Skip to main content
Log in

Scale-up of the Solution Combustion Synthesis of Iron Oxides with the Addition of the Inactive Component FeOx

  • PHYSICAL CHEMISTRY
  • Published:
Doklady Physical Chemistry Aims and scope Submit manuscript

Abstract

The solution combustion synthesis of iron oxides from nitrate solutions with a dual fuel comprising urea and citric acid on the earlier synthesized FeOx powder was studied. The possibility of the synthesis of up to 100 g of the desired product under laboratory conditions in a relatively small (4 dm3) reactor was demonstrated for the first time. The obtained nanodisperse materials were a well-crystallized mixture of Fe3O4 and α-Fe2O3 oxides. A consistent increase in the weight of the FeOx powder led to an increase in the mass fraction of the α-Fe2O3 phase to 91% at the final stage of the synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, Kh.V., Chem. Rev., 2016, vol. 116, pp. 14493–14586. https://doi.org/10.1021/acs.chemrev.6b00279

    Article  CAS  PubMed  Google Scholar 

  2. Khaliullin, Sh.M., Nefedova, K.V., and Zhuravlev, V.D., Int. J. Self-Propagating High-Temp. Synth., 2019, vol. 28, no. 1, pp. 1–9. https://doi.org/10.3103/S1061386219010072

    Article  CAS  Google Scholar 

  3. Wang, Q., Peng, Y., Fu, J., Kyzas, G.Z., and Billah, S.M.R., and An, S., Appl. Catal., B, 2015, vols. 168–169, pp. 42–50. https://doi.org/10.1016/j.apcatb.2014.12.016

    Article  CAS  Google Scholar 

  4. Rezaee, L. and Haghighi, M., RSC Adv., 2016, vol. 6, no. 40, pp. 34055–34065. https://doi.org/10.1039/c6ra02973f

    Article  CAS  Google Scholar 

  5. Barros, B.S., Melo, D.M.A., Libs, S., and Kiennemann, A., Appl. Catal., A, 2010, vol. 378, no. 1, pp. 69–75. https://doi.org/10.1016/j.apcata.2010.02.001

  6. Kumar, A., Mukasyan, A.S., and Wolf, E.E., Appl. Catal., A, 2010, vol. 372, no. 2, pp. 175–183. https://doi.org/10.1016/j.apcata.2009.10.032

  7. Habibi, M.H. and Karimi, B., J. Ind. Eng. Chem., 2014, vol. 20, no. 4, pp. 1566–1570. https://doi.org/10.1016/j.jiec.2013.07.048

    Article  CAS  Google Scholar 

  8. Shi, L., Yang, R., Tao, K., Yoneyama, Y., Tan, Y., and Tsubaki, N., Catal. Today, 2012, vol. 185, no. 1, pp. 54– 60. https://doi.org/10.1016/j.cattod.2011.10.015

    Article  CAS  Google Scholar 

  9. Baneshi, J., Haghighi, M., Jodeiri, N., Abdollahifar, M., and Ajamein, H., Ceram. Int., 2014, vol. 40, no. 9, pp. 14177–14184. https://doi.org/10.1016/j.ceramint.2014.06.005

    Article  CAS  Google Scholar 

  10. Shin, J., Lee, K.Y., Yeo, T., and Choi, W., Sci. Rep., 2016, vol. 6, p. 21792. https://doi.org/10.1038/srep21792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khaliullin, Sh.M. and Koshkina, A.A., Ceram. Int., 2021, vol. 47, no. 9, pp. 11942–11950. https://doi.org/10.1016/j.ceramint.2021.01.035

    Article  CAS  Google Scholar 

  12. www.csc.ac.ru/news/2003_1/2003_1_4_2.pdf

  13. Khaliullin, Sh.M., Zhuravlev, V.D., Ermakova, L.V., Buldakova, L.Yu., Yanchenko, M.Yu., and Porotnikova, N.M., Int. J. Self-Propagating High-Temp. Synth., 2019, vol. 28, no. 4, pp. 226–232. https://doi.org/10.3103/S1061386219040058

    Article  CAS  Google Scholar 

  14. Lamberov, A.A., Dement’eva, E.V., Kuz’mina, O.V., and Khazeev, B.R., Vestn. Kazan. Tekhnol. Univ., 2013, vol. 16, no. 1, pp. 37–41. https://elibrary.ru/download/elibrary_18725973_50330483.pdf

  15. Yur’ev, B.P. and Gol’tsev, V.A., Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2016, vol. 59, no. 10, pp. 735–739. https://doi.org/10.17073/0368-0797-2016-10-735-739

    Article  CAS  Google Scholar 

  16. Todt, F., Korroziya i zashchita ot korrozii. Korroziya metallov i splavov. Metody zashchity ot korrozii (Corrosion and Corrosion Protection. Corrosion of Metals and Alloys. Corrosion Protection Methods), Leningrad: Khimiya, 1966, p. 124.

Download references

Funding

This work was supported by state assignments for the Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia (no. AAAA–A19–119031890026–6), the Institute of Electrophysics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia (no. AAAA–F18–118030290007–5), and the Yeltsin Ural Federal University, Yekaterinburg, Russia (no. AAAA–A20–120061990010–7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sh. M. Khaliullin or V. D. Zhuravlev.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaliullin, S.M., Murzakaev, A.M., Zhuravlev, V.D. et al. Scale-up of the Solution Combustion Synthesis of Iron Oxides with the Addition of the Inactive Component FeOx. Dokl Phys Chem 498, 54–59 (2021). https://doi.org/10.1134/S001250162105002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001250162105002X

Keywords:

Navigation