Skip to main content
Log in

Solution-combustion synthesis of oxide nanoparticles from nitrate solutions containing glycine and urea: Thermodynamic aspects

  • Published:
International Journal of Self-Propagating High-Temperature Synthesis Aims and scope Submit manuscript

Abstract

Solution-combustion synthesis (SCS) of nanoparticles was characterized by the temperature effect (ΔT ad) calculated upon neglect by the temperature dependence of heat capacity. Thus calculated ΔT ad values were found to be a linear function of the inverse radius of metal ions. Our calculations have shown that SCS reactions may yield not only oxides but also hydroxides and carbonates. Suggested was a simple formula for evaluating the ΔT ad values attained in SCS of complex oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kingsley, J.J. and Patil, K.C., A novel combustion process for the synthesis of fine particle a-alumina and related oxide materials, Mater. Lett., 1988, vol. 6, nos. 11–12, pp. 427–432.

    Article  Google Scholar 

  2. Mukasyan, A.S., Epstein, P., and Dinka, P., Solution combustion synthesis of nanomaterials, Proc. Combust. Inst., 2007, vol. 31, pp. 1789–1795.

    Article  Google Scholar 

  3. Zhuravlev, V.D., Bamburov, V.G., Beketov, A.R., Perelyaeva, L.A., Baklanova, I.V., Sivtsova, O.V., Vasil’ev, V.G., Vladimirova, E.V., Shevchenko, V.G., and Grigorov, I.G., Solution combustion synthesis of a-Al2O3 using urea, Ceram. Int., 2013, vol. 39, no. 2, pp. 1379–1384.

    Article  Google Scholar 

  4. Sherikar, B.N. and Umarji, A.M., Synthesis of γ-alumina by solution combustiom method using mixed fuel approach (urea + glycine fuel), Int. J. Res. Eng. Technol., 2013, IC-RICE Conference Issue, pp. 434–438.

    Google Scholar 

  5. Krishna, R.H., Nagabhushana, B.M., Sherikar, B.N., Murthy, N.S., Shivakumara, C., and Thomas, T., Luminescence enhancement in monoclinic CaAl2O4: Eu2+,Cr3+ nanophosphor by fuel-blend combustion synthesis, Chem. Eng. J., 2015, vol. 267, pp. 317–323.

    Article  Google Scholar 

  6. Bhaduri, S., Bhaduri, S.B., and Prisbrey, K.A., Autoignition synthesis of nanocrystalline MgAl2O4 and related nanocomposites, J. Mater. Res., 1999, vol. 14, no. 9, pp. 3571–3580.

    Article  Google Scholar 

  7. Mukasyan, A.S., Epstein, P., and Dinka, P., Solution combustion synthesis of nanomaterials, Proc. Combust. Inst., 2007, vol. 31, pp. 1789–1795.

    Article  Google Scholar 

  8. Chakraborty, A., Basu, R.N., and Maiti, H.S., Lowtemperature sintering of La(Ca)CrO3 prepared by an autoignition process, Mater. Lett., 2000, vol. 45, nos. 3–4, pp. 162–166.

    Article  Google Scholar 

  9. Azegami, K., Yoshinaka, M., Hirota, K., and Yamaguchi, O., Formation and sintering of LaCrO3 prepared by the hydrazine method, Mater. Res. Bull., 1998, vol. 33, no. 2, pp. 341–348.

    Article  Google Scholar 

  10. Colomer, M.T., Fumo, D., Jurado, J.R. and Segadres, A., Non-stoichiometric La1–x NiO3–d perovskites produced by combustion synthesis, J. Mater. Chem., 1999, vol. 9, no. 10, pp 2505–2510.

    Article  Google Scholar 

  11. Zhang, Ch., Li, Sh., Liu, X., Zhao, X., He, D., Qiu, H., Yu, Q., Wang, Sh., and Jiang, L., Low temperature synthesis of Yb doped SrCeO3 powders by gel combustion process, Int. J. Hydrogen Energ., 2013, vol. 38, no. 29, pp. 12921–12926.

    Article  Google Scholar 

  12. Jadhav, S.T., Dubal, S.U., Jamale A.P., Patil, S.P., Bhosale, C.H., Puri, V.R., and Jadhav, L.D., Structural, morphological and electrical studies of BaCe0.8Y0.2O3–d synthesized by solution combustion method, Ionics, 2015, vol. 21, no. 5, pp. 1295–1300.

    Article  Google Scholar 

  13. Silva, A.L.A., Conceição, L., Rocco, A.M., and Souza, M.M.V.M., Synthesis of Sr-doped LaMnO3 and LaCrO3 powders by combustion method: Structural characterization and thermodynamic evaluation, Cerâmica, 2012, vol. 58, no. 348, pp. 521–528.

    Article  Google Scholar 

  14. Ianos, R., An efficient solution for the single-step synthesis of 4CaO–Al2O3–Fe2O3 powders, J. Mater. Res., 2009, vol. 24, no. 1, pp. 245–252.

    Article  Google Scholar 

  15. Patil, K.C., Uruna, S.T. and Minami, S.T., Combustion synthesis: an update, Curr. Opin. Solid State Mater. Sci., 2002, vol. 6, no. 6, pp. 507–512.

    Article  Google Scholar 

  16. Alves, A.K, Bergmann, C.P., and Berutti, F.A., Novel Synthesis and Characterization of Nanostructured Materials: Engineering Materials, Berlin–Heidelberg: Springer, 2013.

    Book  Google Scholar 

  17. Khaliullin, Sh.M., Zhuravlev, V.D., Bamburov, V.G., and Ermakova, L.V., Combustion synthesis of submicron CaZrO3, Phys. Atomic Nuclei, 2015, vol. 78, no. 12, pp. 1382–1388.

    Article  Google Scholar 

  18. Khaliullin, Sh.M., Bamburov, V.G., Russkikh, O.V., Ostroushko, A.A., and Zhuravlev, V.D., CaZrO3 synthesis in combustion reactions with glycine, Dokl. Chem., 2015, vol., 461, pt. 2, pp. 93–95.

    Article  Google Scholar 

  19. Khaliullin, Sh.M., Zhuravlev, V.D., Russkikh, O.V., Ostroushko, A.A., and Bamburov, V.G., Solution-combustion synthesis and eletroconductivity of CaZrO3, Int. J. Self-Propag. High-Temp Synth., 2015, vol. 24, no. 2, pp. 83–88.

    Article  Google Scholar 

  20. Naumov, G.B., Ryzhkov, B.N., and Khodakovsky, I.L., Spravochnik termodinamicheskikh velichin (Thermodynamic Quantities: A Handbook), Moscow: Atomizdat, 1971.

    Google Scholar 

  21. Veryatin, U.D., Masherov, V.P., Ryabsev, N.G., Tarasov, V.I., Rogozkin, B.D., and Korobov, I.V., Termodinamicheskie svoystva neorganicheskikh veshchestv: Spravochnik (Thermodynamic Properties of Inorganic Compounds: A Handbook), Moscow: Atomizdat, 1965.

    Google Scholar 

  22. Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999.

    Google Scholar 

  23. Rossini, F.D., Wagman, D.D., Evans, W.H., Levine, S., and Jaffe, I., Selected Values of Chemical Thermodynamic Properties, Washington: National Bureau of Standards, 1952.

    Google Scholar 

  24. Shreir, L.L., Corrosion: Corrosion Control, Newnes–Butterworths, vol. 2, 1979.

    Google Scholar 

  25. CRC Handbook of Chemistry and Physics, Haynes, W.M., Ed., DVD Version, 2013.

  26. Moiseev, G.K., Vatolin, N.A., Marchuk, L.A., and Il’inykh, N.I., Temperaturnye zavisimosti privedennoi energii Gibbsa nekotorykh neorganicheskikh veshchestv (Temperature Dependence of Reduced Gibbs Energies for Some Inorganic Compounds), Yekaterinburg: Izd. UrO RAN, 1997.

    Google Scholar 

  27. Karapet’yants, M.Kh., Khimicheskaya termodinamika (Chemical Thermodynamics), Moscow: Khimiya, 1975.

    Google Scholar 

  28. Krestov, G.A., Termodinamika ionnykh prosessov v rastvorakh (Thermodynamics of Ionic Processes in Solution), Leningrad: Khimiya, 1984.

    Google Scholar 

  29. Karapet’yants, M.Kh. and Drakin, S.I., Obshchaya i neorganicheskaya khimiya (General and Inorganic Chemistry), Moscow: Khimiya, 1981.

    Google Scholar 

  30. Jacobson, N.S., Thermodynamic Properties of Some Metal Oxide–Zirconia Systems, Cleveland, OH: NASA Levis Research Center, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. M. Khaliullin.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaliullin, S.M., Zhuravlev, V.D. & Bamburov, V.G. Solution-combustion synthesis of oxide nanoparticles from nitrate solutions containing glycine and urea: Thermodynamic aspects. Int. J Self-Propag. High-Temp. Synth. 25, 139–148 (2016). https://doi.org/10.3103/S1061386216030031

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1061386216030031

Keywords

Navigation