Skip to main content
Log in

Electron Transport in Chloroplasts: Regulation and Alternative Pathways of Electron Transfer

  • REVIEW
  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

This work represents an overview of electron transport regulation in chloroplasts as considered in the context of structure-function organization of photosynthetic apparatus in plants. Main focus of the article is on bifurcated oxidation of plastoquinol by the cytochrome b6f complex, which represents the rate-limiting step of electron transfer between photosystems II and I. Electron transport along the chains of non-cyclic, cyclic, and pseudocyclic electron flow, their relationships to generation of the trans-thylakoid difference in electrochemical potentials of protons in chloroplasts, and pH-dependent mechanisms of regulation of the cytochrome b6f complex are considered. Redox reactions with participation of molecular oxygen and ascorbate, alternative mediators of electron transport in chloroplasts, have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Abbreviations

Asc, MDHA, DHA:

three redox forms of ascorbate (fully reduced, semiquinone, and completely oxidized)

CBC:

Calvin–Benson cycle

CET:

cyclic electron transport

EPR:

electron paramagnetic resonance

ETC:

electron transport chain

ISP:

iron-sulfur protein, part of PSI

Fd:

ferredoxin

FNR:

ferredoxin-NADP reductase

NDH-1:

NAD(P)H-dehydrogenase of chloroplasts type 1

P700 and P680 :

primary electron donors in PSI and PSII

Pc:

plastocyanin

PGR5 and PGRL1:

proteins involved in cyclic electron transfer around PSI

PSI and PSII:

photosystem I and photosystem II

PQ:

plastoquinone

PQH2 :

plastoquinol

PTOX:

plastid (plastoquinol) terminal oxidase

ROS:

reactive oxygen species

References

  1. Edwards, G., and Walker, D. (1983) C3, C4: Mechanisms, and Cellular and Environmental Regulation of Photosynthesis, Univ. of California Press, Berkeley.

  2. Gurrieri, L., Fermani, S., Zaffagnini, M., Sparla, F., and Trost, P. (2021) Calvin–Benson cycle regulation is getting complex, Trends Plant Sci., 26, 898-912, https://doi.org/10.1016/j.tplants.2021.03.008.

    Article  CAS  PubMed  Google Scholar 

  3. Boyer, P. D. (1997) The ATP synthase – a splendid molecular machine, Annu. Rev. Biochem., 66, 717-749, https://doi.org/10.1146/annurev.biochem.66.1.717.

    Article  CAS  PubMed  Google Scholar 

  4. Junge, W., and Nelson, N. (2015) ATP synthase, Annu. Rev. Biochem., 83, 631-657, https://doi.org/10.1146/annurev-biochem-060614-034124.

    Article  CAS  Google Scholar 

  5. Romanovsky, Y. M., and Tikhonov, A. N. (2010) Molecular energy transducers of the living cell. Proton ATP synthase: a rotating molecular motor, Physics Usp., 53, 893-914, https://doi.org/10.3367/UFNe.0180.201009b.0931.

    Article  CAS  Google Scholar 

  6. Nelson, N., and Yocum, C. F. (2006) Structure and function of photosystems I and II, Annu. Rev. Plant Biol., 57, 521-565, https://doi.org/10.1146/annurev.arplant.57.032905.105350.

    Article  CAS  PubMed  Google Scholar 

  7. Mamedov, M., Govindjee, Nadtochenko, V., and Semenov, A. Yu. (2015) Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms, Photosynth. Res., 125, 51-63, https://doi.org/10.1007/s11120-015-0088-y.

    Article  CAS  PubMed  Google Scholar 

  8. Brettel, K. (1997) Electron transfer and arrangement of the redox cofactors in photosystem I, Biochim. Biophys. Acta, 1318, 322-373, https://doi.org/10.1016/S0005-2728(96)00112-0.

    Article  CAS  Google Scholar 

  9. Allakhverdiev, S. I. (2011) Recent progress in the studies of structure and function of photosystem II, J. Photochem. Photobiol. B, 104, 1-8, https://doi.org/10.1016/j.jphotobiol.2011.03.010.

    Article  CAS  PubMed  Google Scholar 

  10. Müh, F., Glöckner, C., Hellmich, J., and Zouni, A. (2012) Light-induced quinone reduction in photosystem II, Biochim. Biophys. Acta, 1817, 44-65, https://doi.org/10.1016/j.bbabio.2011.05.021.

    Article  CAS  PubMed  Google Scholar 

  11. Shevela, D., Kern, J. F., Govindjee, G., and Messinger, J. (2023) Solar energy conversion by photosystem II: principles and structures, Photosynth. Res., 156, 279-307, https://doi.org/10.1007/s11120-022-00991-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tikhonov, A. N. (2014) The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways, Plant Physiol. Biochem., 81, 163-183, https://doi.org/10.1016/j.plaphy.2013.12.011.

    Article  CAS  PubMed  Google Scholar 

  13. Cramer, W. A., and Hasan, S. S. (2016) Structure-function of the cytochrome b6f lipoprotein complex, in Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling (Cramer, W. A., and Kallas, T., eds) Springer, Dordrecht, pp. 177-207, https://doi.org/10.1007/978-94-017-7481-9_9.

  14. Tikhonov, A. N. (2018) The cytochrome b6f complex: biophysical aspects of its functioning in chloroplasts, in Membrane Protein Complexes: Structure and Function, Subcellular Biochemistry (Harris, J. R., Boekema, E. J., eds) 87, Springer Nature, Singapore Pte Ltd., pp. 287-328, https://doi.org/10.1007/978-981-10-7757-9_10.

  15. Malone, L. A., Proctor, M. S., Hitchcock, A., Hunter, C. N., and Johnson, M. P. (2021) Cytochrome b6f – orchestrator of photosynthetic electron transfer, Biochim. Biophis. Acta, 1862, 148380, https://doi.org/10.1016/j.bbabio.2021.148380.

    Article  CAS  Google Scholar 

  16. Sarewicz, M., Pintscher, S., Pietras, R., Borek, A., Bujnowicz, Ł., Hanke, G., Cramer, W. A., Finazzi, G., and Osyczka, A. (2021) Catalytic reactions and energy conservation in the cytochrome bc1 and b6f complexes of energy-transducing membranes, Chem. Rev., 121, 2020-2108, https://doi.org/10.1021/acs.chemrev.0c00712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sarewicz, M., Szwalec, M., Pintscher, S., Indyka, P., Rawski, M., Pietras, R., Mielecki, B., Koziej, Ł., Jaciuk, M., Glatt, S., and Osyczka, A. (2023) High-resolution cryo-EM structures of plant cytochrome b6f at work, Sci. Adv., 9, 1-12, https://doi.org/10.1126/sciadv.add9688.

    Article  Google Scholar 

  18. Staehelin, L. A. (2003) Chloroplast structure: from chlorophyll granules to supramolecular architecture of thylakoid membranes, Photosynth. Res., 76, 185-196, https://doi.org/10.1023/A:1024994525586.

    Article  CAS  PubMed  Google Scholar 

  19. Albertsson, P.-Å. (2001) A quantitative model of the domain structure of the photosynthetic membrane, Trends Plant Sci., 6, 349-354, https://doi.org/10.1016/S1360-1385(01)02021-0.

    Article  CAS  PubMed  Google Scholar 

  20. Dekker, J. P., and Boekema, E. J. (2005) Supramolecular organization of thylakoid membrane proteins in green plants, Biochim. Biophys. Acta, 1706, 12-39, https://doi.org/10.1016/j.bbabio.2004.09.009.

    Article  CAS  PubMed  Google Scholar 

  21. Pribil, M., Labs, M., and Leister, D. (2014) Structure and dynamics of thylakoids in land plants, Environ. Bot., 65, 1955-1972, https://doi.org/10.1093/jxb/eru090.

    Article  CAS  Google Scholar 

  22. Kramer, D. M., Avenson, T. J., and Edwards, G. E. (2004) Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions, Trends Plant. Sci., 9, 349-357, https://doi.org/10.1016/j.tplants.2004.05.001.

    Article  CAS  PubMed  Google Scholar 

  23. Johnson, M. P., and Ruban, A. V. (2014) Rethinking the existence of a steady-state Δψ component of the proton motive force across plant thylakoid membranes, Photosynth. Res., 119, 233-242, https://doi.org/10.1007/s11120-013-9817-2.

    Article  CAS  PubMed  Google Scholar 

  24. Bendall, D. S., and Manasse, R. S. (1995) Cyclic photophosphorylation and electron transport, Biochim. Biophys. Acta, 1229, 23-38, https://doi.org/10.1016/0005-2728(94)00195-B.

    Article  Google Scholar 

  25. Joliot, P., and Joliot, A. (2006) Cyclic electron flow in C3 plants, Biochim. Biophys. Acta, 1757, 362-368, https://doi.org/10.1016/j.bbabio.2006.02.018.

    Article  CAS  PubMed  Google Scholar 

  26. Joliot, P., Sellés, J., Wollman, F.-A., and Verméglio, A. (2022) High efficient cyclic electron flow and functional supercomplexes in Chlamydomonas cells, Biochim. Biophys. Acta Bioenerg., 1863, 148909, https://doi.org/10.1016/j.bbabio.2022.148909.

    Article  CAS  PubMed  Google Scholar 

  27. Iwai, M., Takizawa, K., Tokutsu, R., Okamuro, A., Takahashi, Y., and Minagawa, J. (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis, Nature, 464, 1210-1213, https://doi.org/10.1038/nature08885.

    Article  CAS  PubMed  Google Scholar 

  28. Munekage, Y., Hojo, M., Meurer, J., Endo, T., Tasaka, M., and Shikanai, T. (2002) PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis, Cell, 110, 361-371, https://doi.org/10.1016/S0092-8674(02)00867-X.

    Article  CAS  PubMed  Google Scholar 

  29. DalCorso, G., Pesaresi, P., Masiero, S., Aseeva, E., Schünemann, D., Finazzi, G., Joliot, P., Barbato, R., and Leister, D. (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear and cyclic electron flow in Arabidopsis, Cell, 132, 273-285, https://doi.org/10.1016/j.cell.2007.12.028.

    Article  CAS  PubMed  Google Scholar 

  30. Buchert, F., Mosebach, L., Gäbelein, P., and Hippler, M. (2020) PGR5 is required for efficient Q cycle in the cytochrome b6f complex during cyclic electron flow, Biochem. J., 477, 1631-1650, https://doi.org/10.1042/BCJ20190914.

    Article  CAS  PubMed  Google Scholar 

  31. Strand, D. D., Fisher, N., and Kramer, D. M. (2016) Distinct energetics and regulatory functions of the two major cyclic electron flow pathways in chloroplasts, in Chloroplasts: Current Research and Future Trends (Kirchhoff, H., ed.) Norfolk, UK, Caister Academic Press, pp. 89-100, https://doi.org/10.21775/9781910190470.04.

  32. Shikanai, T. (2016) Chloroplast NDH: A different enzyme with a structure similar to that of respiratory NADH dehydrogenase, Biochim. Biophys. Acta, 1857, 1015-1022, https://doi.org/10.1016/j.bbabio.2015.10.013.

    Article  CAS  PubMed  Google Scholar 

  33. Laughlin, T. G., Bayne, A. N., Trempe, J. F., Savage, D. F., and Davies, K. M. (2019) Structure of the complex I-like molecule NDH of oxygenic photosynthesis, Nature, 566, 411-414, https://doi.org/10.1038/s41586-019-0921-0.

    Article  CAS  PubMed  Google Scholar 

  34. Schuller, J. M., Birrell, J. A., Tanaka, H., Konuma, T., Wulfhorst, H., Cox, N., Schuller, S. K., Thiemann, J., Lubitz, W., Sétif, P., Ikegami, T., Engel, B. D., Kurisu, G., and Nowaczyk, M. M. (2019) Structural adaptations of photosynthetic complex I enable ferredoxin-dependent electron transfer, Science, 363, 257-260, https://doi.org/10.1126/science.aau3613.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, C., Shuai, J., Ran, Z., Zhao, J., Wu, Z., Liao, R., Wu, J., Ma, W., and Lei, M. (2020) Structural insights into NDH-1 mediated cyclic electron transfer, Nat. Commun., 11, 888, https://doi.org/10.1038/s41467-020-14732-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Stiehl, H. H., and Witt, H. T. (1969) Quantitative treatment of the function of plastoquinone in photosynthesis, Z. Naturforsch. B, 24, 1588-1598, https://doi.org/10.1515/znb-1969-1219.

    Article  CAS  PubMed  Google Scholar 

  37. Haehnel, W. (1976) The reduction kinetics chlorophyll aI as indicator for proton uptake between the light reactions in chloroplasts, Biochim. Biophys. Acta, 440, 506-521, https://doi.org/10.1016/0005-2728(76)90038-4.

    Article  CAS  PubMed  Google Scholar 

  38. Tikhonov, A. N., Khomutov, G. B., and Ruuge, E. K. (1984) Electron transport control in chloroplasts. Effects of magnesium ions on the electron flow between two photosystems, Photobiochem. Photobiophys., 8, 261-269.

    CAS  Google Scholar 

  39. Haehnel, W. (1984) Photosynthetic electron transport in higher plants, Annu. Rev. Plant Physiol., 35, 659-693, https://doi.org/10.1146/annurev.pp.35.060184.003303.

    Article  CAS  Google Scholar 

  40. Höhner, R., Pribil, M., Herbstová, M., Lopez, L. S., Kunz, H.-H., Li, M., Wood, M., Svoboda, M., Puthiyaveetil, S., Leister, L., and Kirchhoff, H. (2020) Plastocyanin is the long-range electron carrier between photosystem II and photosystem I in plants, Proc. Natl. Acad. Sci. USA, 117, 15354-15362, https://doi.org/10.1073/pnas.2005832117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tikhonov, A. N. (2013) pH-Dependent regulation of electron transport and ATP synthesis in chloroplasts, Photosynth. Res., 116, 511-534, https://doi.org/10.1007/s11120-013-9845-y.

    Article  CAS  PubMed  Google Scholar 

  42. Berry, E. A., Guergova-Kuras, M., Huang, L. S., and Crofts, A. R. (2000) Structure and function of cytochrome bc complexes, Annu. Rev. Biochem., 69, 1005-1075, https://doi.org/10.1146/annurev.biochem.69.1.1005.

    Article  CAS  PubMed  Google Scholar 

  43. Mitchell, P. (1976) Possible molecular mechanisms of the protonmotive function of cytochrome systems, J. Theor. Biol., 62, 327-367, https://doi.org/10.1016/0022-5193(76)90124-7.

    Article  CAS  PubMed  Google Scholar 

  44. Cramer, W. A., Hasan, S. S., and Yamashita, E. (2011) The Q cycle of cytochrome bc complexes: a structure perspective, Biochim. Biophys. Acta, 1807, 788-802, https://doi.org/10.1016/j.bbabio.2011.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chow, W. S., and Hope, A. B. (2004) Kinetics of reactions around the cytochrome bf complex studied in intact leaf disks, Photosynth. Res., 81, 153-163, https://doi.org/10.1023/B:PRES.0000035027.02655.8c.

    Article  CAS  Google Scholar 

  46. Ivanov, B. (1993) Stoichiometry of proton uptake by thylakoids during electron transport in chloroplasts, in Photosynthesis: Photoreactions to Plant Productivity, Springer, Dordrecht, (Abrol, Y. P., Mohanty, P., and Govindjee, G., eds) pp. 108-128, https://doi.org/10.1007/978-94-011-2708-0_4.

  47. Kirchhoff, H., Hall, C., Wood, M., Herbstová, M., Tsabari, O., Nevo, R., Charuvi, D., Shimoni, E., and Reich, Z. (2011) Dynamic control of protein diffusion within the granal thylakoid lumen, Proc. Natl. Acad. Sci. USA, 108, 20248-20253, https://doi.org/10.1073/pnas.1104141109.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mehler, A. H. (1951) Studies on reactions of illuminated chloroplasts: I. Mechanism of the reduction of oxygen and other hill reagents, Arch. Biochem. Biophys., 33, 65-77, https://doi.org/10.1016/0003-9861(51)90082-3.

    Article  CAS  PubMed  Google Scholar 

  49. Asada, K. (1999) The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons, Ann. Rev. Plant Physiol. Plant Mol. Biol., 50, 601-639, https://doi.org/10.1146/annurev.arplant.50.1.601.

    Article  CAS  Google Scholar 

  50. Heber, U. (2002) Irrungen, Wirrungen? The Mehler reaction in relation to cyclic electron transport in C3 plants, Photosynth. Res., 73, 223-231, https://doi.org/10.1023/A:1020459416987.

    Article  CAS  PubMed  Google Scholar 

  51. Ivanov, B., Khorobryh, S., Kozuleva, M., and Borisova-Mubarakhshina, M. (2014) The Role of Oxygen and Its Reactive Forms in Photosynthesis [in Russian], Sovremennyie Problemy Fotosinteza (Allakhverdiev, S. I., Rubin, A. B., and Shuvalov, V. A., eds) Izhevsk Institute of Computer Research, Izhevsk-Moscow, 1, 407-460.

  52. Nixon, P. J. (2000) Chlororespiration, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 355, 1541-1547, https://doi.org/10.1098/rstb.2000.0714.

    Article  CAS  Google Scholar 

  53. Peltier, G., and Cournac, L. (2002) Chlororespiration, Annu. Rev. Plant Biol., 53, 523-550, https://doi.org/10.1146/annurev.arplant.53.100301.13524.

    Article  CAS  PubMed  Google Scholar 

  54. Joët, T., Genty, B., Josse, E.-M., Kuntz, M., Cournac, L., and Peltier, G. (2002) Involvement of a plastid terminal oxidase in plastoquinone oxidation as evidenced by expression of the Arabidopsis thaliana enzyme in tobacco, J. Biol. Chem., 277, 31623-31630, https://doi.org/10.1074/jbc.M203538200.

    Article  CAS  PubMed  Google Scholar 

  55. McDonald, A. E., Ivanov, A. G., Bode, R., Maxwell, D. P., Rodermel, S. R., and Huner, N. P. A. (2011) Flexibility in photosynthetic electron transport: The physiological role of plastoquinol terminal oxidase (PTOX), Biochim. Biophys. Acta, 1807, 954-967, https://doi.org/10.1016/j.bbabio.2010.10.024.

    Article  CAS  PubMed  Google Scholar 

  56. Nawrocki, W. J., Tourasse, N. J., Taly, A., Rappaport, F., and Wollman, F.-A. (2015) The plastid terminal oxidase: its elusive function points to multiple contributions to plastid physiology, Annu. Rev. Plant Biol., 66, 49-74, https://doi.org/10.1146/annurev-arplant-043014-114744.

    Article  CAS  PubMed  Google Scholar 

  57. Lennon, A. M., Prommeenate, P., and Nixon, P. J. (2003) Location, expression and orientation of the putative chlororespiratory enzymes, Ndh and IMMUTANS, in higher-plant plastids, Planta, 218, 254-260, https://doi.org/10.1007/s00425-003-1111-7.

    Article  CAS  PubMed  Google Scholar 

  58. Ifuku, K., Endo, T., Shikanai, T., and Aro, E.-M. (2011) Structure of the chloroplast NADH dehydrogenase-like complex: nomenclature for nuclear-encoded subunits, Plant Cell Physiol., 52, 1560-1568, https://doi.org/10.1093/pcp/pcr098.

    Article  CAS  PubMed  Google Scholar 

  59. Foyer, C. H., and Noctor, G. (2011) Ascorbate and glutathione: the heart of the redox hub, Plant Physiol., 155, 2-18, https://doi.org/10.1104/pp.110.167569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anderson, J. M. (1982) Distribution of the cytochromes of spinach chloroplasts between the appressed membranes of grana stacks and stroma-exposed thylakoid regions, FEBS Lett., 138, 62-66, https://doi.org/10.1016/0014-5793(82)80395-5.

    Article  CAS  Google Scholar 

  61. Vallon, O., Bulte, L., Dainese, P., Olive, J., Bassi, R., and Wollman, F.-A. (1991) Lateral redistribution of cytochrome b6/f complexes along thylakoid membranes upon state transitions, Proc. Natl. Acad. Sci. USA, 88, 8262-8266, https://doi.org/10.1073/pnas.88.18.8262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dumas, L., Chazaux, M., Peltier, G., Johnson, X., and Alric, J. (2016) Cytochrome b6f function and localization, phosphorylation state of thylakoid membrane proteins and consequences on cyclic electron flow, Photosynth. Res., 129, 307-320, https://doi.org/10.1007/s11120-016-0298-y.

    Article  CAS  PubMed  Google Scholar 

  63. Kirchhoff, H., Li, M., and Puthiyaveetil, S. (2017) Sublocalization of cytochrome b6f complexes in photosynthetic membranes, Trends Plant. Sci., 22, 574-582, https://doi.org/10.1016/j.tplants.2017.04.004.

    Article  CAS  PubMed  Google Scholar 

  64. Kirchhoff, H., Horstmann, S., and Weis, E. (2000) Control of the photosynthetic electron transport by PQ diffusion in microdomains in thylakoids of higher plants, Biochim. Biophys. Acta, 1459, 148-168, https://doi.org/10.1016/S0005-2728(00)00143-2.

    Article  CAS  PubMed  Google Scholar 

  65. Wood, W. H. J., MacGregor-Chatwin, C., Barnett, S. F. H., Mayneord, G. E., Huang, X., Hobbs, J. K., Hunter, C. N., and Johnson, M. P. (2018) Dynamic thylakoid stacking regulates the balance between linear and cyclic photosynthetic electron transfer, Nat. Plants, 4, 116-127, https://doi.org/10.1038/s41477-017-0092-7.

    Article  CAS  PubMed  Google Scholar 

  66. Hanke, G. T., Kimata-Ariga, Y., Taniguchi, I., and Hase, T. (2004) A post genomic characterization of Arabidopsis ferredoxins, Plant Physiol., 134, 255-264, https://doi.org/10.1104/pp.103.032755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hanke, G. T., and Hase, T. (2008) Variable photosynthetic roles of two leaf-type ferredoxins in Arabidopsis, as revealed by RNA interference, Photochem. Photobiol., 84, 1302-1309, https://doi.org/10.1111/j.1751-1097.2008.00411.x.

    Article  CAS  PubMed  Google Scholar 

  68. Blanco, N., Ceccoli, R., Dalla Via, M. V., Voss, I., Segretin, M. E., Bravo-Almonacid, F. F., Melzer, M., Hajirezaei, M.-R., Scheibe, R., and Hanke, G. T. (2013) Expression of the minor isoform pea ferredoxin in tobacco alters photosynthetic electron partitioning and enhances cyclic electron flow, Plant Physiol., 161, 866-879, https://doi.org/10.1104/pp.112.211078.

    Article  CAS  PubMed  Google Scholar 

  69. Lehtimäki, N., Lintala, M., Allahverdiyeva, Y., Aro, E. M., and Mulo, P. (2010) Drought stress-induced upregulation of components involved in ferredoxin-dependent cyclic electron transfer, J. Plant Physiol., 167, 1018-1022, https://doi.org/10.1016/j.jplph.2010.02.006.

    Article  CAS  PubMed  Google Scholar 

  70. Gins, V. K., Tikhonov, A. N., Mukhin, E. N., and Ruuge, E. K. (1982) Features of the functioning of two molecular forms of pea ferredoxin in the electron transport chain of chloroplasts [in Russian], Biokhimiya, 47, 1859-1866.

    CAS  Google Scholar 

  71. Gong, X.-S., Chung, S., and Fernandez-Velasco, J. G. (2001) Electron transfer and stability of the cytochrome b6f complex in a small domain deletion mutant of cytochrome f, J. Biol. Chem., 276, 24365-24371, https://doi.org/10.1074/jbc.M010721200.

    Article  CAS  PubMed  Google Scholar 

  72. Yan, J., and Cramer, W. A. (2003) Functional insensitivity of the cytochrome b6f complex to structure changes in the hinge region of the Rieske iron-sulfur protein, J. Biol. Chem., 278, 20925-20933, https://doi.org/10.1074/jbc.M212616200.

    Article  CAS  PubMed  Google Scholar 

  73. Rumberg, B., and Siggel, U. (1969) pH changes in the inner phase of the thylakoids during photosynthesis, Naturwissenschaften, 56, 130-132, https://doi.org/10.1007/BF00601025.

    Article  CAS  PubMed  Google Scholar 

  74. Tikhonov, A. N., Khomutov, G. B., Ruuge, E. K., and Blumenfeld, L. A. (1981) Electron transport control in chloroplasts. Effects of photosynthetic control monitored by the intrathylakoid pH, Biochem. Biophys. Acta, 637, 321-333, https://doi.org/10.1016/0005-2728(81)90171-7.

    Article  CAS  Google Scholar 

  75. Kramer, D. M., Sacksteder, C. A., and Cruz, J. A. (1999) How acidic is the lumen? Photosynth. Res., 60, 151-163, https://doi.org/10.1023/A:1006212014787.

    Article  CAS  Google Scholar 

  76. Tikhonov, A. N. (2012) Energetic and regulatory role of proton potential in chloroplasts, Biochemistry (Moscow), 77, 956-974, https://doi.org/10.1134/S0006297912090027.

    Article  CAS  PubMed  Google Scholar 

  77. Li, Z., Wakao, S., Fischer, B. B., and Niyogi, K. K. (2009) Sensing and responding to excess light, Annu. Rev. Plant Biol., 60, 239-260, https://doi.org/10.1146/annurev.arplant.58.032806.103844.

    Article  CAS  PubMed  Google Scholar 

  78. Demmig-Adams, B., Cohu, C. M., Muller, O., and Adams, W. W. (2012) Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons, Photosynth. Res., 113, 75-88, https://doi.org/10.1007/s11120-012-9761-6.

    Article  CAS  PubMed  Google Scholar 

  79. Horton, P. (2012) Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences, Philos. Trans. R. Soc. Lond. B Biol. Sci., 367, 3455-3465, https://doi.org/10.1098/rstb.2012.0069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Brandt, U. (1996) Bifurcated ubihydroquinone oxidation in the cytochrome bc1 complex by proton-gated charge transfer, FEBS Lett., 387, 1-6, https://doi.org/10.1016/0014-5793(96)00436-X.

    Article  CAS  PubMed  Google Scholar 

  81. Link, T. A. (1997) The role of the “Rieske” iron sulfur protein in the hydroquinone oxidation (Qp) site of the cytochrome bc1 complex: the “proton-gated affinity change” mechanism, FEBS Lett., 412, 257-264, https://doi.org/10.1016/S0014-5793(97)00772-2.

    Article  CAS  PubMed  Google Scholar 

  82. Zu, Y., Manon, M.-J., Couture, M. M.-J., Kolling, D. R. J., Crofts, A. R., Eltis, L. D., Fee, J. A., and Hirst, J. (2003) The reduction potentials of Rieske clusters: the importance of the coupling between coupling between oxidation state and histidine protonation state, Biochemistry, 42, 12400-12408, https://doi.org/10.1021/bi0350957.

    Article  CAS  PubMed  Google Scholar 

  83. Crofts, A. R., Guergova-Kuras, M., Kuras, R., Ugulava, N., Li, J., and Hong, S. (2000) Proton-coupled electron transfer at the Qo site: What type of mechanism can account for the high activation barrier? Biochim. Biophys. Acta, 1459, 456-466, https://doi.org/10.1016/S0005-2728(00)00184-5.

    Article  CAS  PubMed  Google Scholar 

  84. Zhu, J., Egawa, T., Yeh, S.-R., Yu, L., and Yu, C.-A. (2007) Simultaneous reduction of iron–sulfur protein and cytochrome bL during ubiquinol oxidation in cytochrome bc1 complex, Proc. Natl. Acad, Sci. USA, 104, 4864-4869, https://doi.org/10.1073/pnas.0607812104.

    Article  CAS  PubMed  Google Scholar 

  85. Osyczka, A., Moser, C. C., and Dutton, P. L. (2005) Fixing the Q cycle, Trends. Biochem. Sci., 30, 176-182, https://doi.org/10.1016/j.tibs.2005.02.001.

    Article  CAS  PubMed  Google Scholar 

  86. Ustynyuk, L. Yu., and Tikhonov, A. N. (2018) The cytochrome b6f complex: DFT modeling of the first step of plastoquinol oxidation by the iron-sulfur protein, J. Organomet. Chem., 867, 290-299, https://doi.org/10.1016/j.jorganchem.2018.01.023.

    Article  CAS  Google Scholar 

  87. Ustynyuk, L. Yu., and Tikhonov, A. N. (2022) Plastoquinol oxidation: rate-limiting stage in the electron transport chain of chloroplasts, Biochemistry (Moscow), 87, 1084-1097, https://doi.org/10.1134/S0006297922100029.

    Article  CAS  PubMed  Google Scholar 

  88. Postila, P. A., Kaszuba, K., Sarewicz, M., Osyczka, A., Vattulainen, I., and Róg, T. (2013) Key role of water in proton transfer at the Qo-site of the cytochrome bc1 complex predicted by atomistic molecular dynamics simulations, Biochim. Biophys. Acta, 1827, 761-768, https://doi.org/10.1016/j.bbabio.2013.02.005.

    Article  CAS  PubMed  Google Scholar 

  89. Chance, B., and Williams, G. R. (1956) The respiratory chain and oxidative phosphorylation, Adv. Enzymol., 17, 65-134, https://doi.org/10.1002/9780470122624.ch2.

    Article  CAS  Google Scholar 

  90. Foyer, C. H., Neukermans, J., Queval, G., Noctor, G., and Harbinson, J. (2012) Photosynthetic control of electron transport and the regulation of gene expression, J. Exp. Bot., 63, 1637-1661, https://doi.org/10.1093/jxb/ers013.

    Article  CAS  PubMed  Google Scholar 

  91. Tikhonov, A. N., Agafonov, R. V., Grigor’ev, I. A., Kirilyuk, I. A., Ptushenko, V. V., and Trubitsin, B. V. (2008) Spin-probes designed for measuring the intrathylakoid pH in chloroplasts, Biochim. Biophys. Acta, 1777, 285-294, https://doi.org/10.1016/j.bbabio.2007.12.002.

    Article  CAS  PubMed  Google Scholar 

  92. Vershubskii, A. V., Trubitsin, B. V., Priklonskii, V. I., and Tikhonov, A. N. (2017) Lateral heterogeneity of the proton potential along the thylakoid membranes of chloroplasts, Biochim. Biophys. Acta, 1859, 388-401, https://doi.org/10.1016/j.bbamem.2016.11.016.

    Article  CAS  Google Scholar 

  93. Buchanan, B. B. (1984) The ferredoxin/thioredoxin system: a key element in the regulatory function of light in photosynthesis, Bioscience, 34, 378-383, https://doi.org/10.2307/1309730.

    Article  CAS  PubMed  Google Scholar 

  94. Dietz, K. J. (2003) Redox control, redox signaling and redox homeostasis in plant cells, Int. Rev. Cytol., 228, 141-193, https://doi.org/10.1016/S0074-7696(03)28004-9.

    Article  CAS  PubMed  Google Scholar 

  95. Selinski, J., and Scheibe, R. (2019) Malate valves: old shuttles with new perspectives, Plant Biol., 21 (Suppl. 1), 21-30, https://doi.org/10.1111/plb12869.

    Article  PubMed  Google Scholar 

  96. Scheibe, R. (2019) Maintaining homeostasis by controlled alternatives for energy distribution in plant cells under changing conditions of supply and demand, Photosynth. Res., 139, 81-91, https://doi.org/10.1007/s11120-018-0583-z.

    Article  CAS  PubMed  Google Scholar 

  97. Tikhonov, A. N. (2015) Induction events and short-term regulation of electron transport in chloroplasts: An overview, Photosynth Res., 125, 65-94, https://doi.org/10.1007/s11120-015-0094-0.

    Article  CAS  PubMed  Google Scholar 

  98. Trubitsin, B. V., Vershubskii, A. V., Priklonskii, V. I., and Tikhonov, A. N. (2015) Short-term regulation and alternative pathways of photosynthetic electron transport in Hibiscus rosa-sinensis leaves, J. Photochem. Photobiol. B, 152, 400-415, https://doi.org/10.1016/j.jphotobiol.2015.07.015.

    Article  CAS  PubMed  Google Scholar 

  99. Kozuleva, M. A., Petrova, A. A., Mamedov, M. D., Semenov, A. Y., and Ivanov, B. N. (2014) O2 reduction by photosystem I involves phylloquinone under steady-state illumination, FEBS Lett., 588, 4364-4368, https://doi.org/10.1016/j.febslet.2014.10.003.

    Article  CAS  PubMed  Google Scholar 

  100. Kozuleva, M. A., and Ivanov, B. N. (2016) The mechanisms of oxygen reduction in the terminal reducing segment of the chloroplast photosynthetic electron transport chain, Plant Cell Physiol., 57, 1397-1404, https://doi.org/10.1093/pcp/pcw035.

    Article  CAS  PubMed  Google Scholar 

  101. Cherepanov, D. A., Milanovsky, G. E., Petrova, A. A., Tikhonov, A. N., Semenov, A. Yu. (2017) Electron transfer through the acceptor side of Photosystem I: Interaction with exogenous acceptors and molecular oxygen, Biochemistry (Moscow), 82, 1249-1268, https://doi.org/10.1134/S0006297917110037.

    Article  CAS  PubMed  Google Scholar 

  102. Kozuleva, M. A., and Ivanov, B. N. (2010) Evaluation of the participation of ferredoxin in oxygen reduction in the photosynthetic electron transport chain of isolated pea thylakoids, Photosynth. Res., 105, 51-61, https://doi.org/10.1007/s11120-010-9565-5.

    Article  CAS  PubMed  Google Scholar 

  103. Kuvykin, I. V., Vershubskii, A. V., Ptushenko, V. V., Tikhonov, A. N. (2008) Oxygen as an alternative electron acceptor in the photosynthetic electron transport chain of C3 plants, Biochemistry (Moscow), 73, 1063-1075, https://doi.org/10.1134/S0006297908100027.

    Article  CAS  PubMed  Google Scholar 

  104. Kuvykin, I. V., Ptushenko, V. V., Vershubskii, A. V., and Tikhonov, A. N. (2011) Regulation of electron transport in C3 plant chloroplasts in situ and in silico. Short-term effects of atmospheric CO2 and O2, Biochim. Biophys. Acta, 1807, 336-347, https://doi.org/10.1016/j.bbabio.2010.12.012.

    Article  CAS  PubMed  Google Scholar 

  105. Tikhonov, A. N., and Subczynski, W. K. (2019) Oxygenic photosynthesis: EPR study of photosynthetic electron transport and oxygen-exchange, an overview, Cell Biochem. Biophys., 77, 47-59, https://doi.org/10.1007/s12013-018-0861-6.

    Article  CAS  PubMed  Google Scholar 

  106. Trubitsin, B. V., Ptushenko, V. V., Koksharova, O. A., Mamedov, M. D., Vitukhnovskaya, L. A., Grigor’ev, I. A., Semenov, A. Yu., and Tikhonov, A. N. (2005) EPR study of electron transport in the cyanobacterium Synechocystis sp. PCC 6803: Oxygen-dependent interrelations between photosynthetic and respiratory electron transport chains, Biochim. Biophys. Acta, 1708, 238-249, https://doi.org/10.1016/j.bbabio.2005.03.004.

    Article  CAS  PubMed  Google Scholar 

  107. Baniulis, D., Hasan, S. S., Stofleth, J. T., and Cramer, W. A. (2013) Mechanism of enhanced superoxide production in the cytochrome b6f complex of oxygenic photosynthesis, Biochemistry, 52, 8975-8983, https://doi.org/10.1021/bi4013534.

    Article  CAS  PubMed  Google Scholar 

  108. Ivanov, B. N. (2008) Cooperation of photosystem I with the plastoquinone pool in oxygen reduction in higher plant chloroplasts, Biochemistry (Moscow)73, 112-118, https://doi.org/10.1134/S0006297908010173.

    Article  CAS  PubMed  Google Scholar 

  109. Ivanov, B., Borisova-Mubarakshina, M., Vilyanen, D., Vetoshkina, D., Kozuleva, M. (2022) Cooperative pathway of O2 reduction to H2O2 in chloroplast thylakoid membrane: new insight into the Mehler reaction, Biophys. Rev., 14, 857-869, https://doi.org/10.1007/s12551-022-00980-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ligeza, A., Tikhonov, A. N., Hyde, J. S., and Subczynski, W. K. (1998) Oxygen permeability of thylakoid membranes: electron paramagnetic resonance spin labeling study, Biochim. Biophys. Acta, 1365, 453-463, https://doi.org/10.1016/S0005-2728(98)00098-X.

    Article  CAS  PubMed  Google Scholar 

  111. Ligeza, A., Tikhonov, A. N., and Subczynski, W. K. (1997) In situ measurements of oxygen production and consumption using paramagnetic fusinite particles injected into a bean leaf, Biochim. Biophys. Acta, 1319, 133-137, https://doi.org/10.1016/S0005-2728(96)00122-3.

    Article  CAS  Google Scholar 

  112. Rutherford, A. W., Osyczka, A., and Rappaport, F. (2012) Back-reactions, short-circuits, leaks and other energy wasteful reactions in biological electron transfer: Redox tuning to survive life in O2, FEBS Lett., 586, 603-616, https://doi.org/10.1016/j.febslet.2011.12.039.

    Article  CAS  PubMed  Google Scholar 

  113. Foyer, C., Rowell, J., and Walker, D. (1983) Measurement of the ascorbate content of spinach leaves protoplasts and chloroplasts during illumination, Planta, 157, 239-244, https://doi.org/10.1007/BF00405188.

    Article  CAS  PubMed  Google Scholar 

  114. Law, M. Y., Charles, S. A., and Halliwell, B. (1983) Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat, Biochem. J., 210, 899-903, https://doi.org/10.1042/bj2100899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Smirnoff, N. (1996) The function and metabolism of ascorbic acid in plants, Ann. Bot., 78, 661-669, https://doi.org/10.1006/anbo.1996.0175.

    Article  CAS  Google Scholar 

  116. Gest, N., Gautier, H., and Stevens, R. (2013) Ascorbate as seen through plant evolution: the rise of a successful molecule? J. Exp. Bot., 64, 33-53, https://doi.org/10.1093/jxb/ers297.

    Article  CAS  PubMed  Google Scholar 

  117. Eskling, M., Arvidsson, P.-O., and Akerlund, H.-E. (1997) The xanthophylls cycle, its regulation and components, Physiol. Plant., 100, 806-816, https://doi.org/10.1034/j.1399-3054.1997.1000407.x.

    Article  CAS  Google Scholar 

  118. Eskling, M., and Akerlund, H.-E. (1998) Changes in the quantities of violaxanthin deepoxidase, xanthophylls and ascorbate in spinach upon shift from low to high light, Photosynth. Res., 57, 41-50, https://doi.org/10.1023/A:1006015630167.

    Article  CAS  Google Scholar 

  119. Müller-Moulé, P., Conclin, P. L., and Niyogy, K. K. (2002) Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo, Plant Physiol., 128, 970-977, https://doi.org/10.1104/pp.010924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Iyanagi, T., Yamazaki, I., and Anan, K. (1985) One-electron oxidation-reduction properties of ascorbic acid, Biochim. Biophys. Acta, 806, 255-261, https://doi.org/10.1016/0005-2728(85)90103-3.

    Article  CAS  Google Scholar 

  121. Mano, J., Hideg, E., and Asada, K. (2004) Ascorbate in thylakoid lumen functions as an alternative electron donor to photosystem II and photosystem I, Arch. Biochim. Biophys., 429, 71-80, https://doi.org/10.1016/j.abb.2004.05.022.

    Article  CAS  Google Scholar 

  122. Trubitsin, B. V., Mamedov, M. D., Semenov, A. Yu., and Tikhonov, A. N. (2014) Interaction of ascorbate with photosystem I, Photosynth. Res., 122, 215-231, https://doi.org/10.1007/s11120-014-0023-7.

    Article  CAS  PubMed  Google Scholar 

  123. Forti, G., and Ehrenheim, A. M. (1993) The role of ascorbic acid in photosynthetic electron transport, Biochim. Biophys. Acta, 1183, 408-412, https://doi.org/10.1016/0005-2728(93)90246-C.

    Article  CAS  Google Scholar 

  124. Miyake, C., and Asada, K. (1994) Ferredoxin-dependent photoreduction of monodehydroascorbate radicals in spinach thylakoids, Plant Cell Physiol., 35, 539-549, https://doi.org/10.1093/oxfordjournals.pcp.a078628.

    Article  CAS  Google Scholar 

  125. Mano, J., Ushimaru, T., and Asada, K. (1997) Ascorbate in thylakoids lumen as an endogenous electron donor to photosystem II: protection of thylakoids from photoinhibition and regeneration of ascorbate in stroma by dehydroascorbate reductase, Photosynth. Res., 53, 197-204, https://doi.org/10.1023/A:1005832022204.

    Article  CAS  Google Scholar 

  126. Tóth, S. Z., Puthur, J. T., Nagi, V., and Garab, G. (2009) Experimental evidence for ascorbate-dependent electron transport in leaves with inactive oxygen evolving complexes, Plant Physiol., 149, 1568-1578, https://doi.org/10.1104/pp.108.132621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tóth, S. Z., Nagi, V., Puthur, J. T., Kovács, L., and Garab, G. (2011) The physiological role of ascorbate as photosystem II electron donor: protection against photoinactivation in heat-stressed leaves, Plant Physiol., 156, 382-392, https://doi.org/10.1104/pp.110.171918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This article is dedicated to the memory of L. A. Drachev – one of the greatest Russian experimental biophysicists, whose scientific and technical developments and pioneering research in the field of photosynthesis contributed to a deeper understanding of the processes of charge separation and transfer in the reaction centers of photosynthetic systems.

The author is grateful to E. K. Ruuge, G. B. Khomutov, and L. Yu. Ustynyuk, together with whom the main results of the experimental and theoretical study of the regulation of electron transport in chloroplasts were previously obtained, to which the author refers in this review. The author thanks the anonymous reviewers for their helpful comments and recommendations.

Funding

This work was carried out within the framework of the research topic of the Faculty of Physics of Lomonosov Moscow State University “Physical Foundations of the Structure, Functioning and Regulation of Biological Systems” (State registration no. 012004 085 35) and with partial financial support from the Russian Foundation for Basic Research (grant no. 21-04-20047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander N. Tikhonov.

Ethics declarations

The author declares no conflict of interest in financial or any other sphere. This article does not contain any studies with human participants or animals performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, A.N. Electron Transport in Chloroplasts: Regulation and Alternative Pathways of Electron Transfer. Biochemistry Moscow 88, 1438–1454 (2023). https://doi.org/10.1134/S0006297923100036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006297923100036

Keywords

Navigation