Wilsdorf: in Dispersion Strengthened Aluminum Alloys, Y.W. Kim, W.M. Griffith, eds., TMS, Warrendale, PA, 1988, pp. 551–72

    Google Scholar 

  13. J.A. Hawk, K.R. Lawless, H.G.F. Wilsdorf: Scripta Metall., 1989, vol. 23, pp. 119–24

    Article  CAS  Google Scholar 

  14. J.A. Hawk, J.K. Briggs, H.G.F. Wilsdorf: in Advances in Powder Metallurgy, T.G. Gasbarre, W.F. Jandeska, eds., MPIF, Princeton, NJ, 1989, pp. 285–99

    Google Scholar 

  15. P.K. Mirchandani, R.C. Benn, K.A. Heck: in Lightweight Alloys for Aerospace Applications, E.W. Lee, E.H. Chia, N.J. Kim, eds., TMS, Warrendale, PA, 1989, pp. 33–58

    Google Scholar 

  16. P.K. Mirchandani, D.O. Gothard, A.I. Kemppinen: in Advances in Powder Metallurgy, T.G. Gasbarre, W.F. Jandeska, eds., MPIF, Princeton, NJ, 1989, pp. 161–73

    Google Scholar 

  17. S.H. Wang, P.W. Kao: Acta Mater., 1998, vol. 46, pp. 2675–82

    Article  CAS  Google Scholar 

  18. I.C. Barlow, H. Jones, W.M. Rainforth: Acta Mater., 2001, vol. 49, pp. 1209–24

    Article  CAS  Google Scholar 

  19. T. Ohashi, R. Ichikawa: Z. Metallkd., 1973, vol. 64, pp. 517–21

    CAS  Google Scholar 

  20. F.A. Crossley, L.F. Mondolfo: Trans. AIME, 1951, vol. 191, pp. 1143–48

    Google Scholar 

  21. D.G. McCartney: Int. Mater. Rev., 1989, vol. 34, pp. 247–60

    CAS  Google Scholar 

  22. B.S. Murty, S.A. Kori, M. Chakraborty: Int. Mater. Rev., 2002, vol. 47, pp. 3–29

    Article  CAS  Google Scholar 

  23. W. Dahl, W. Gruhl, W.G. Burchard, G. Ibe, C. Dumitrescu: Z. Metallkd., 1977, vol. 68, pp. 121–27

    CAS  Google Scholar 

  24. S. Hori, S. Saji, A. Takehara: Proc. 4th Int. Conf. on Rapidly Quenched Metals, T. Masumoto, K. Suzuki, eds., The Japan Institute of Metals, Sendai, Japan, 1981, pp. 1545–48

    Google Scholar 

  25. S. Hori, N. Furushiro: Proc. 4th Int. Conf. on Rapidly Quenched Metals, T. Masumoto, K. Suzuki, eds., The Japan Institute of Metals, Sendai, Japan, 1981, pp. 1525–28

    Google Scholar 

  26. S. Hori, N. Furushiro, W. Fujitani: J. Jpn. Inst. Light Met., 1980, vol. 30, pp. 617–25

    CAS  Google Scholar 

  27. A.F. Norman, P. Tsakiropoulos: Int. J. Rapid Solid., 1991, vol. 6, pp. 185–213

    CAS  Google Scholar 

  28. W.L. Fink, K.R. van Horn, P.M. Budge: AIMME Trans., 1931, vol. 93, pp. 421–39

    Google Scholar 

  29. H.A.F. El-Halfawy, E.S.K. Menon, M. Sundararaman, P. Mukhopadhyay: Metallography, 1979, vol. 12, pp. 257–62

    Article  CAS  Google Scholar 

  30. H.A.F. El-Halfawy: Titanium ‘80–Science and Technology–4th Int. Conf. on Titanium, H. Kimura, O. Izumi, eds., TMS, Warrendale, PA, 1980, pp. 1379–87

    Google Scholar 

  31. D.H. St John, L.M. Hogan: J. Mater. Sci., 1980, vol. 15, pp. 2369–75

    Article  CAS  Google Scholar 

  32. K. Venkateswarlu, S.K. Das, M. Chakraborty, B.S. Murty: Mater. Sci. Eng. A, 2003, vol. 351, pp. 237–43

    Article  CAS  Google Scholar 

  33. N.F. Levoy, J.B. Vander Sande: Metall. Trans. A, 1989, vol. 20A, pp. 999–1019

    CAS  Google Scholar 

  34. P. Malek, M. Janecek, B. Smola: Kov. Mater., 2000, vol. 38, pp. 160–77

    CAS  Google Scholar 

  35. K.E. Knipling, D.C. Dunand, and D.N. Seidman: unpublished research, 2007

  36. H.W. Kerr, J. Cisse, G.F. Bolling: Acta Metall., 1974, vol. 22, pp. 677–86

    Article  CAS  Google Scholar 

  37. H.W. Kerr, W. Kurz: Int. Mater. Rev., 1996, vol. 41, pp. 129–64

    CAS  Google Scholar 

  38. D.H. St. John, L.M. Hogan: J. Mater. Sci., 1982, vol. 17, pp. 2413–18

    Article  CAS  Google Scholar 

  39. J.F. Nie, B.C. Muddle: Mater. Sci. Eng. A, 1996, vol. 221, pp. 11–21

    Article  Google Scholar 

  40. B.S. You, W.W. Park: Scripta Mater., 1996, vol. 34, pp. 201–05

    Article  CAS  Google Scholar 

  41. T. Ohashi, R. Ichikawa: J. Jpn. Inst. Met., 1970, vol. 34, pp. 604–10

    CAS  Google Scholar 

  42. V. Dobatkin, V.I. Elagin, V.M. Federov, and R.M. Sizova: Russ. Metall., 1970, pp. 122–27

  43. W.W. Park, T.H. Kim: J. Kor. Inst. Met., 1985, vol. 3, pp. 11–18

    Google Scholar 

  44. W.W. Park, T.H. Kim: Scripta Metall., 1988, vol. 22, pp. 1709–14

    Article  CAS  Google Scholar 

  45. R. Ichikawa, T. Ohashi: J. Jpn. Inst. Light Met., 1968, vol. 18, pp. 314–19

    CAS  Google Scholar 

  46. T. Sato, A. Kamio, G.W. Lorimer: Mater. Sci. Forum, 1996, vols. 217222, pp. 895–900

    Article  Google Scholar 

  47. H. Okamoto: Phase Diagrams of Dilute Binary Alloys, ASM INTERNATIONAL, Materials Park, OH, 2002

    Google Scholar 

  48. E. Babic, E. Girt, R. Krsnik, B. Leontic, M. Ocko, Z. Vucic, I. Zoric: Physica Status Solidi A, 1973, vol. 16, pp. K21–K25

    Article  CAS  Google Scholar 

  49. E. Sahin, H. Jones: in Rapidly Quenched Metals II, B. Cantor, ed., The Metals Society, London, 1978, pp. 138–46

    Google Scholar 

  50. J. Cisse, H.W. Kerr, G.F. Bolling: Metall. Trans., 1974, vol. 5, pp. 633–41

    Article  CAS  Google Scholar 

  51. T. Ohashi, R. Ichikawa: J. Jpn. Inst. Light Met., 1977, vol. 27, pp. 105–12

    CAS  Google Scholar 

  52. O.A. Setiukov, I.N. Fridlyander: Mater. Sci. Forum, 1996, vols. 217222, pp. 195–200

    Google Scholar 

  53. N. Ryum: J. Mater. Sci., 1975, vol. 10, pp. 2075–81

    Article  CAS  Google Scholar 

  54. M.F. Ashby, L.M. Brown: Phil. Mag., 1963, vol. 8, pp. 1083–1102

    Article  Google Scholar 

  55. V.L. Nordheim: Ann. Phys., 1931, vol. 9, pp. 641–78

    Article  Google Scholar 

  56. J. Royset, N. Ryum: Mater. Sci. Eng. A, 2005, vol. 396, pp. 409–22

    Article  CAS  Google Scholar 

  57. M.E. van Dalen, D.C. Dunand, D.N. Seidman: Acta Mater., 2005, vol. 53, pp. 4225–35

    Article  CAS  Google Scholar 

  58. K.E. Knipling, D.C. Dunand, and D.N. Seidman: Microsc. Microanal., 2006, accepted for publication

  59. J.L. Murray: Alcoa, Alcoa Center, PA, personal communication, 2005

  60. J.L. Murray, A. Peruzzi, J.P. Abriata: J. Phase Equil., 1992, vol. 13, pp. 277–91

    Article  CAS  Google Scholar 

  61. J.Z. Liu:, Ph.D. Thesis, Northwestern University, Evanston, IL, 2006

  62. J.Z. Liu, G. Ghosh, A. van de Walle, and M. Asta: Phys. Rev. B, 2007, vol. 75, p. 104117

    Article  CAS  Google Scholar 

  63. G.W. Lorimer, R.B. Nicholson: Mechanism of Phase Transformations in Crystalline Solids, Session II, Institute of Metals, London, 1969, pp. 36–42

    Google Scholar 

  64. K.C. Russell: in Phase Transformations, H.I. Aaronson, ed., ASM, Metals Park, OH, 1970, pp. 219–68

    Google Scholar 

  65. R.D. Doherty: in Physical Metallurgy, R.W. Cahn, P. Haasen, eds., Elsevier, Amsterdam, 1983, pp. 933–1030

    Google Scholar 

  66. H.I. Aaronson, F.K. LeGoues: Metall. Trans. A, 1992, vol. 23A, pp. 1915–45

    CAS  Google Scholar 

  67. R. Wagner, R. Kampmann, P.W. Voorhees: in Phase Transformations in Materials, G. Kostorz, ed., Wiley-VCH, New York, NY, 2001, pp. 309–407

    Chapter  Google Scholar 

  68. B. Chalmers: Principles of Solidification, John Wiley & Sons, New York, NY, 1964, pp. 126–28

    Google Scholar 

  69. M.C. Flemings: Solidification Processing, McGraw-Hill, New York, NY, 1974, pp. 31–32

    Google Scholar 

  70. W. Kurz, D.J. Fisher: Fundamentals of Solidification, 4th ed., Trans Tech Publications, Aedermannsdorf, Switzerland, 1998. p. 15

    Google Scholar 

  71. H.J. Frost, M.F. Ashby: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, New York, NY, 1982, p. 21

    Google Scholar 

  72. M.A. Meyers, K.K. Chawla: Mechanical Metallurgy: Principles and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1984, p. 58

    Google Scholar 

  73. Y. Harada, D.C. Dunand: Scripta Mater., 2003, vol. 48, pp. 219–22

    Article  CAS  Google Scholar 

  74. J. Royset, N. Ryum: Scripta Mater., 2005, vol. 52, pp. 1275–79

    Article  CAS  Google Scholar 

  75. S. Hori, H. Tai, Y. Narita: J. Jpn. Inst. Light Met., 1982, vol. 32, pp. 596–603

    CAS  Google Scholar 

  76. S. Hori, H. Tai, Y. Narita: in Rapidly Quenched Metals, S. Steeb, H. Warlimont, eds., Elsevier Science Publishers, Wurzburg, 1985, pp. 911–14

    Google Scholar 

  77. K. Asboll, N. Ryum: J. Inst. Met., 1973, vol. 101, pp. 212–14

    Google Scholar 

  78. S.K. Pandey, C. Suryanarayana: Mater. Sci. Eng. A, 1989, vol. 111, pp. 181–87

    Article  Google Scholar 

  79. T. Ohashi, K. Suzuki, R. Ichikawa: Bull. Nagoya Inst. Technol., 1971, vol. 23, pp. 459–65

    CAS  Google Scholar 

  80. A. Majumdar, R.H. Mair, B.C. Muddle: in Science and Technology of Rapidly Quenched Alloys, M. Tenhover, W.L. Johnson, L.E. Tanner, eds., MRS, Pittsburgh, PA, 1987, pp. 253–60

    Google Scholar 

  81. J.F. Nie, B.C. Muddle: Mater. Sci. Eng. A, 1996, vol. 221, pp. 22–32

    Article  Google Scholar 

  82. N. Ryum: Acta Metall., 1969, vol. 17, pp. 269–78

    Article  CAS  Google Scholar 

  83. M. Sundberg, R. Sundberg, B. Jacobson: Jernkont. Ann., 1971, vol. 155, pp. 1–15

    CAS  Google Scholar 

  84. S. Rystad, N. Ryum: Aluminium, 1977, vol. 53, pp. 193–95

    CAS  Google Scholar 

  85. H. Westengen, L. Auran, O. Reiso: Aluminium, 1981, vol. 57, pp. 797–803

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the United States Department of Energy, Basic Sciences Division, under Contract No. DE-FG02-02ER45997. Gratitude is expressed to KB Alloys for providing the Al-Zr master alloy. We are indebted to Dr. J.L. Murray (Alcoa), for providing the most recent and reliable data for the binary Al-Ti and Al-Zr phase diagrams. We also thank Dr. J.Z. Liu and Professor M. Asta (Northwestern University and University of California, Davis), for calculating the metastable L12 solvus curves for Al3Ti and Al3Zr, and Professor M.E. Fine (Northwestern University) for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith E. Knipling.

Additional information

Manuscript submitted December 15, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knipling, K., Dunand, D. & Seidman, D. Nucleation and Precipitation Strengthening in Dilute Al-Ti and Al-Zr Alloys. Metall Mater Trans A 38, 2552–2563 (2007). https://doi.org/10.1007/s11661-007-9283-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9283-6

Keywords

Navigation