Skip to main content
Log in

Establishment of a PEG-Assisted Protoplast Transfection System in Musa acuminata cv. Berangan (AAA) Using a CRISPR/Cas9 Ribonucleoprotein Complex

  • GENETICS
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Banana is an important food crop worldwide. However, as banana production is largely affected by pests, diseases, and environmental stresses, there is a need to develop stress-resistant banana varieties. Although modern breeding and conventional genetic engineering techniques exist, they may not provide sufficient precision or speed in introducing desired traits and enhancing banana resilience. Hence, this study focuses on the development of an efficient protoplast isolation and DNA-free CRISPR/Cas9 ribonucleoprotein-mediated protoplast transformation protocols for Berangan cultivar. A total of 1.54 × 107 protoplasts/g FW were isolated from immature male flower buds using an enzymatic mixture of 1% cellulase RS, 1% macerozyme R-10 and 0.15% pectolyase Y-23. Applying 10 min-vacuum infiltrations twice and 0.5 M mannitol significantly increased the number of protoplasts. The isolated protoplasts were transfected with pC-AMBIA1304-GFP and CRISPR/Cas9 ribonucleoprotein complex targeting the stress-related banana Sugar Transport Protein 13 (STP13) using a polyethylene glycol solution. Following 15 minutes of transfection, 76.89% of the treated protoplasts were GFP-positive. DNA sequence analysis confirmed the presence of small deletions (1–3 bp) at the target sites of STP13 with a mutation rate of 4.40–4.90%, indicating that the protocols are suitable for use to modify the genomes of protoplasts of bananas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Acereto-Escoffié, P., Chi-Manzanero, B., Echeverría-Echeverría, S., Grijalva, R., Kay, A.J., González-Estrada, T., Castaño, E., and Rodríguez-Zapata, L., Agrobacterium-mediated transformation of Musa acuminata cv.“Grand Nain” scalps by vacuum infiltration, Sci. Hortic., 2005, vol. 105, no. 3, pp. 359–371.

    Article  Google Scholar 

  2. Amah, D., van Biljon, A., Brown, A., Perkins-Veazie, P., Swennen, R., and Labuschagne, M., Recent advances in banana (Musa spp.) biofortification to alleviate vitamin A deficiency, Crit. Rev. Food Sci. Nutr., 2019, vol. 59, no. 21, pp. 3498–3510. https://doi.org/10.1080/10408398.2018.1495175

    Article  CAS  PubMed  Google Scholar 

  3. Assani, A., Haicour, R., Wenzel, G., Côte, F., Bakry, F., Foroughi-Wehr, B., Ducreux, G., Aguillar, M.E., and Grapin, A., Plant regeneration from protoplasts of dessert banana cv. Grande Naine (Musa spp., Cavendish sub-group AAA) via somatic embryogenesis, Plant Cell Rep., 2001, vol. 20, no. 6, pp. 482–488. https://doi.org/10.1007/s002990100366

    Article  CAS  Google Scholar 

  4. Assani, A., Haicour, R., Wenzel, G., Foroughi-Wehr, B., Bakry, F., Cote, F., Ducreux, G., Ambroise, A., and Grapin, A., Influence of donor material and genotype on protoplast regeneration in banana and plantain cultivars (Musa spp.), Plant Sci., 2002, vol. 162, pp. 355–362.

    Article  CAS  Google Scholar 

  5. Belhaj, K., Chaparro-Garcia, A., Kamoun, S., Patron, N.J., and Nekrasov, V., Editing plant genomes with CRISPR/ Cas9, Curr. Opin. Biotechnol., 2015, vol. 32, pp. 76–84. https://doi.org/10.1016/j.copbio.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  6. Bortesi, L., Zhu, C., Zischewski, J., Perez, L., Bassié, L., Nadi, R., Forni, G., Lade, S.B., Soto, E., and Jin, X., Patterns of CRISPR/Cas9 activity in plants, animals and microbes, Plant Biotechnol. J., 2016, vol. 14, no. 12, pp. 2203–2216. https://doi.org/10.1111/pbi.12634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dellaporta, S.L., Wood, J., and Hicks, J.B., A plant DNA minipreparation: version II, Plant Mol. Biol. Rep., 1983, vol. 1, no. 4, pp. 19–21.

    Article  CAS  Google Scholar 

  8. Eriksson, T.R., Protoplast isolation and culture, in Plant Protoplasts, CRC Press, 2018, pp. 1–20.

    Google Scholar 

  9. Evans, D.A. and Bravo, J.E., Plant protoplast isolation and culture, in Plant Protoplasts, Int. Rev. Cytol., 2013, vol. 16, suppl., pp. 33–53.

    Google Scholar 

  10. Haïcour, R., Assani, A., Matsumoto, K., and Guedira, A., Banana protoplasts, in Banana Improvement: Cellular, Molecular Biology, and Induced Mutations. Proceedings of a Meeting Held in Leuven, Belgium, September 24–28, 2001, Science Publishers, Inc., 2001, pp. 111–125.

  11. Huang, H., Wang, Z., Cheng, J., Zhao, W., Li, X., Wang, H., Zhang, Z., Sui, X., An efficient cucumber (Cucumis sativus L.) protoplast isolation and transient expression system, Sci. Hortic., 2013, vol. 150, pp. 206–212.

    Article  CAS  Google Scholar 

  12. Karlson, C.K.S., Mohd-Noor, S.N., Nolte, N., and Tan, B.C., CRISPR/dCas9-based systems: mechanisms and applications in plant sciences, Plants, 2021, vol. 10, no. 10, p. 2055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kaur, N., Alok, A., Kaur, N., Pandey, P., Awasthi, P., and Tiwari, S., CRISPR/Cas9-mediated efficient editing in phytoene desaturase (PDS) demonstrates precise manipulation in banana cv. Rasthali genome, Funct. Integr. Genome, 2018, vol. 18, no. 1, pp. 89–99. https://doi.org/10.1007/s10142-017-0577-5

    Article  CAS  Google Scholar 

  14. Kersey, P.J., Collemare, J., Cockel, C., Das, D., Dulloo, E.M., Kelly, L.J., … and Leitch, I.J., Selecting for useful properties of plants and fungi–Novel approaches, opportunities, and challenges, Plants, People, Planet, 2020, vol. 2, no. 5, pp. 409–420.

    Google Scholar 

  15. Khalid, N. and Tan, B.C., A to Z on banana micropropagation and field practices, in Plant Tissue Culture: Propagation, Conservation and Crop Improvement, Springer, 2016, pp. 101–118.

    Google Scholar 

  16. Khatri, A., Dahot, M.U., Khan, I.A., and Nizamani, G.S., An efficient method of protoplast isolation in banana (Musa spp.), Pak. J. Bot., 2010, vol. 42, no. 2, pp. 1267–1271.

    Google Scholar 

  17. Kim, H., Kim, S.-T., Ryu, J., Kang, B.-C., Kim, J.-S., and Kim, S.-G., CRISPR/Cpf1-mediated DNA-free plant genome editing, Nat. Commun., 2017, vol. 8, no. 1, pp. 1–7.

    Google Scholar 

  18. Kim, S., Kim, D., Cho, S.W., Kim, J., and Kim, J.S., Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins, Genome Res., 2014, vol. 24, no. 6, pp. 1012–1019. https://doi.org/10.1101/gr.171322.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, W.S., Gudimella, R., Wong, G.R., Tammi, M.T., Khalid, N., and Harikrishna, J.A., Transcripts and microRNAs responding to salt stress in Musa acuminata Colla (AAA Group) cv. Berangan roots, PLoS One, 2015, vol. 10, no. 5, p. e0127526. https://doi.org/10.1371/journal.pone.0127526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, X., Wu, S., Xu, J., Sui, C., and Wei, J., Application of CRISPR/Cas9 in plant biology, Acta Pharm. Sin. B, 2017, vol. 7, no. 3, pp. 292–302. https://doi.org/10.1016/j.apsb.2017.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  21. Londenberg, A., Bartels, F.M., Kqakpo Quaye, J., Boch, J., Ripken, T., and Heinemann, D., Targeted genome editing in potato protoplast via optical delivery of CRISPR/Cas9 ribonucleoproteins, Proc. SPIE, Int. Soc. Opt. Eng., 2020. https://doi.org/10.1117/12.2555288

  22. Malnoy, M., Viola, R., Jung, M.H., Koo, O.J., Kim, S., Kim, J.S., Velasco, R., and Kanchiswamy, C.N., DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins, Front. Plant Sci., 2016, vol. 7, p. 1904. https://doi.org/10.3389/fpls.2016.01904

    Article  PubMed  PubMed Central  Google Scholar 

  23. Matsumoto, K., Crepy, L., Teixeira, J., and Ferreira, F., Isolation and culture of bract protoplasts in banana plants, Natural Resources and the Environment Series, Cassell Tycooly, Ed., Philadelphia, USA, 1988, vol 22, pp. 414–415.

  24. Matsumoto, K., Monte, D.C., Teixeira, J.B., Haicour, R., and Davey, M.R., Banana protoplasts: culture and its applications, Tree For. Sci. Biotech., 2010, vol. 4, no. 1, pp. 32–38.

    Google Scholar 

  25. Murovec, J., Guček, K., Bohanec, B., Avbelj, M., and Jerala, R., DNA-free genome editing of Brassica oleracea and B. rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes, Front. Plant Sci., 2018, vol. 9, p. 1594.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nanasato, Y., Konagaya, K.-I., Okuzaki, A., Tsuda, M., and Tabei, Y., Improvement of Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) by combination of vacuum infiltration and co-cultivation on filter paper wicks, Plant Biotechnol. Rep., 2013, vol. 7, no. 3, pp. 267–276.

    Article  PubMed  Google Scholar 

  27. Ntui, V.O., Tripathi, J.N., and Tripathi, L., Robust CRISPR/ Cas9 mediated genome editing tool for banana and plantain (Musa spp.), Curr. Plant Biol., 2019, vol. 21. https://doi.org/10.1016/j.cpb.2019.100128

  28. Panis, B., Vanwauwe, A., and Swennen, R., Plant-regeneration through direct somatic embryogenesis from protoplasts of banana (Musa spp.), Plant Cell Rep., 1993, vol. 12, nos. 7–8, pp. 403–407. https://doi.org/10.1007/bf00234701

    Article  CAS  PubMed  Google Scholar 

  29. Park, J., Choi, S., Park, S., Yoon, J., Park, A.Y., and Choe, S., DNA-free genome editing via ribonucleoprotein (RNP) delivery of CRISPR/Cas in lettuce, Methods Mol. Biol., 2019, vol. 1917. https://doi.org/10.1007/978-1-4939-8991-1_25

  30. Park, J., Lim, K., Kim, J.-S. and Bae, S., Cas-analyzer: an online tool for assessing genome editing results using NGS data, Bioinformatics, 2017, vol. 33, no. 2, pp. 286–288.

    Article  CAS  PubMed  Google Scholar 

  31. Partovi, R., Farahani, F., Sheidai, M., and Satari, T.N., Isolation of protoplasts banana (Musa acuminate Colla) cvs. Dwarf Cavendish and Valery and research morphological and cytogenetic their plantlets regenerated, Cytologia, 2017, vol. 82, no. 4, pp. 395–401. https://doi.org/10.1508/cytologia.82.395

    Article  Google Scholar 

  32. Razdan, M.K., Introduction to Plant Tissue Culture, New Delhi: Oxford and Ibh Publ., 2003.

    Google Scholar 

  33. Ren, R., Gao, J., Lu, C., Wei, Y., Jin, J., Wong, S.M., Zhu, G., and Yang, F., Highly efficient protoplast isolation and transient expression system for functional characterization of flowering related genes in Cymbidium orchids, Int. J. Mol. Sci., 2020, vol. 21, no. 7. https://doi.org/10.3390/ijms21072264

  34. Rueden, C.T., Schindelin, J., Hiner, M.C., DeZonia, B.E., Walter, A.E., Arena, E.T., and Eliceiri, K.W., ImageJ2: ImageJ for the next generation of scientific image data, BMC Bioinformatics, 2017, vol. 18, no. 1, pp. 1–26.

    Article  Google Scholar 

  35. Sagi, L., Remy, S., Panis, B., Swennen, R., and Volckaert, G., Transient gene expression in electroporated banana (Musa spp., cv. ‘Bluggoe,’ ABB group) protoplasts isolated from regenerable embryogenetic cell suspensions, Plant Cell Rep., 1994, vol. 13, no. 5, pp. 262–266.

    Article  CAS  PubMed  Google Scholar 

  36. Sant’ana, R.R.A., Caprestano, C.A., Nodari, R.O., and Agapito-Tenfen, S.Z., PEG-delivered CRISPR-Cas9 ribonucleoproteins system for gene-editing screening of maize protoplasts, Genes, 2020, vol. 11, no. 9, pp. 1–14. https://doi.org/10.3390/genes11091029

    Article  CAS  Google Scholar 

  37. Siddiqui, S., Khatri, A., Khan, I., Nizamani, G., and Khan, R., Improvement of banana (Musa cvs.) through in vitro culture techniques and induced mutations, in In Vitro Mutation Breeding of Bananas and Plantains, IAEA, Ed., Vienna: IAEA, 1995.

  38. Subburaj, S., Chung, S.J., Lee, C., Ryu, S.M., Kim, D.H., Kim, J.S., Bae, S., and Lee, G.J., Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins, Plant Cell Rep., 2016, vol. 35, no. 7, pp. 1535–1544. https://doi.org/10.1007/s00299-016-1937-7

    Article  CAS  PubMed  Google Scholar 

  39. Subramanyam, K., Subramanyam, K., Sailaja, K., Srinivasulu, M., and Lakshmidevi, K., Highly efficient Agrobacterium-mediated transformation of banana cv. Rasthali (AAB) via sonication and vacuum infiltration, Plant Cell Rep., 2011, vol. 30, no. 3, pp. 425–436.

    Article  CAS  PubMed  Google Scholar 

  40. Tayi, L., Maku, R.V., Patel, H.K., and Sonti, R.V., Identification of pectin degrading enzymes secreted by Xanthomonas oryzae pv. oryzae and determination of their role in virulence on rice, PLoS One, 2016, vol. 11, no. 12, p. e0166396. https://doi.org/10.1371/journal.pone.0166396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tripathi, L., Ntui, V.O., and Tripathi, J.N., CRISPR/ Cas9-based genome editing of banana for disease resistance, Curr. Opin. Plant Biol., 2020, vol. 56, pp. 118–126. https://doi.org/10.1016/j.pbi.2020.05.003

    Article  CAS  PubMed  Google Scholar 

  42. Tycko, J., Myer, V.E., and Hsu, P.D., Methods for optimizing CRISPR–Cas9 genome editing specificity, Mol. Cell, 2016, vol. 63, no. 3, pp. 355–370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tzean, Y., Lee, M.C., Jan, H.H., Chiu, Y.S., Tu, T.C., Hou, B.H., Chen, H.M., Chou, C.N., and Yeh, H.H., Cucumber mosaic virus-induced gene silencing in banana, Sci. Rep., 2019, vol. 9, no. 1. https://doi.org/10.1038/s41598-019-47962-3

  44. Wall, M.M., Ascorbic acid, vitamin A, and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii, J. Food Compost. Anal., 2006, vol. 19, no. 5, pp. 434–445.

    Article  CAS  Google Scholar 

  45. Wei, Y.R., Huang, X.L., Li, J., Huang, X., Li, Z., and Li, X.J., Establishment of embryogenic cell suspension culture and plant regeneration of edible banana Musa acuminata cv. Mas (AA), ShengwuGongcheng Xuebao/Chin. J. Biotechnol., 2005, vol. 21, no. 1, pp. 58–65.

    CAS  Google Scholar 

  46. Woo, J.W., Kim, J., Kwon, S.I., Corvalan, C., Cho, S.W., Kim, H., Kim, S.G., Kim, S.T., Choe, S., and Kim, J.S., DNA-free genome editing in plants with preassembled CRISPR/Cas9 ribonucleoproteins, Nat. Biotechnol., 2015, vol. 33, no. 11, pp. 1162–1164. https://doi.org/10.1038/nbt.3389

    Article  CAS  PubMed  Google Scholar 

  47. Wu, S., Zhu, H., Liu, J., Yang, Q., Shao, X., Bi, F., Hu, C., Huo, H., Chen, K., and Yi, G., Establishment of a PEG-mediated protoplast transformation system based on DNA and CRISPR/Cas9 ribonucleoprotein complexes for banana, BMC Plant Biol., 2020, vol. 20, no. 1, p. 425. https://doi.org/10.1186/s12870-020-02609-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yoo, S.-D., Cho, Y.-H. and Sheen, J., Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis, Nat. Protoc., 2007, vol. 2, no. 7, p. 1565. https://doi.org/10.1038/nprot.2007.199

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, X.-H., Tee, L.Y., Wang, X.-G., Huang, Q.-S., and Yang, S.-H., Off-target effects in CRISPR/Cas9-mediated genome engineering, Mol. Ther. Nucleic Acids, 2015, vol. 4, p. e264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhu, J., Song, N., Sun, S., Yang, W., Zhao, H., Song, W., and Lai, J., Efficiency and inheritance of targeted mutagenesis in maize using CRISPR-Cas9, J. Genet. Genomics, 2016, vol. 43, no. 1, pp. 25–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Ministry of Education, Malaysia (Grant no. FRGS/1/2017/STG05/UM/01/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Harikrishna.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leh, L.S., Mazumdar, P., Tan, B.C. et al. Establishment of a PEG-Assisted Protoplast Transfection System in Musa acuminata cv. Berangan (AAA) Using a CRISPR/Cas9 Ribonucleoprotein Complex. Biol Bull Russ Acad Sci 50 (Suppl 3), S298–S309 (2023). https://doi.org/10.1134/S1062359023600010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359023600010

Keywords:

Navigation