Skip to main content
Log in

Quantum Transport in a Semiconductor Nanolayer Taking into Account the Surface Scattering of Carriers

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The problem concerning the electrical conductivity of a thin conducting nanolayer is solved within the quantum theory of transport. The layer thickness can be comparable to or shorter than the de Broglie wavelength of carriers. The isoenergetic surface has the form of an ellipsoid of revolution with the major axis parallel to the layer plane. Analytical equations for the conductivity-tensor components as functions of the dimensionless thickness, chemical potential, ellipticity parameter, and surface roughness are derived. The conductivity is analyzed in the limiting cases of a degenerate and nondegenerate electron gas. The results are compared with the available experimental data for a silicon layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. E. Condreaa and A. Nicorici, Solid State Commun. 150, 118 (2010).

    Article  ADS  Google Scholar 

  2. E. V. Demidov, V. M. Grabov, V. A. Komarov, A. N. Krushelnitckii, A. V. Suslov, and M. V. Suslov, Semiconductors 53, 727 (2019).

    Article  ADS  Google Scholar 

  3. K. M. Tsysar, E. M. Smelova, A. M. Saletsky, and V. G. Andreev, Thin Solid Films 710, 138263 (2020).

    Article  ADS  Google Scholar 

  4. V. G. Golubev, L. E. Morozova, A. B. Pevtsov, and N. A. Feoktistov, Semiconductors 33, 66 (1999).

    Article  ADS  Google Scholar 

  5. I. Miccoli, F. Edler, H. Pfnur, S. Appelfeller, M. Dahne, K. Holtgrewe, S. Sanna, W. G. Schmidt, and C. Tegenkamp, Phys. Rev. B 93, 125412 (2016).

    Article  ADS  Google Scholar 

  6. J. MacHale, F. Meaney, N. Kennedy, L. Eaton, G. Mirabelli, M. White, K. Thomas, E. Pelucchi, D. H. Petersen, R. Lin, N. Petkov, J. Connolly, C. Hatem, F. Gity, L. Ansari, B. Long, and R. Duffy, J. Appl. Phys. 125, 225709 (2019).

    Article  ADS  Google Scholar 

  7. K. Moors, B. Sorée, and W. Magnus, J. Appl. Phys. 118, 124307 (2015).

    Article  ADS  Google Scholar 

  8. L. Moraga, K. F. Arenas, R. Henriquez, S. Bravo, and B. Solis, Phys. B (Amsterdam, Neth.) 499, 17 (2016).

  9. M. César, D. Gall, and H. Guo, Phys. Rev. Appl. 5, 054018 (2016).

    Article  ADS  Google Scholar 

  10. M. De Clercq, K. Moors, K. Sankaran, G. Pourtois, Sh. Dutta, Ch. Adelmann, W. Magnus, and B. Sorée, Phys. Rev. Mater. 2, 033801 (2018).

    Article  Google Scholar 

  11. I. A. Kuznetsova, D. N. Romanov, and A. A. Yushkanov, Phys. Scr. 94, 115805 (2019).

    Article  ADS  Google Scholar 

  12. P. A. Kuznetsov, O. V. Savenko, and A. A. Yushkanov, Tech. Phys. 65, 1912 (2020).

    Article  Google Scholar 

  13. A. A. Yushkanov, O. V. Savenko, and I. A. Kuznetsova, Phys. Scr. 95, 045805 (2020).

    Article  ADS  Google Scholar 

  14. L. Sheng, D. Y. Xing, and Z. D. Wang, Phys. Rev. B 51, 7325 (1995).

    Article  ADS  Google Scholar 

  15. D. Ketenoglu and B. Ünal, Phys. A (Amsterdam, Neth.) 391, 3828 (2012).

  16. R. C. Munoz and C. Arenas, Appl. Phys. Rev. 4, 011102 (2017).

    Article  ADS  Google Scholar 

  17. A. E. Meyerovich and A. Stepaniants, J. Phys.: Condens. Matter 12, 5575 (2000).

    ADS  Google Scholar 

  18. A. E. Meyerovich and I. V. Ponomarev, Phys. Rev. B 65, 155413 (2002).

    Article  ADS  Google Scholar 

  19. B. Feldman, R. Deng, and S. T. Dunham, J. Appl. Phys. 103, 113715 (2008).

    Article  ADS  Google Scholar 

  20. S. Chatterjee and A. E. Meyerovich, Phys. Rev. B 84, 165432 (2011).

    Article  ADS  Google Scholar 

  21. R. I. Bihun, Z. V. Stasyuk, and O. A. Balitskii, Phys. B (Amsterdam, Neth.) 487, 73 (2019).

  22. S. B. Soffer, J. Appl. Phys. 38, 1710 (1967).

    Article  ADS  Google Scholar 

  23. K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1996).

    Book  Google Scholar 

  24. A. I. Anselm, Introduction to Semiconductor Theory (Prentice-Hall, Englewood Cliffs, 1981).

    Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 19-32-90008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Kuznetsova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, I.A., Savenko, O.V. & Romanov, D.N. Quantum Transport in a Semiconductor Nanolayer Taking into Account the Surface Scattering of Carriers. Semiconductors 55, 755–763 (2021). https://doi.org/10.1134/S1063782621090116

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621090116

Keywords:

Navigation