Skip to main content
Log in

Thermal stability of nanocrystalline ε-Fe2O3

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal behavior of highly crystalline ε-Fe2O3 nanoparticles of different apparent crystallite sizes was characterized using thermogravimetry, differential thermal analysis, and analysis of evolved gas by mass spectrometry. Phase composition of the samples was monitored ex situ by X-ray powder diffraction. The results show that the thermal stability of this metastable iron oxide polymorph decreases with increasing particle size. For the particle diameter of 19(2) nm, the transformation temperature was equal to 794(5) °C, while for 28(2) nm only 755(10) °C. Surface of the nanoparticles contained adsorbed water and carbon dioxide. Elimination of these species proceeds in two steps. Water is removed at temperatures below 200 °C and CO2 in the temperature range between 200 and 450 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jin J, Ohkoshi SI, Hashimoto K. Giant coercive field of nanometer-sized iron oxide. Adv Mater. 2004;16:48–51.

    Article  CAS  Google Scholar 

  2. Sakurai S, Shimoyama JI, Hashimoto K, Ohkoshi SI. Large coercive field in magnetic-field oriented ε-Fe2O3 nanorods. Chem Phys Lett. 2008;458:333–6.

    Article  CAS  Google Scholar 

  3. Gich M, Gazquez J, Roig A, Crespi A, Fontcuberta J, Idrobo JC, Pennycook SJ, Varela M, Skumryev V, Varela M. Epitaxial stabilization of ε-Fe2O3 (00l) thin films on SrTiO3 (111). Appl Phys Lett. 2010;96:112508.

    Article  Google Scholar 

  4. Kryder MH, Gage EC, McDaniel TW, Challenger WA, Rottmayer RE, Ju G, Hsia YT, Erden MF. Heat assisted magnetic recording. Proc IEEE. 2008;96:1810–34.

    Article  CAS  Google Scholar 

  5. Namai A, Sakurai S, Nakajima M, Suemoto T, Matsumoto K, Goto M, Sasaki S, Ohkoshi SI. Synthesis of an electromagnetic wave absorber for high-speed wireless communication. J Am Chem Soc. 2009;131:1170–3.

    Article  CAS  Google Scholar 

  6. Ohkoshi SI, Kuroki S, Sakurai S, Matsumoto K, Sato K, Sasaki S. A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets. Angew Chem Int Ed. 2007;46:8392–5.

    Article  CAS  Google Scholar 

  7. Namai A, Yoshikiyo M, Yamada K, Sakurai S, Goto T, Yoshida T, Miyazaki T, Nakajima M, Suemoto T, Tokoro H, Ohkoshi SI. Hard magnetic ferrite with a gigantic coercivity and high frequency millimetre wave rotation. Nature Commun. 2012;3:1035.

    Article  Google Scholar 

  8. Tronc E, Chanéac C, Jolivet JP. Structural and magnetic characterization of ε-Fe2O3. J Solid State Chem. 1998;139:93–104.

    Article  CAS  Google Scholar 

  9. Popovici M, Gich M, Nižňanský D, Roig A, Savii C, Casas L, Molins E, Zaveta K, Enache C, Sort J, de Brion S, Chouteau G, Nogués J. Optimized synthesis of the elusive ε-Fe2O3 phase via sol–gel chemistry. Chem Mater. 2004;16:5542–8.

    Article  CAS  Google Scholar 

  10. Barick KC, Varaprasad BSDChS, Bahadur D. Structural and magnetic properties of γ- and ε-Fe2O3 nanoparticles dispersed in silica matrix. J Non-Cryst Solids. 2010;356:153–9.

    Article  CAS  Google Scholar 

  11. Jin J, Hashimoto K, Ohkoshi SI. Formation of spherical and rod-shaped ε-Fe2O3 nanocrystals with a large coercive field. J Mater Chem. 2005;15:1067–71.

    Article  CAS  Google Scholar 

  12. Brázda P, Nižňanský D, Rehspringer JL, Poltierová Vejpravová J. Novel sol–gel method for preparation of high concentration ε-Fe2O3/SiO2 nanocomposite. J Sol–Gel Sci Technol. 2009;51:78–83.

    Article  Google Scholar 

  13. Nakamura T, Yamada Y, Yano K. Novel synthesis of highly monodispersed γ-Fe2O3/SiO2 and ε-Fe2O3/SiO2 nanocomposite spheres. J Mater Chem. 2006;16:2417–9.

    Article  CAS  Google Scholar 

  14. Sakurai S, Namai A, Hashimoto K, Ohkoshi SI. First observation of phase transformation of all four Fe2O3 phases (γ - > ε- > β- > α-phase). J Am Chem Soc. 2009;131:18299–303.

    Article  CAS  Google Scholar 

  15. Delahaye E, Escax V, El Hassan N, Davidson A, Aquino R, Dupuis V, Perzynski R, Raikher YL. “Nanocasting”: using SBA-15 silicas as hard templates to obtain ultrasmall monodispersed γ-Fe2O3 nanoparticles. J Phys Chem B. 2006;110:26001–11.

    Article  CAS  Google Scholar 

  16. Ohkoshi SI, Sakurai S, Jin J, Hashimoto K. The addition effects of alkaline earth ions in the chemical synthesis of ε-Fe2O3 nanocrystals that exhibit a huge coercive field. J Appl Phys. 2005;97:10K312.

    Article  Google Scholar 

  17. Gich M, Roig A, Taboada E, Molins E, Bonafos C, Snoeck E. Stabilization of metastable phases in spatially restricted fields: the case of the Fe2O3 polymorphs. Faraday Discuss. 2007;136:345–54.

    Article  CAS  Google Scholar 

  18. Taboada E, Gich M, Roig A. Nanospheres of silica with an ε-Fe2O3 single crystal nucleus. ACS Nano. 2009;3:3377–82.

    Article  CAS  Google Scholar 

  19. Trautmann JM, Forestier H. Nouvelle préparation et étude de l’oxyde ε-Fe2O3. C R Acad Sci (Paris). 1965;261:4423–5.

    CAS  Google Scholar 

  20. Dézsi I, Coey JMD. Magnetic and thermal properties of ε-Fe2O3. Phys Stat Sol A. 1973;15:681–5.

    Article  Google Scholar 

  21. Zboril R, Mashlan M, Barcova K, Vujtek M. Thermally induced solid-state syntheses of γ-Fe2O3 nanoparticles and their transformation to α-Fe2O3 via ε-Fe2O3. Hyperfine Interact. 2002;139(140):597–606.

    Article  Google Scholar 

  22. Rodriguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B. 1993;192:55–69.

    Article  CAS  Google Scholar 

  23. Gich M, Frontera C, Roig A, Taboada E, Molins E, Rechenberg HR, Ardisson JD, Macedo WAA, Ritter C, Hardy V, Sort J, Skumryev V, Nogués J. High- and low-temperature crystal and magnetic structures of ε-Fe2O3 and their correlation to its magnetic properties. Chem Mater. 2006;18:3889–97.

    Article  CAS  Google Scholar 

  24. Maslen EN, Streltsov VA, Streltsova NR, Ishizawa N. Synchrotron Xray study of the electron density in α-Fe2O3. Acta Cryst. 1994;B50:435–41.

    Article  CAS  Google Scholar 

  25. Ben-Dor L, Fischbein E, Kalman ZH. Concerning the β phase of iron(III) oxide. Acta Cryst. 1976;B32:667.

    Article  CAS  Google Scholar 

  26. Jørgensen JE, Mosegaard L, Thomsen LE, Jensen TR, Hanson JC. Formation of γ-Fe2O3 nanoparticles and vacancy ordering: an in situ X-ray powder diffraction study. J Solid State Chem. 2007;180:180–5.

    Article  Google Scholar 

  27. Šubrt J, Balek V, Criado JM, Pérez-Maqueda LA, Večerníková E. Characterisation of α-FeOOH grinding products using simultaneous DTA and TG/DTG coupled with MS. J Therm Anal Calorim. 1998;53:509–17.

    Article  Google Scholar 

  28. Maciejewski M, Baiker A. Quantitative calibration of mass spectrometric signals measured in coupled TA-MS. Thermochim Acta. 1997;295:95–105.

    Article  CAS  Google Scholar 

  29. Baltrusaitis J, Schuttlefield J, Zeitler E, Grassian VH. Carbon dioxide adsorption on oxide nanoparticles. Chem Eng J. 2011;170:471–81.

    Article  CAS  Google Scholar 

  30. Machala L, Tuček J, Zbořil R. Polymorphous transformations of nanometric iron(III) oxide: a review. Chem Mater. 2011;23:3255–72.

    Article  CAS  Google Scholar 

  31. Belonoshko AB, Ahuje R, Johansson B. Mechanism for κ-Al2O3 to the α-Al2O3 transition and the stability of κ-Al2O3 under volume expansion. Phys Rev B. 2000;61:3131–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Mariana Klementová is acknowledged for careful reading the manuscript. This work was supported by the Czech Science Foundation, project no. P204/10/0035 and the Long-Term Research Plan of the Ministry of Education of the Czech Republic (MSM0021620857).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Brázda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brázda, P., Večerníková, E., Pližingrová, E. et al. Thermal stability of nanocrystalline ε-Fe2O3 . J Therm Anal Calorim 117, 85–91 (2014). https://doi.org/10.1007/s10973-014-3711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3711-9

Keywords

Navigation