Skip to main content
Log in

Evolution of the Fe3+ Ion Local Environment During the Phase Transition ε-Fe2O3α-Fe2O3

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Evolution of the local environment of Fe3+ ions in deposited Fe2O3/SiO2 nanoparticles formed in samples with different iron contents was investigated in order to establish the conditions for obtaining the stable ε-Fe2O3/SiO2 samples without impurities of other iron oxide polymorphs. Microstructure of the samples with an iron content of up to 16% is studied by high-resolution transmission electron microscopy, X-ray diffraction analysis, and Mössbauer spectroscopy, and their magnetic properties are examined. At iron concentrations below 6%, calcinations of iron-containing precursor nanoparticles in a silica gel matrix lead to the formation of the ε-Fe2O3 iron oxide polymorphic modification without foreign phase impurities, while at the iron concentration in the range of 6–12%, the hematite phase forms in the sample in the fraction of no more than 5%. It is concluded on the basis of the data obtained that the spatial stabilization of iron-containing particles is one of the main factors facilitating the formation of the ε-Fe2O3 phase in a silica gel matrix without other iron oxide polymorphs. It is demonstrated that the increase in the iron content leads to the formation of larger particles in the sample and gradual changes of the Fe3+ ion local environment during the phase transition ε-Fe2O3α-Fe2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chu, Y., Pan, Q.: Three-dimensionally macroporous Fe/C nanocomposites as highly selective oil-absorption materials. ACS Appl. Mater. Interfaces. 4, 2420–2425 (2012). https://doi.org/10.1021/am3000825

    Article  Google Scholar 

  2. Somorjai, G.A., McCrea, K.: Roadmap for catalysis science in the 21st century: a personal view of building the future on past and present accomplishments. Appl. Catal. A Gen. 222, 3–18 (2001). https://doi.org/10.1016/S0926-860X(01)00825-0

    Article  Google Scholar 

  3. Shuvaeva, M.A., Nuzhdin, A.L., Martyanov, O.N., Bukhtiyarova, G.A.: Benzylation of benzene by benzyl chloride over silica-supported iron sulfate catalysts. Mendeleev Commun. 24, 231–232 (2014). https://doi.org/10.1016/j.mencom.2014.06.015

    Article  Google Scholar 

  4. Booker, N.A., Keir, D., Priestley, A.J., Ritchie, C.B., Sudarmana, D.L., Woods, M.A.: Sewage clarification with magnetite particles. Water Sci. Technol. 23, 1703–1712 (1991)

    Google Scholar 

  5. Seil, J.T., Webster, T.J.: Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomedicine. 7, 2767–2781 (2012). https://doi.org/10.2147/IJN.S24805

    Google Scholar 

  6. Gupta, A.K., Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  Google Scholar 

  7. Lu, A.-H., Salabas, E.L., Schüth, F.: Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chemie Int. Ed. 46, 1222–1244 (2007). https://doi.org/10.1002/anie.200602866

    Article  Google Scholar 

  8. Sakurai, S., Kuroki, S., Tokoro, H., Hashimoto, K., Ohkoshi, S.: Synthesis, crystal structure, and magnetic properties of ε-InxFe2–xO3 nanorod-shaped magnets. Adv. Funct. Mater. 17, 2278–2282 (2007). https://doi.org/10.1002/adfm.200600581

    Article  Google Scholar 

  9. Tronc, E., Chanéac, C., Jolivet, J.P.: Structural and magnetic characterization of ε-Fe2O3. J. Solid State Chem. 139, 93–104 (1998). https://doi.org/10.1088/0953-8984/23/12/126003

    Article  ADS  Google Scholar 

  10. Gich, M., Roig, A., Taboada, E., Molins, E., Bonafos, C., Snoeck, E.: Stabilization of metastable phases in spatially restricted fields: the case of the Fe2O3 polymorphs. Faraday Disc. 136, 345 (2007). https://doi.org/10.1039/b616097b

    Article  ADS  Google Scholar 

  11. Sakurai, S., Namai, A., Hashimoto, K., Ohkoshi, S.-I.: First observation of phase transformation of all four Fe2O3 phases (γεβα-phase). J. Am. Chem. Soc. 131, 18299–18303 (2009). https://doi.org/10.1021/ja9046069

    Article  Google Scholar 

  12. Jin, J., Ohkoshi, S., Hashimoto, K.: Giant coercive field of nanometer-sized iron oxide. Adv. Mater. 16, 48–51 (2004). https://doi.org/10.1002/adma.200305297

    Article  Google Scholar 

  13. Sakurai, S., Jin, J., Hashimoto, K., Ohkoshi, S.: Reorientation phenomenon in a magnetic phase of ε-Fe2O3 nanocrystal. J. Phys. Soc. Japan 74, 1946–1949 (2005). https://doi.org/10.1143/JPSJ.74.1946

    Article  ADS  Google Scholar 

  14. Gich, M., Roig, A., Frontera, C., Molins, E., Sort, J., Popovici, M., Chouteau, G., Martín y Marero, D., Nogués, J.: Large coercivity and low-temperature magnetic reorientation in ε-Fe2O3 nanoparticles. J. Appl. Phys. 98, 44307 (2005). https://doi.org/10.1063/1.1997297

    Article  Google Scholar 

  15. Tseng, Y.C., Souza-Neto, N.M., Haskel, D., Gich, M., Frontera, C., Roig, A., Van Veenendaal, M., Nogués, J.: Nonzero orbital moment in high coercivity ε-Fe2O3 and low-temperature collapse of the magnetocrystalline anisotropy. Phys. Rev. B - Condens. Matter Mater. Phys. 79, 1–6 (2009). https://doi.org/10.1103/PhysRevB.79.094404

    Article  Google Scholar 

  16. Yakushkin, S.S., Bukhtiyarova, G.A., Martyanov, O.N.: Formation conditions of a magnetically ordered phase ε-Fe2O3. A FMR in situ study. J. Struct. Chem. 54, 876–882 (2013). https://doi.org/10.1134/S0022476613050065

    Article  Google Scholar 

  17. Zboril, R., Mashlan, M., Barcova, K., Vujtek, M.: Thermally induced solid-state syntheses of γ-Fe2O3 nanoparticles and their transformation to α-Fe2O3 via ε-Fe2O3. Hyperfine Interact. 139(140), 597–606 (2002). https://doi.org/10.1023/A:1021226929237

    Article  Google Scholar 

  18. Ding, Y., Morber, J.R., Snyder, R.L., Wang, Z.L.: Nanowire structural evolution from Fe3O4 to ε-Fe2O3. Adv. Funct. Mater. 17, 1172–1178 (2007). https://doi.org/10.1002/adfm.200601024

    Article  Google Scholar 

  19. Tadić, M., Spasojević, V., Kusigerski, V., Marković, D., Remškar, M.: Formation of ε-Fe2O3 phase by the heat treatment of α-Fe2O3/SiO2 nanocomposite. Scr. Mater. 58, 703–706 (2008). https://doi.org/10.1016/j.scriptamat.2007.12.009

    Article  Google Scholar 

  20. Popovici, M., Gich, M., Nižňanský, D., Roig, A., Savii, C., Casas, L., Molins, E., Zaveta, K., Enache, C., Sort, J., de Brion, S., Chouteau, G., Nogués, J.: Optimized synthesis of the elusive ε-Fe2O3 phase via sol −gel chemistry. Chem. Mater. 16, 5542–5548 (2004). https://doi.org/10.1021/cm048628m

    Article  Google Scholar 

  21. Sakurai, S., Shimoyama, J.I., Hashimoto, K., Ohkoshi, S.I.: Large coercive field in magnetic-field oriented -Fe2O3 nanorods. Chem. Phys. Lett. 458, 333–336 (2008). https://doi.org/10.1016/j.cplett.2008.04.121

    Article  ADS  Google Scholar 

  22. Tuček, J., Zbořil, R., Namai, A., Ohkoshi, S.: ε-Fe2O3: an advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling. Chem. Mater. 22, 6483–6505 (2010). https://doi.org/10.1021/cm101967h

    Article  Google Scholar 

  23. Ohkoshi, S., Sakurai, S., Jin, J., Hashimoto, K.: The addition effects of alkaline earth ions in the chemical synthesis of ε-Fe2O3 nanocrystals that exhibit a huge coercive field. J. Appl. Phys. 97, 10K312 (2005). https://doi.org/10.1063/1.1855615

    Article  Google Scholar 

  24. Sakurai, S., Tomita, K., Hashimoto, K., Yashiro, H., Ohkoshi, S.: Preparation of the nanowire form of ε-Fe2O3 single crystal and a study of the formation process. J. Phys. Chem. C. 112, 20212–20216 (2008). https://doi.org/10.1021/jp806336f

    Article  Google Scholar 

  25. Lee, S., Xu, H.: Size-dependent phase map and phase transformation kinetics for nanometric iron(III) oxides (γεα pathway). J. Phys. Chem. C. 120, 13316–13322 (2016). https://doi.org/10.1021/acs.jpcc.6b05287

    Article  Google Scholar 

  26. El Mendili, Y., Bardeau, J.-F., Randrianantoandro, N., Greneche, J.-M., Grasset, F.: Structural behavior of laser-irradiated γ-Fe2O3 nanocrystals dispersed in porous silica matrix: γ-Fe2O3 to α-Fe2O3 phase transition and formation of ε-Fe2O3. Sci. Technol. Adv. Mater. 17, 597–609 (2016). https://doi.org/10.1080/14686996.2016.1222494

    Article  Google Scholar 

  27. Nikolic, V.N., Spasojevic, V., Panjan, M., Kopanja, L., Mrakovic, A., Tadic, M.: Re-formation of metastable ε-Fe2O3 in post-annealing of Fe2O3/SiO2 nanostructure: synthesis, computational particle shape analysis in micrographs and magnetic properties. Ceram. Int. 43, 7497–7507 (2017). https://doi.org/10.1016/j.ceramint.2017.03.030

    Article  Google Scholar 

  28. Nikolić, V.N., Tadić, M., Panjan, M., Kopanja, L., Cvjetićanin, N., Spasojević, V.: Influence of annealing treatment on magnetic properties of Fe2O3/SiO2 and formation of ε-Fe2O3 phase. Ceram. Int. 43, 3147–3155 (2017). https://doi.org/10.1016/j.ceramint.2016.11.132

    Article  Google Scholar 

  29. Bukhtiyarova, G. A., Mart’yanov, O.N., Yakushkin, S.S., Shuvaeva, M. A., Bayukov, O. A.: State of iron in nanoparticles prepared by impregnation of silica gel and aluminum oxide with FeSO4 solutions. Phys. Solid State 52, 826–837 (2010). https://doi.org/10.1134/S1063783410040268

    Article  Google Scholar 

  30. Bukhtiyarova, G.A., Shuvaeva, M.A., Bayukov, O.A., Yakushkin, S.S., Martyanov, O.N.: Facile synthesis of nanosized ε-Fe2O3 particles on the silica support. J. Nanoparticle Res. 13, 5527–5534 (2011). https://doi.org/10.1007/s11051-011-0542-5

    Article  ADS  Google Scholar 

  31. Yakushkin, S.S., Dubrovskiy, A.A., Balaev, D.A., Shaykhutdinov, K.A., Bukhtiyarova, G.A., Martyanov, O.N.: Magnetic properties of few nanometers ε-Fe2O3 nanoparticles supported on the silica. J. Appl. Phys. 111, 44312 (2012). https://doi.org/10.1063/1.3686647

    Article  Google Scholar 

  32. Balaev, D.A., Dubrovskiy, A.A., Shaykhutdinov, K.A., Bayukov, O.A., Yakushkin, S.S., Bukhtiyarova, G.A., Martyanov, O.N.: Surface effects and magnetic ordering in few-nanometer-sized ε-Fe2O3 particles. J. Appl. Phys. 114, 163911 (2013). https://doi.org/10.1063/1.4827839

    Article  ADS  Google Scholar 

  33. Balaev, D.A., Poperechny, I.S., Krasikov, A.A., Shaikhutdinov, K.A., Dubrovskiy, A.A., Popkov, S.I., Balaev, A.D., Yakushkin, S.S., Bukhtiyarova, G.A., Martyanov, O.N., Raikher, Y.L.: Dynamic magnetization of ε-Fe2O3 in pulse field: evidence of surface effect. J. Appl. Phys. 117, 63908 (2015). https://doi.org/10.1063/1.4907586

    Article  Google Scholar 

  34. Balaev, D.A., Yakushkin, S.S., Dubrovskii, A.A., Bukhtiyarova, G.A., Shaikhutdinov, K.A., Martyanov, O.N.: Study of the high-coercivity material based on ε-Fe2O3 nanoparticles in the silica gel matrix. Tech. Phys. Lett. 42, 347–350 (2016). https://doi.org/10.1134/S1063785016040039

    Article  ADS  Google Scholar 

  35. Dubrovskiy, A.A., Balaev, D.A., Shaykhutdinov, K.A., Bayukov, O.A., Pletnev, O.N., Yakushkin, S.S., Bukhtiyarova, G.A., Martyanov, O.N.: Size effects in the magnetic properties of ε-Fe2O3 nanoparticles. J. Appl. Phys. 118, 213901 (2015). https://doi.org/10.1063/1.4936838

    Article  ADS  Google Scholar 

  36. Amin, N., Arajs, S.: Morin temperature of annealed submicronic α-F2O3 particles. Phys. Rev. B. 35, 4810–4811 (1987). https://doi.org/10.1103/PhysRevB.35.4810

    Article  ADS  Google Scholar 

  37. Mørup, S., Madsen, D.E., Frandsen, C., Bahl, C.R.H., Hansen, M.F.: Experimental and theoretical studies of nanoparticles of antiferromagnetic materials. J. Phys. Condens. Matter. 19, 213202 (2007). https://doi.org/10.1088/0953-8984/19/21/213202

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Russian Science Foundation (Grant No. 17-12-01111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Yakushkin.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakushkin, S.S., Balaev, D.A., Dubrovskiy, A.A. et al. Evolution of the Fe3+ Ion Local Environment During the Phase Transition ε-Fe2O3α-Fe2O3 . J Supercond Nov Magn 31, 1209–1217 (2018). https://doi.org/10.1007/s10948-017-4307-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4307-y

Keywords

Navigation