Skip to main content
Log in

Thermal Analysis of Processes at the Solid-Phase Synthesis of Lithium-Titanium Ferrite

  • XVI INTERNATIONAL CONFERENCE ON THERMAL ANALYSIS AND CALORIMETRY IN RUSSIA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this study, the reactivity of a Fe2O3–Li2CO3–TiO2 mixture with different initial densities was investigated by thermal and kinetic methods to analyze phase formation of lithium titanium ferrite. Test samples were powder with a density of 1 g/cm3 and a compact with a density of 2.6 g/cm3. High-density samples were formed by single-action cold compaction. It is shown that the reaction of solid-phase interaction of lithium-titanium ferrite strongly depends on the degree of compaction. The mass of the powder mixture sample decreases in the temperature range of 500–720°C. In compacts, the reaction of solid-phase interaction starts at lower temperature (∼420°C). In addition, it is shown that in compacted samples, a lithium ferrite spinel phase is formed during heating. The kinetic analysis was used to determine the kinetic model of the synthesis reaction of lithium-titanium ferrite and to calculate the parameters of this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. Sharif, J. Jacob, M. Javed, A. Manzoor, K. Mahmood, and M. A. Khan, Phys. B (Amsterdam, Neth.) 567, 45 (2019).

  2. S. A. Mazen and N. I. Abu-Elsaad, Appl. Nanosci. 5, 105 (2015).

    Article  CAS  Google Scholar 

  3. J. Guo, H. Zhang, Z. He, S. Li, and Z. Li, J. Mater. Sci. Mater. Electron. 29, 2491 (2018).

    Article  CAS  Google Scholar 

  4. J. S. Kounsalye, P. B. Kharat, D. N. Bhoyar, and K. M. Jadhav, J. Mater. Sci. Mater. Electron. 29, 8601 (2018).

    Article  CAS  Google Scholar 

  5. Y. Gao, Z. Wang, R. Shi, H. Zhang, and X. Zhou, J. Alloys Compd. 805, 934 (2019).

    Article  CAS  Google Scholar 

  6. M. Kavanlooee, B. Hashemi, H. Maleki-Ghaleh, and J. Kavanlooee, J. Electron. Mater. 41, 3062 (2012).

    Article  Google Scholar 

  7. Q. Yin, Y. Liu, Q. Liu, Y. Wang, J. Chen, H. Wang, C. Wu, and H. Zhang, J. Mater. Sci.: Mater. Electron. 30, 5430 (2019).

    CAS  Google Scholar 

  8. R. Guo, Z. Yu, Y. Yang, K. Sun, C. Wu, H. Liu, X. Jiang, and Z. Lan, J. Supercond. Nov. Magn. 30, 1767 (2017).

    Article  CAS  Google Scholar 

  9. S. S. Teixeira, M. F. Graça, and L. C. Costa, J. Non-Cryst. Solids 358, 1924 (2012).

    Article  CAS  Google Scholar 

  10. J. Hrešĉak, B. Maliĉ, J. Cilenšek, and A. Benĉan, J. Therm. Anal. Calorim. 127, 129 (2017).

    Article  Google Scholar 

  11. Y. Wang, L. Yang, Y. Zhang, H. Zhang, and J. Wei, Russ. J. Phys. Chem. A 93, 2771 (2019).

    Article  CAS  Google Scholar 

  12. D. Kotsikau, M. Ivanovskaya, V. Pankov, and Y. Fedotova, Solid State Sci. 39, 69 (2015).

    Article  CAS  Google Scholar 

  13. V. Rathod, A. V. Anupama, V. M. Jali, V. A. Hiremath, and B. Sahoo, Ceram. Int. 43, 14431 (2017).

    Article  CAS  Google Scholar 

  14. V. Rathod, A. V. Anupama, R. Vijaya Kumar, V. M. Jali, and B. Sahoo, Vibr. Spectrosc. 92, 267 (2017).

    Article  CAS  Google Scholar 

  15. M. V. Berezhnaya, I. Y. Mittova, N. S. Perov, O. V. Al’myasheva, A. T. Nguyen, V. O. Mittova, V. V. Bessalova, and E. L. Viryutina, Russ. J. Inorg. Chem. 63, 742 (2018).

    Article  CAS  Google Scholar 

  16. V. Berbenni, G. Bruni, C. Milanese, A. Girella, and A. Marini, J. Therm. Anal. Calorim. 133, 413 (2018).

    Article  CAS  Google Scholar 

  17. T. T. Parlak, F. Apaydin, and K. Yildiz, J. Therm. Anal. Calorim. 127, 63 (2017).

    Article  Google Scholar 

  18. M. Kavanlooee, B. Hashemi, H. Maleki-Ghaleh, and J. Kavanlooee, J. Electron. Mater. 41, 3082 (2012).

    Article  Google Scholar 

  19. E. N. Lysenko, E. V. Nikolaev, A. P. Surzhikov, S. A. Nikolaeva, and I. V. Plotnikova, J. Therm. Anal. Calorim. 138, 2005 (2019).

    Article  CAS  Google Scholar 

  20. E. N. Lysenko, E. V. Nikolaev, A. P. Surzhikov, and S. A. Nikolaeva, Mater. Chem. Phys. 239, 122055 (2020).

    Article  CAS  Google Scholar 

  21. E. N. Lysenko, T. S. Frangulyan, A. P. Surzhikov, and S. A. Ghyngazov, J. Therm. Anal. Calorim. 108, 1207 (2012).

    Article  Google Scholar 

  22. P. Saikia, N. Blaise Allou, A. Borah, and R. L. Goswamee, Mater. Chem. Phys. 186, 52 (2017).

    Article  CAS  Google Scholar 

  23. J. Opfermann, J. Therm. Anal. Calorim. 60, 641 (2000). https://doi.org/10.1023/A:1010167626551

    Article  CAS  Google Scholar 

  24. E. N. Lysenko, E. V. Nikolaev, and A. P. Surzhikov, IOP Conf Ser.: Mater. Sci. Eng. 110, 012092 (2016).

  25. P. Sharma and P. Uniyal, J. Therm. Anal. Calorim. 128, 875 (2017).

    Article  CAS  Google Scholar 

  26. A. Zh. Sarsenbekova, G. K. Kudaibergen, M. Zh. Burkeev, and G. K. Burkeeva, Russ. J. Phys. Chem. A 93, 1252 (2019).

    Article  CAS  Google Scholar 

  27. M. Erceg, I. Krešic, M. Jakic, and B. Andričic, J. Therm. Anal. Calorim. 127, 789 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the Russian Science Foundation (grant no. 19-72-10078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Nikolaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikolaev, E.V., Lysenko, E.N. & Surzhikov, A.P. Thermal Analysis of Processes at the Solid-Phase Synthesis of Lithium-Titanium Ferrite. Russ. J. Phys. Chem. 95, 882–886 (2021). https://doi.org/10.1134/S0036024421050204

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421050204

Keywords:

Navigation