Skip to main content
Log in

Production of ε-Fe2O3 Nanoparticles in Matrices Constituted by Closely Packed Silica Spheres

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Mixtures of iron(III) oxide polymorphs with a high content of ε-Fe2O3 were obtained by the decomposition of iron(III) nitrate in voids of a close packing of silica spheres. It was shown that the phase composition of Fe2O3 nanopowders can be controlled by using silica spheres of various sizes. The critical sizes of Fe2O3 nanoparticles that correspond to the γ-Fe2O3 → ε-Fe2O3 and ε-Fe2O3 → α-Fe2O3 transitions were determined to be 10 ± 2 and 28 ± 3 nm, respectively. The maximum ε-Fe2O3 content is reached at a silica sphere size of 110 nm and is 83%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. V. N. Strapolova, E. V. Yurtov, A. G. Muradova, et al., J. Spacecr. Rockets 55, 49 (2018). https://doi.org/10.2514/1.A33805

    Article  CAS  Google Scholar 

  2. K. Zarschler, L. Rocks, N. Licciardello, et al., Nanomed. Nanotechnol., Biol. Med. 12, 1663 (2016). https://doi.org/10.1016/j.nano.2016.02.019

    Article  CAS  Google Scholar 

  3. A. Ali, H. Zafar, M. Zia, et al., Nanotechnol. Sci. Appl. 9, 49 (2016). https://doi.org/10.2147/NSA.S99986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. V. Mjakin, A. M. Nikolaev, T. V. Khamova, et al., Russ. J. Inorg. Chem. 65, 626 (2020). https://doi.org/10.1134/S0036023620040129

    Article  CAS  Google Scholar 

  5. S. Naderi, A. Morsali, M. R. Bozorgmehr, et al., Russ. J. Inorg. Chem. 64, 503 (2019). https://doi.org/10.1134/S0036023619040156

    Article  CAS  Google Scholar 

  6. L. MacHala, J. Tuček, and R. Zbořil, Chem. Mater. 23, 3255 (2011). https://doi.org/10.1021/cm200397g

    Article  CAS  Google Scholar 

  7. S. Lee and H. Xu, J. Phys. Chem. C 120, 13316 (2016). https://doi.org/10.1021/acs.jpcc.6b05287

    Article  CAS  Google Scholar 

  8. J. Jin, S. Ohkoshi, and K. Hashimoto, Adv. Mater. 16, 48 (2004). https://doi.org/10.1002/adma.200305297

    Article  CAS  Google Scholar 

  9. J. Tuček, R. Zbořil, A. Namai, et al., Chem. Mater. 22, 6483 (2010). https://doi.org/10.1021/cm101967h

    Article  CAS  Google Scholar 

  10. A. Namai, S. Sakurai, M. Nakajima, et al., J. Am. Chem. Soc. 131, 1170 (2009). https://doi.org/10.1021/ja807943v

    Article  CAS  PubMed  Google Scholar 

  11. S. I. Ohkoshi, S. Kuroki, S. Sakurai, et al., Angew. Chem., Int. Ed. Engl. 46, 8392 (2007). https://doi.org/10.1002/anie.200703010

    Article  CAS  Google Scholar 

  12. S. Sakurai, A. Namai, K. Hashimoto, et al., J. Am. Chem. Soc. 131, 18299 (2009). https://doi.org/10.1021/ja9046069

    Article  CAS  PubMed  Google Scholar 

  13. P. Brázda, E. Večerníková, E. Pližingrová, et al., J. Therm. Anal. Calorim. 117, 85 (2014). https://doi.org/10.1007/s10973-014-3711-9

    Article  CAS  Google Scholar 

  14. M. Gich, A. Roig, E. Taboada, et al., Faraday Discuss. 136, 345 (2007). https://doi.org/10.1039/b616097b

    Article  CAS  PubMed  Google Scholar 

  15. J. Ma and K. Chen, Ceram. Int. 44, 19338 (2018). https://doi.org/10.1016/j.ceramint.2018.07.162

    Article  CAS  Google Scholar 

  16. I. Shanenkov, A. Sivkov, A. Ivashutenko, et al., J. Alloys Compd. 774, 637 (2019). https://doi.org/10.1016/j.jallcom.2018.10.019

    Article  CAS  Google Scholar 

  17. A. Sivkov, E. Naiden, A. Ivashutenko, et al., J. Magn. Magn. Mater. 405, 158 (2016). https://doi.org/10.1016/j.jmmm.2015.12.072

    Article  CAS  Google Scholar 

  18. T. Wen, Y. Zhang, Y. Geng, et al., Biomater. Res. 23, Article number 13 (2019). https://doi.org/10.1186/s40824-019-0162-1

    Article  PubMed  PubMed Central  Google Scholar 

  19. V. N. Nikolic, V. Spasojevic, M. Panjan, et al., Ceram. Int. 43, 7497 (2017). https://doi.org/10.1016/j.ceramint.2017.03.030

    Article  CAS  Google Scholar 

  20. K. C. Barick, B. S. D. C. Varaprasad, and D. Bahadur, J. Non. Cryst. Solids 356, 153 (2010). https://doi.org/10.1016/j.jnoncrysol.2009.10.001

    Article  CAS  Google Scholar 

  21. J. Jin, K. Hashimoto, and S. Ohkoshi, J. Mater. Chem. 15, 1067 (2005). https://doi.org/10.1039/B416554C

    Article  CAS  Google Scholar 

  22. J. López-Sánchez, A. Muñoz-Noval, A. Serrano, et al., RSC Adv. 6, 46380 (2016). https://doi.org/10.1039/C6RA01912A

    Article  CAS  Google Scholar 

  23. M. Tadić, V. Spasojević, V. Kusigerski, et al., Scr. Mater. 58, 703 (2008). https://doi.org/10.1016/j.scriptamat.2007.12.009

    Article  CAS  Google Scholar 

  24. E. Taboada, M. Gich, and A. Roig, ACS Nano 3, 3377 (2009). https://doi.org/10.1021/nn901022s

    Article  CAS  PubMed  Google Scholar 

  25. M. Nakaya, R. Nishida, N. Hosoda, et al., Cryst. Res. Technol. 52, 1700110 (2017). https://doi.org/10.1002/crat.201700110

    Article  CAS  Google Scholar 

  26. M. Tadic, I. Milosevic, S. Kralj, et al., Nanoscale 9, 10579 (2017). https://doi.org/10.1039/c7nr03639f

    Article  CAS  PubMed  Google Scholar 

  27. M. Tadic, I. Milosevic, S. Kralj, et al., Acta Mater. 188, 16 (2020). https://doi.org/10.1016/j.actamat.2020.01.058

    Article  CAS  Google Scholar 

  28. U. Klekotka, D. Satula, and B. Kalska-Szostko, J. Magn. Magn. Mater. 497, 165999 (2020). https://doi.org/10.1016/j.jmmm.2019.165999

    Article  CAS  Google Scholar 

  29. G. A. Bukhtiyarova, M. A. Shuvaeva, O. A. Bayukov, et al., J. Nanopart. Res. 13, 5527 (2011). https://doi.org/10.1007/s11051-011-0542-5

    Article  CAS  Google Scholar 

  30. E. Delahaye, V. Escax, N. El Hassan, et al., J. Phys. Chem. B 110, 26001 (2006). https://doi.org/10.1021/jp0647075

    Article  CAS  PubMed  Google Scholar 

  31. L. Kubíčková, J. Kohout, P. Brázda, et al., Hyperfine Interact. 237, Article number 159 (2016). https://doi.org/10.1007/s10751-016-1356-8

    Article  CAS  Google Scholar 

  32. P. Brázda, J. Kohout, P. Bezdička, et al., Cryst. Growth Des. 14, 1039 (2014). https://doi.org/10.1021/cg4015114

    Article  CAS  Google Scholar 

  33. T. Nakamura, Y. Yamada, and K. Yano, J. Mater. Chem. 16, 2417 (2006). https://doi.org/10.1039/B604025J

    Article  CAS  Google Scholar 

  34. Y. Rouault and S. Assouline, Powder Technol. 96, 33 (1998). https://doi.org/10.1016/S0032-5910(97)03355-X

    Article  CAS  Google Scholar 

  35. D. Weaire and T. Aste, The Pursuit of Perfect Packing (CRC Press, Boca Raton, FL, USA, 2008).

    Book  Google Scholar 

  36. M. Sadakane, C. Takahashi, N. Kato, et al., Bull. Chem. Soc. Jpn. 80, 677 (2007). https://doi.org/10.1246/bcsj.80.677

    Article  CAS  Google Scholar 

  37. J. Qin, Z. Cui, X. Yang, et al., Sens. Actuators, B: Chem. 209, 706 (2015). https://doi.org/10.1016/j.snb.2014.12.046

    Article  CAS  Google Scholar 

  38. S. N. Ivicheva, Yu. F. Kargin, S. V. Kutsev, et al., Russ. J. Inorg. Chem. 60, 1317 (2015). https://doi.org/10.1134/s00360236151108x

    Article  CAS  Google Scholar 

  39. S. N. Ivicheva, Yu. F. Kargin, O. A. Lyapina, et al., Inorg. Mater. 45, 1252 (2009).

    Article  CAS  Google Scholar 

  40. S. N. Ivicheva, Yu. F. Kargin, A. A. Ashmarin, et al., Russ. J. Inorg. Chem. 57, 1419 (2012).

    Article  CAS  Google Scholar 

  41. I. A. M. Ibrahim, A. A. F. Zikry, and M. A. Sharaf, J. Am. Sci. 6, 985 (2010). https://doi.org/10.7537/marsjas061110.133

    Article  Google Scholar 

  42. M. P. Zaytseva, A. G. Muradova, A. I. Sharapaev, et al., Russ. J. Inorg. Chem. 63, 1684 (2018). https://doi.org/10.1134/S0036023618120239

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The scanning electron microscopy studies in this work were made using equipment of the Mendeleev Center for Shared Facilities.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 20-03-00668).

Author information

Authors and Affiliations

Authors

Contributions

A. I. Sharapaev conceived and designed the experiments, carried out the heat treatment of the experimental samples, conducted the transmission electron microscopy analysis, analyzed the experimental data, and wrote the article. S. A. Kuznetsova obtained monodisperse silica particles and closely packed matrices. A. N. Norenko obtained monodisperse silica particles and closely packed matrices, and impregnated the matrices. A. G. Muradova arranged the studies by instrumental methods, analyzed the experimental data, and wrote the article. N. P. Simonenko performed the X-ray powder diffraction analysis of the experimental samples. E. V. Yurtov conceived and designed the experiments, and wrote the article. All authors participated in the discussion of the results.

Corresponding author

Correspondence to A. I. Sharapaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharapaev, A.I., Kuznetsova, S.A., Norenko, A.N. et al. Production of ε-Fe2O3 Nanoparticles in Matrices Constituted by Closely Packed Silica Spheres. Russ. J. Inorg. Chem. 66, 740–746 (2021). https://doi.org/10.1134/S003602362105017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362105017X

Keywords:

Navigation