Skip to main content
Log in

Thermal Conductivity of the Materials Based on Silicon Carbide and Silicon Nitride

  • PHYSICAL METALLURGY. THERMAL AND THERMOCHEMICAL TREATMENT TECHNOLOGIES
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The temperature dependences of the thermal conductivity of silicon carbide- and silicon nitride-based materials prepared by various methods are presented. The thermal conductivity of silicon carbide–based materials prepared by reaction (SiSiC) and liquid-phase (LPSSiC) sintering and silicon nitride-based materials prepared by liquid phase sintering (SSN) is studied. The dependences of the thermal conductivity on the density, porosity, and content of oxide addition (for the LPSSiC and SSN materials) are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. P. Garshin, V. M. Gropyanov, G. P. Zaitsev, and S. S. Semenov, Ceramics for Mechanical Engineering (OOO Izd. Nauchtekhlitizdat, Moscow, 2003).

    Google Scholar 

  2. G. G. Gnesin, Silicon Carbide Materials (Metallurgiya, Moscow, 1977).

    Google Scholar 

  3. R. A. Andrievskii and I. I. Spivak, Silicon Nitride and Materials Based on It (Metallurgiya, Moscow, 1984).

    Google Scholar 

  4. A. P. Garshin and S. G. Chulkin, Reaction Sintered Silicon Carbide Materials for Structural Purpose. Physical-Mechanical and Frictional Properties (Izd. Politekhnicheskogo Univ., St. Petersburg, 2006).

  5. A. P. Garshin, Silicon Carbide. Single Crystals, Powders, and Articles Based on Them (Izd. Politekhnicheskogo Univ., St. Petersburg, 2006).

  6. N. Hiromi, W. Koji, K. Yoshiaki, et al., “Microstructural characterization of high-thermal-conductivity SiC ceramics,” J. Europ. Ceram. Soc., No. 24, 3685–3690 (2004).

  7. J. Gu, Q. Zhang, J. Dang, et al., “Thermal conductivity and mechanical properties of aluminum nitride filled linear low-density polyethylene composites,” Polym. Eng. Sci. 49 (5), 1030–1034 (2009).

    Article  CAS  Google Scholar 

  8. Y. Nishi, Y. Arita, T. Matsui, and T. Nagasaki, “Isotope effects on thermal conductivity of boron carbide,” J. Nucl. Sci. Technol. 39 (4), 391–394 (2002).

    Article  CAS  Google Scholar 

  9. G. G. Gnesin, Oxygen-Free Ceramic Materials (Tekhnika, Kiev, 1987).

    Google Scholar 

  10. Y. Xu and D. D. L. Chung, “Increasing the thermal conductivity of boron nitride and aluminum nitride particle epoxy-matrix composites by particle surface treatments,” Composite Interfaces 7 (4), 243–256 (2000).

    Article  CAS  Google Scholar 

  11. Yu. Ryabkov, P. Istomin, and N. Chezhina, “Structural design and properties of layered nanocomposite titanium carbide–silicide materials,” Mater. Phys. Mech., No. 3, 101–107 (2001).

  12. O. Nilsson, H. Mehling, and R. Horn, “Determination of the thermal diffusivity and conductivity of monocrystalline silicon carbide (300–2300 K),” High Temp.-High Press. 29 (1), 73–79 (1997).

    Article  CAS  Google Scholar 

  13. Yu. Goldberg, in Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, Ed. by M. E. Levinshtein, S. L. Rumyantsev, M. S. Shur (Wiley, New York, 2001), pp. 31–47.

    Google Scholar 

  14. D.-M. Liu and B. W. Lin, “Thermal conductivity in hot-pressed silicon carbide ceram,” Ceram. Int., No. 22, 407–414 (1996).

  15. T. Sakai and T. Aikawa, “Phase transformation and thermal conductivity of hot-pressed silicon carbide containing alumina and carbon,” J. Am. Ceram. Soc., No. 1, 7–9 (1988).

  16. W. Koji, N. Hiromi, S. Kimiyasu, et al., “Effect of grain boundaries on thermal conductivity of silicon carbide ceramic at 5 to 1300 K,” J. Am. Ceram. Soc., No. 10, 1812–1814 (2003).

  17. G. G. Gadzhiev, Sh. M. Ismailov, and M. M. Khamidov, “Thermal conductivity of silicon carbide ceramics doped with beryllium oxide,” Inorg. Mater., No. 2, 197–199 (2000).

  18. K. Yoshida, M. Imai, and T. Yano, “Room- and high temperature thermal conductivity of silicon carbide fiber—reinforced silicon carbide composites with oxide sintering additives,” J. Ceram. Soc. Jpn., No. 10, 863–867 (2001).

  19. Z. You, H. Kiyoshi, and W. Koji, “Thermal conductivity of silicon carbide densified with rare-earth oxide additives,” J. Europ. Ceram. Soc., No. 24, 265–270 (2004).

  20. Zh. Guo-Dong, M. Mamoru, X. Rong-Jun, and K. Amiya, “Thermal and electrical properties in plasma-activation-sintered silicon carbide with rare-earth-oxide additives,” J. Am. Ceram. Soc., No. 10, 2448–2450 (2001).

  21. L. S. Parfen’eva, T. S. Orlova, B. I. Smirnov, et al., “Anisotropy of the thermal conductivity and electrical resistivity of the SiC/ Si biomorphic composite based on a white-eucalyptus biocarbon template,” Phys. Solid State, No. 12, 2281–2288 (2006).

  22. A. P. Garshin, “Structure and properties of structural wear-resistant silicon carbide–based materials prepared by reaction sintering,” Doctoral Dissertation in Engineering (St. Petersburg, 2000).

  23. Y. Takeda, “Development of high-thermal-conductive SiC ceramics,” Am. Ceram. Soc. Bull. 67, 1961–1963 (1988).

    CAS  Google Scholar 

  24. E. Volg, A. Roosen, W. Hartung, and A. Winnacker, “Electrical and thermal conductivity of liquid phase sintered SiC,” J. Europ. Ceram. Soc., No. 21, 2089–2093 (2001).

  25. V. P. Paranosenkov, A. A. Chikina, and I. L. Shkarupa, “Self-bonded OTM-923 silicon carbide,” Ogneupory Tekhn. Keram., No. 2, 23–25 (2004).

  26. S. S. Ordanyan, N. Yu. Artsutanov, and V. D. Chupov, Activated sintering of SiC-based ceramics and its mechanical properties,” Ogneupory Tekhn. Keram., No. 11, 8–11 (2000).

  27. S. N. Perevislov and D. D. Nesmelov, “Properties of SiC and Si3N4 based composite ceramic with nanosize component,” Glass Ceram. 73 (7–8), 249–252 (2016).

  28. A. S. Lysenkov, K. A. Kim, D. D. Titov, M. G. Frolova, et al., “Composite material Si3N4/SiC with calcium aluminate additive,” IOP Conf. Ser.: J. Physics 1134 (1), 012036 (2018).

  29. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, K. A. Kim, et al., “Liquid-sintered SiC based materials with additive low oxide oxides” IOP Conf. Ser.: Mater. Sci. Eng. 525 (1), 012073 (2019).

  30. S. N. Perevislov, A. S. Lysenkov, D. D. Titov, M. V. Tomkovich, et al., “Production of ceramic materials based on SiC with low-melting oxide additives,” Glass Ceram. 75 (9–10), 400–407 (2019).

  31. S. N. Perevislov, I. B. Panteleev, A. P. Shevchik, and M. V. Tomkovich, “Microstructure and mechanical properties of SiC-materials sintered in the liquid phase with the addition of a finely dispersed agent,” Refract. Industr. Ceram. 58 (5), 577–582 (2018).

    Article  CAS  Google Scholar 

  32. A. S. Lysenkov, S. N. Ivicheva, D. D. Titov, Y. F. Kargin, et al., “Silicon nitride ceramics with light-melting sintering additive in CaO–TiO2 system,” IOP Conf. Ser.: Mater. Sci. Eng. 525 (1), 012080 (2019).

  33. V. D. Chupov, Yu. N. Vil’k, and N. Ya. Ivanov, “Properties and fields of application of structural ceramic materials developed in TsNIIM,” Konstruktsii iz Kompozitsionnykh Materialov, Nos. 3/4, 20–27 (1996).

    Google Scholar 

  34. O. A. Lukianova, A. N. Khmara, S. N. Perevislov, D. A. Kolesnikov, and V. V. Krasilnikov, Electrical resistivity of silicon nitride produced by various methods,” Ceram. Intern. 45 (7), 9497–9501 (2019).

    Article  CAS  Google Scholar 

Download references

Funding

This study was performed in accordance with a science project and a research incorporated into the scientific planes of educational institutions of higher education of the Ministry of Education and Science of the Russian Federation, project no. 2019-0875.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Kravchenko.

Additional information

Translated by N. Kolchugina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevislov, S.N., Markov, M.A., Kuznetsov, Y.A. et al. Thermal Conductivity of the Materials Based on Silicon Carbide and Silicon Nitride. Russ. Metall. 2020, 1477–1484 (2020). https://doi.org/10.1134/S0036029520130297

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029520130297

Keywords:

Navigation