Skip to main content
Log in

Investigation of structural states and oxidation processes in Li0.5Fe2.5O4−δ using TG analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Using the methods of X-ray phase and DSC analyses, a correlation is established between ordering/disordering of the structure of lithium pentaferrite (LPF—Li0.5Fe2.5O4−δ) and its nonstoichiometry with respect to oxygen. Ferrite specimens with a reduced content of oxygen were prepared by thermal annealing in vacuum (P = 2 × 10−4 mmHg). It is shown that this treatment results in oxygen nonstoichiometry and causes a transition of LPF into a state with random distribution of cations in the crystal lattice. Using nonisothermal thermogravimetry (TG), the kinetic dependences of oxygen absorption by the anion-deficient LPF are investigated within the temperature interval T = (350–640) °C in the course of its oxidation annealing in air. The kinetic experiment data are processed with the Netzsch Thermokinetics software. The oxidation rate constants, the effective coefficients, and the activation energy of oxygen diffusion in the material under study are derived. Their values are in a satisfactory agreement with those earlier obtained for the lithium–titanium ferrite ceramic material of the following composition: Li0.649Fe1.598Ti0.5Zn0.2Mn0.051O4−δ. The effective activation energy of oxygen diffusion in LPF calculated within the temperature interval T = (350–640) °C is found to be E d = 1.88 eV. In its value, it is close to the activation energy of oxygen diffusion along grain-boundaries in the lithium–titanium ferrite ceramic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Braun PB. Superstructure in spinels. Nature. 1952;170:1123–4.

    Article  CAS  Google Scholar 

  2. Verma S, Karande J, Patidar A, Joy PA. Low-temperature synthesis of nanocrystalline powders of lithium ferrite by an autocombustion method using citric acid and glycine. Mater Lett. 2005;59:2630–3.

    Article  CAS  Google Scholar 

  3. Levin BE, Tretyakov YuD, Levin LM. Physico-chemical mechanisms of fabrication of ferrites and their properties and application. Moscow: Metallurgiya; 1979 (in Russian).

  4. Baba PD, Argentina GM, Courtney WE, Dionne GF, Temme DH. Fabrication and properties of microwave lithium ferrites. IEEE Trans Magn. 1972;8:83–94.

    Article  CAS  Google Scholar 

  5. Wang X, Gao L, Li L, Zheng H, Zhang Z, Yu W, Qian Y. Low temperature synthesis of metastable lithium ferrite: magnetic and electrochemical properties. Nanotechnology. 2005;16:2677–84.

    Article  CAS  Google Scholar 

  6. Rezlescu N, Doroftei C, Rezlescu E, Popa PD. Lithium ferrite for gas sensing applications. Sens Actuators B. 2008;133:420–5.

    Article  Google Scholar 

  7. Vashman AA. Functional inorganic compounds. Moscow: Energoatomizdat; 1996 (in Russian).

    Google Scholar 

  8. Valenzueela R. Magnetic ceramics. Cambridge: Cambridge University Press; 1994.

    Book  Google Scholar 

  9. West AR. Basic solid state chemistry. New York: Wiley; 1988.

    Google Scholar 

  10. Viswanathan B, Murthy VRK. Ferrite materials science and technology. New Delhi: Narosa Publishing House; 1990.

    Google Scholar 

  11. Gundlach EM, Gallagher PK. Thermogravimetric determination of the oxygen non- stoichiometry in Ni0.563Zn0.188Fe2.25O4+γ and Ni0.375Zn0.375Fe2.25O4+γ. Thermochim Acta. 1998;318:15–20.

    Article  CAS  Google Scholar 

  12. Surzikov AP, Lysenko EN, Ghyngazov SA, Frangulyan TS. Determination of the oxygen diffusion coefficient in polycrystalline Li-Ti ferrites. Russ Phys J. 2002;45:989–94.

    Article  CAS  Google Scholar 

  13. Surzikov AP, Frangulyan TS, Ghyngazov SA, Lysenko EN. Investigation of oxidation processes in non- stoichiometric lithium–titanium ferrites using TG analysis. J Therm Anal Calorim. 2010;102:883–7.

    Article  Google Scholar 

  14. Surzhikov AP, Pritulov AM, Lysenko EN, Sokolovskiy AN, Vlasov VA, Vasendina EA. Calorimetric investigation of radiation-thermal synthesized lithium pentaferrite. J Thermal Anal Calorim. 2010;101:11–3.

    Article  CAS  Google Scholar 

  15. Ridley DH, Lessoff H, Childress JD. Effect of lithium and oxygen losses on magnetic and crystallographic properties of spinel lithium ferrite. J Am Ceram Soc. 1970;53:304–11.

    Article  Google Scholar 

  16. Vucinic-Vasic M, Antic B, Blanusa J, Rakic S, et al. Formation of nanosized Li-ferrites from acetylacetonato complexes and their crystal structure, microstructure and order-disorder phase transition. Appl Phys A. 2006;82:49–54.

    Article  CAS  Google Scholar 

  17. An SY, Shim I-B, Kim CS. Synthesis and magnetic properties of LiFe5O8 powders by a sol-gel process. J Magn Magn Mater. 2004;290–291:1551–7.

    Google Scholar 

  18. Berbenni V, Marini A, Capsoni D. Solid state reaction study of the system Li2CO3/Fe2O3. Z Naturforsch. 1998;53a:997–1003.

    Google Scholar 

  19. Cook W, Manley M. Raman characterization of α and β LiFe5O8 prepared through a solid-state reaction pathway. J Solid State Chem. 2010;183:322–6.

    Article  CAS  Google Scholar 

  20. Opffermann J. Kinetic analysis using multivariate non-linear regression. J Therm Anal Calorim. 2000;60:641–58.

    Article  Google Scholar 

  21. Mianowski A, Marecka A. The isokinetic effect as related to the activation energy for the gases diffusion in coal at ambient temperatures. Part 1. Fick’s diffusion parameter estimated from kinetic curves. J Therm Anal Calorim. 2009;95:285–92.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ghyngazov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surzhikov, A.P., Frangulyan, T.S., Ghyngazov, S.A. et al. Investigation of structural states and oxidation processes in Li0.5Fe2.5O4−δ using TG analysis. J Therm Anal Calorim 108, 1207–1212 (2012). https://doi.org/10.1007/s10973-011-1734-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1734-z

Keywords

Navigation