Skip to main content
Log in

Sintering Behavior and Properties of Reaction-Bonded Silicon Nitride

  • Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The influence exerted by the conditions of the preliminary synthesis of Si3N4 by nitridation at 1350 and 1400°С and additional high-temperature sintering at 1800 and 1900°С on the properties of reaction-bonded silicon nitride was studied. Secondary silicon nitride (β-Si3N4) formed in the course of nitridation consists of needle-like grains, which reinforce the material and impart to it additional mechanical strength. The microstructure and phase composition of the silicon nitride material at different initial ratios of silicon and silicon nitride were studied. The materials obtained approach liquid-phase-sintered and hot-pressed silicon nitride in the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Briggs, J., Engineering Ceramics in Europe and the USA, UK: Worcester, 2011.

    Google Scholar 

  2. Zhu, X., Zhou, Y., and Hirao, K., J. Mater. Sci., 2004, vol. 39, no. 18, pp. 5785–5797. https://doi.org/10.1023/B:JMSC.0000040090.33370.66

    Article  CAS  Google Scholar 

  3. Klemm, H., J. Am. Ceram. Soc., 2010, vol. 93, no. 6, pp. 1501–1522. https://doi.org/10.1111/j.1551-2916.2010.03839.x

    Article  CAS  Google Scholar 

  4. Park, J.S., Lee, H.J., Ryu, S.S., Lee, S.M., Hwang, H.J., and Han, Y.S., J. Korean Ceram. Soc., 2015, vol. 52, no. 6, pp. 435–440. https://doi.org/10.4191/kcers.2015.52.6.435

    Article  CAS  Google Scholar 

  5. Zhou, Y., Hyuga, H., Kusano, D., Yoshizawa, Y.I., Ohji, T., and Hirao, K., J. Asian Ceram. Soc., 2015, vol. 3, no. 3, pp. 221–229. https://doi.org/10.1016/j.jascer.2015.03.003

    Article  Google Scholar 

  6. Lee, S.H., Cho, C.R., Park, Y.J., Ko, J.W., Kim, H.D., Lin, H.T., and Becher, P., J. Korean Ceram. Soc., 2013, vol. 50, no. 3, pp. 218–225. https://doi.org/10.4191/kcers.2013.50.3.218

    Article  CAS  Google Scholar 

  7. Li, W., Wu, Y., Huang, R., Ye, S., and Lin, H.T., J. Eur. Ceram. Soc., 2017, vol. 37, no. 15, pp. 4491–4496. https://doi.org/10.1016/j.jeurceramsoc.2017.06.029

    Article  CAS  Google Scholar 

  8. Yao, D., Xia, Y., Zuo, K.H., Jiang, D., Günster, J., Zeng, Y.P., and Heinrich, J.G., J. Eur. Ceram. Soc., 2014, vol. 34, no. 15, pp. 3461–3467. https://doi.org/10.1016/j.jeurceramsoc.2014.06.018

    Article  CAS  Google Scholar 

  9. Park, Y.J., Park, M.J., Kim, J.M., Lee, J.W., Ko, J.W., and Kim, H.D., J. Eur. Ceram. Soc., 2014, vol. 34, no. 5, pp. 1105–1113. https://doi.org/10.1016/j.jeurceramsoc.2013.11.040

    Article  CAS  Google Scholar 

  10. Perevislov, S.N. and Nesmelov, D.D., Glass Ceram., 2016, vol. 73, nos. 7–8, pp. 249–252. https://doi.org/10.1007/s10717-016-9867-y 

    Article  CAS  Google Scholar 

  11. Lysenkov, A.S., Ivicheva, S.N., Titov, D.D., Kargin, Y.F., Kim, K.A., Frolova, M.G., and Melnikova, I.S., IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 525, no. 1, pp. 012080. https://doi.org/10.1088/1757-899X/525/1/012080

    Article  CAS  Google Scholar 

  12. Lukianova, O.A., Khmara, A.N., Perevislov, S.N., Kolesnikov, D.A., and Krasilnikov, V.V., Ceram. Int., 2019, vol. 45, no. 7, pp. 9497–9501. https://doi.org/10.1016/j.ceramint.2018.09.198

    Article  CAS  Google Scholar 

  13. Golla, B.R., Ko, J.W., Kim, J.M., and Kim, H.D., J. Alloys Compd., 2014, vol. 595, pp. 60–66. https://doi.org/10.1016/j.jallcom.2014.01.131

    Article  CAS  Google Scholar 

  14. Perevislov, S.N., Glass Ceram., 2013, vol. 70, nos. 7–8, pp. 265–268. https://doi.org/10.1007/s10717-013-9557-y 

    Article  CAS  Google Scholar 

  15. Imashuku, S., Imanishi, A., and Kawai, J., Anal. Chem., 2011, vol. 83, no. 22, pp. 8363–8365. https://doi.org/10.1021/ac201958d

    Article  CAS  PubMed  Google Scholar 

  16. Chowdhury, C. and Datta, A., J. Phys. Chem. C, 2018, vol. 122, no. 48, pp. 27233–27240. https://doi.org/10.1021/acs.jpcc.8b09203

    Article  CAS  Google Scholar 

  17. Brynjulfsen, I., Bakken, A., Tangstad, M., and Arnberg, L., J. Cryst. Growth, 2010, vol. 312, nos. 16–17, pp. 2404–2410. https://doi.org/10.1016/j.jcrysgro.2010.05.006

    Article  CAS  Google Scholar 

  18. Jin, X., Xing, P., Zhuang, Y., Kong, J., Jiang, S., and Wei, D., Ceram. Int., 2019, vol. 45, no. 8, pp. 10943–10950. https://doi.org/10.1016/j.ceramint.2019.02.175

    Article  CAS  Google Scholar 

  19. Nesmelov, D.D. and Perevislov, S.N., Glass Ceram., 2015, vol. 71, nos. 9–10, pp. 313–319. https://doi.org/10.1007/s10717-015-9677-7 

    Article  CAS  Google Scholar 

  20. Perevislov, S.N., Refract. Ind. Ceram., 2019, vol. 60, no. 2, pp. 168–173. https://doi.org/10.1007/s11148-019-00330-0 

    Article  CAS  Google Scholar 

  21. Lange, F.F., Commun. Am. Ceram. Soc., 1982, vol. 65, no. 2, pp. 23. https://doi.org/10.1111/j.1151-2916.1982.tb10373.x

    Article  Google Scholar 

  22. Berroth, K., Adv. Sci. Technol., 2010, vol. 65, pp. 70–77. https://doi.org/10.4028/www.scientific.net/AST.65.70

    Article  CAS  Google Scholar 

  23. Becher, P.F., Shibata, N., Painter, G.S., Averill, F., Van Benthem, K., Lin, H.T., and Waters, S.B., J. Am. Ceram. Soc., 2010, vol. 93, no. 2, pp. 570–580. https://doi.org/10.1111/j.1551-2916.2009.03435.x

    Article  CAS  Google Scholar 

  24. Guo, W.M., Wu, L.X., Ma, T., You, Y., and Lin, H.T., J. Eur. Ceram. Soc., 2016, vol. 36, no. 16, pp. 3919–3924. https://doi.org/10.1016/j.jeurceramsoc.2016.06.007

    Article  CAS  Google Scholar 

  25. Kargin, Y.F., Lysenkov, A.S., Ivicheva, S.N., Zakharov, A.I., Popova, N.A., and Solntsev, K.A., Inorg. Mater., 2010, vol. 46, no. 7, pp. 799–803. https://doi.org/10.1134/S0020168510070204 

    Article  CAS  Google Scholar 

  26. Jiang, Q.G., Guo, W.M., Liu, W., Gu, S.X., Cheng, L.X., Liu, J., Zhou, M.P., and Wu, S.H., Sci. Sinter., 2017, vol. 49, no. 1, pp. 81–89. https://doi.org/10.2298/SOS1701081J

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The equipment was submitted in part by the Engineering Center at the St. Petersburg State Institute of Technology (Technical University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Perevislov.

Ethics declarations

The author declares that he has no conflict of interest.

Additional information

Translated from Zhurnal Prikladnoi Khimii, No. 2, pp. 153–162, January, 2021 https://doi.org/10.31857/S0044461821020031

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perevislov, S.N. Sintering Behavior and Properties of Reaction-Bonded Silicon Nitride. Russ J Appl Chem 94, 143–151 (2021). https://doi.org/10.1134/S1070427221020038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427221020038

Keywords:

Navigation