Skip to main content
Log in

Extraction Properties of Diphenylposphorylureas with Aliphatic ω-Nitrogen-Containing Substituents

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Extraction of lanthanides and actinides from nitric acid solutions with N-(diphenylphosphoryl)-N'-n-propylureas containing imidazolyl, diethylamino, pyrid-2-yl, 2-oxopyrrolidino fragments in the ω position of the alkyl substituent has been studied. It has been shown that Ho(III) and Yb(III) related to the yttrium subgroup of lanthanides are extracted much better than La(III) and Nd(III) related to the cerium subgroup. N-(Diphenylphosphoryl)urea containing ω-(2-oxopyrrolidino)propyl fragment at the terminal nitrogen atom shows the best extraction properties. This dependence has been theoretically explained by modeling complexation because the coordination of f-block element ion with amide oxygen atom is more preferable

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. M. Rozen and B. V. Krupnov, Russ. Chem. Rev. 65, 973 (1996). https://doi.org/10.1070/RC1996v065n11ABEH000241]

    Article  Google Scholar 

  2. A. Leoncini, J. Huskens, and W. Verboom, Chem. Soc. Rev. 46, 7229 (2017). https://doi.org/10.1039/c7cs00574a

    Article  CAS  PubMed  Google Scholar 

  3. E. P. Horwitz, D. G. Kalina, L. Kaplan, et al., Sep. Sci. Technol. 17, 1261 (1982). https://doi.org/10.1080/01496398208060649

  4. M. Jensen, R. Chiarizia, J. S. Ulicki, et al., Solvent Extr. Ion Exch. 33, 329 (2015). https://doi.org/10.1080/07366299.2015.1046292

    Article  CAS  Google Scholar 

  5. A. T. Ta, G. A. Hegde, B. D. Etz, et al., J. Phys. Chem. B 122, 5999 (2018). https://doi.org/10.1021/acs.jpcb.8b03165

    Article  CAS  PubMed  Google Scholar 

  6. B. Mahanty, P. K. Mohapatra, A. Leoncini, et al., Sep. Purif. Technol. 229, 115846 (2019). https://doi.org/10.1016/j.seppur.2019.115846

    Article  CAS  Google Scholar 

  7. P. K. Mohapatra, P. Kandwal, M. Iqbal, et al., Dalton Trans. 42, 4343 (2013). https://doi.org/10.1039/c3dt32967d

    Article  CAS  PubMed  Google Scholar 

  8. A. Sengupta, P. K. Mohapatra, P. Pathak, et al., New J. Chem. 41, 836 (2017). https://doi.org/10.1039/C6NJ03102A

    Article  CAS  Google Scholar 

  9. J. C. Braley, G. J. Lumetta, J. C. Carter, et al., Solvent Extr. Ion Exch. 31, 567 (2013). https://doi.org/10.1080/07366299.2013.785912

    Article  CAS  Google Scholar 

  10. Y. Sasaki and S. Umetani, J. Nucl. Sci. Technol. 43, 794 (2006). https://doi.org/10.1080/18811248.2006.9711161

    Article  CAS  Google Scholar 

  11. E. V. Sharova, O. I. Artyushin, and I. L. Odinets, Russ. Chem. Rev. 83, 95 (2014). https://doi.org/10.1070/RC2014v083n02ABEH004384

    Article  CAS  Google Scholar 

  12. A. N. Turanov, V. K. Karandashev, A. G. Matveeva, et al., Radiochemistry 59, 490 (2017). https://doi.org/10.1134/S1066362217050083

    Article  CAS  Google Scholar 

  13. H. H. Dam, D. N. Reinhoudt, and W. Verboom, Chem. Soc. Rev. 36, 367 (2007). https://doi.org/10.1039/B603847F

    Article  CAS  PubMed  Google Scholar 

  14. D. A. Tatarinov, V. F. Mironov, A. A. Kostin, et al., Phosphorus, Sulfur Silicon Relat. Elem. 186, 694 (2011). https://doi.org/10.1080/10426507.2010.515955

    Article  CAS  Google Scholar 

  15. N. E. Borisova, A. M. Safiullina, A. V. Lizunov, et al., Russ. J. Inorg. Chem. 64, 414 (2019). https://doi.org/10.1134/S0036023619030057

    Article  CAS  Google Scholar 

  16. A. N. Turanov, V. K. Karandashev, V. E. Baulin, et al. Solvent Extr. Ion Exch. 27, 551 (2009). https://doi.org/10.1080/07366290903044683

    Article  CAS  Google Scholar 

  17. A. N. Turanov, V. K. Karandashev, O. I. Artyushin, et al., Russ. J. Inorg. Chem. 65, 1226 (2020). https://doi.org/10.1134/S0036023620080185

    Article  Google Scholar 

  18. S. V. Demin, S. E. Nefedov, V. I. Zhilov, et al., Russ. J. Inorg. Chem. 57, 897 (2012). https://doi.org/10.1134/S0036023612060095

    Article  CAS  Google Scholar 

  19. A. N. Turanov, V. K. Karandashev, O. I. Artyushin, et al., Russ. J. Inorg. Chem. 65, 905 (2020). https://doi.org/10.31857/S0044457X20060240

    Article  CAS  Google Scholar 

  20. I. G. Tananaev, A. A. Letyushov, A. M. Safiulina, et al., Dokl. Chem. 422, 260 (2008). https://doi.org/10.1134/S0012500808100054

    Article  CAS  Google Scholar 

  21. E. I. Goryunov, A. E. Shipov, I. B. Goryunova, et al., Dokl. Chem. 438, 151 (2011). https://doi.org/10.1134/S0012500811060012

    Article  CAS  Google Scholar 

  22. A. M. Safiulina, E. I. Goryunov, A. A. Letyushov, et al., Mendeleev Commun. 19, 263 (2009). https://doi.org/10.1016/j.mencom.2009.09.010

    Article  CAS  Google Scholar 

  23. E. I. Goryunov, T. V. Baulina, I. B. Goryunova, et al., Russ. Chem. Bull. 63, 141 (2014). https://doi.org/10.1007/s11172-014-0408-y

    Article  CAS  Google Scholar 

  24. P. S. Lemport, E. I. Goryunov, I. B. Goryunova, et al., Dokl. Chem. 425, 84 (2009). https://doi.org/10.1134/S0012500809040053

    Article  CAS  Google Scholar 

  25. A. M. Safiulina, M. S. Grigoriev, E. E. Nifant’ev, et al., Russ. J. Inorg. Chem. 57, 108 (2012). https://doi.org/10.1134/S0036023612010196

    Article  CAS  Google Scholar 

  26. S. B. Savvin, Organic Reagents of Arsenazo III Group (Atomizdat, Moscow, 1971).

    Google Scholar 

  27. D. N. Laikov, Chem. Phys. Lett. 416, 116 (2005). https://doi.org/10.1016/j.cplett.2005.09.046

    Article  CAS  Google Scholar 

  28. D. N. Laikov, Chem. Phys. Lett. 281, 151 (1997). https://doi.org/10.1016/S0009-2614(97)01206-2

    Article  CAS  Google Scholar 

  29. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  30. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997). https://doi.org/10.1103/PhysRevLett.78.1396

    Article  CAS  Google Scholar 

  31. N. E. Borisova, A. A. Kostin, E. A. Eroshkina, et al., Eur. J. Inorg. Chem. 13, 2219 (2014). https://doi.org/10.1002/ejic.201301271

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Science and Higher Education of the Russian Federation using equipment of the Center for Molecular Structure Studies, Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences.

The computations were performed on a MVS-50K Supercomputer of the Joint Supercomputer Center, Russian Academy of Sciences (www.jscc.ru).

Funding

Computations were supported by the Russian Science Foundation (project no. 16–13–10451).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Safiulina.

Ethics declarations

The authors declare no conflict of interest.

Additional information

In memory of eminent Soviet and Russian organophosphorus chemist E. E. Nifant’ev, Corresponding Member of the RAS

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safiulina, A.M., Lizunov, A.V., Borisova, N.E. et al. Extraction Properties of Diphenylposphorylureas with Aliphatic ω-Nitrogen-Containing Substituents. Russ. J. Inorg. Chem. 66, 731–739 (2021). https://doi.org/10.1134/S0036023621050156

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621050156

Keywords:

Navigation