Skip to main content
Log in

Systemic use of “limping” enzymes in plant cell walls

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Diversity of proteins and enzymes engaged in carbohydrate metabolism is vast. This is related to the fact that plants contain the greater part of biospheric carbohydrates, whose structures are extremely diverse as well. In plant genomes, proteins involved in carbohydrate metabolism are grouped into numerous families, and each of them may include tens of sequences. This is especially typical of enzymes modifying polysaccharides of the cell wall. Expression of genes encoding such proteins is finely tuned. It may differ in different tissues and organs and depends on stages of development of the entire plant and its particular cells. However, certain genes, including highly expressive ones, encode enzymes with “limping” catalytic centers, which may be unable to conduct reactions characteristic of the particular enzymatic family. The review surveys examples of such proteins and discusses causes of their origin and possible functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GH:

glycosyl hydrolases

PL:

polysaccharide lyases

References

  1. The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana, Nature, 2000, vol. 408, pp. 796–815.

  2. McCann, M.C. and Carpita, N.C., Designing the deconstruction of plant cell walls, Curr. Opin. Plant Biol., 2008, vol. 11, pp. 314–320.

    Article  CAS  PubMed  Google Scholar 

  3. Liepman, A.H., Wightman, R., Geshi, N., Turner, S.R., and Scheller, H.V., Arabidopsis—a powerful model system for plant cell wall research, Plant J., 2010, vol. 61, pp. 1107–1121.

    Article  CAS  PubMed  Google Scholar 

  4. Duan, C.J., Feng, Y.L., Cao, Q.L., Huang, M.Y., and Feng, J.X., Identification of a novel family of carbohydrate-binding modules with broad ligand specificity, Sci. Rep., 2016, vol. 6, p. 19392. doi 10.1038/srep19392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. www.cazy.org/

  6. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P.M., and Henrissat, B., The carbohydrate-active enzymes database (CAZy) in 2013, Nucleic Acids Res., 2014, vol. 42, pp. 490–495.

    Article  Google Scholar 

  7. Hrmova, M. and Fincher, G.B., Structure-function relationship of ß-D-glucan exohydrolases from higher plants, Plant Mol. Biol., 2001, vol. 47, pp. 73–91.

    Article  CAS  PubMed  Google Scholar 

  8. Kumar, S., Singh, N., Sinha, M., Dube, D., Singh, S.B., Bhushan, A., Kaur, P., Srinivasan, A., Sharma, S., and Singh, T.P., Crystal structure determination and inhibition studies of a novel xylanase and a-amylase inhibitor protein (XAIP) from Scadoxus multiflorus, FEBS J., 2010, vol. 277, pp. 2868–2882.

    Article  CAS  PubMed  Google Scholar 

  9. Wu, B., Zhang, B., Dai, Y., Zhang, L., Shang-Guan, K., Peng, Y., Zhou, Y., and Zhu, Z., Brittle Culm15 encodes a membrane-associated chitinaselike protein required for cellulose biosynthesis in rice, Plant Physiol., 2012, vol. 159, pp. 1440–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sulzenbacher, G., Roig-Zamboni, V., Peumans, W.J., Henrissat, B., van Damme, E.J.M., and Bourne, Y., Structural basis for carbohydrate binding properties of a plant chitinase-like agglutinin with conserved catalytic machinery, J. Struct. Biol., 2015, vol. 190, pp. 115–121.

    Article  CAS  PubMed  Google Scholar 

  11. Bussink, A., Speijer, D., Aerts, J., and Boot, R., Evolution of mammalian chitinase (-like) members of family 18 glycosyl hydrolases, Genetics, 2007, vol. 177, pp. 959–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kozlova, L.V., Gorshkov, O.V., Mokshina, N.E., and Gorshkova, T.A., Differential expression of a-L-arabinofuranosidases during maize (Zea mays L.) root elongation, Planta, 2015, vol. 241, pp. 1159–1172.

    Article  CAS  PubMed  Google Scholar 

  13. Kesari, P., Patil, D.N., Kumar, P., Tomar, S., Sharma, A.K., and Kumar, P., Structural and functional evolution of chitinase-like proteins from plants, Proteomics, 2015, vol. 15, pp. 1693–1705.

    Article  CAS  PubMed  Google Scholar 

  14. Grover, A., Plant chitinases: genetic diversity and physiological roles, Crit. Rev. Plant Sci., 2012, vol. 31, pp. 57–73.

    Article  CAS  Google Scholar 

  15. Mokshina, N., Gorshkova, T., and Deyholos, M.K., Chitinaselike (CTL) and cellulose synthase (CESA) gene expression in gelatinous-type cellulosic walls of flax (Linum usitatissimum L.) bast fibers, PLoS One, 2014, vol. 9, p. e97949. doi 10.1371/journal. pone.0097949

    Article  PubMed  PubMed Central  Google Scholar 

  16. Su, Y., Xu, L., Wang, S., Wang, Z., Yang, Y., Chen, Y., and Que, Y., Identification, phylogeny, and transcript of chitinase family genes in sugarcane, Sci. Rep., 2015, vol. 5, p. 10708. doi 10.1038/srep10708

    CAS  PubMed  Google Scholar 

  17. González, L.M., Kayal, W.E., Morris, J.S., and Cooke, J.E.K., Diverse chitinases are invoked during the activity-dormancy transition in spruce, Tree Genet. Genomes, 2015, vol. 11, p. 41. doi 10.1007/s11295-015-0871-0

    Article  Google Scholar 

  18. Andersson-Gunnerås, S., Mellerowicz, E.J., Love, J., Segerman, B., Ohmiya, Y., Coutinho, P.M., Nilsson, P., Henrissat, B., Moritz, T., and Sundberg, B., Biosynthesis of cellulose enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis, Plant J., 2006, vol. 45, pp. 144–165.

    Article  PubMed  Google Scholar 

  19. Azri, W., Ennajah, A., Nasr, Z., Woo, S.Y., and Khaldi, A., Transcriptome profiling the basal region of poplar stems during the early gravitropic response, Biol. Plant., 2014, vol. 58, pp. 55–63.

    Article  CAS  Google Scholar 

  20. Gorshkov, O., Mokshina, N., Gorshkov, V., Chemikosova, S., Gogolev, Yu., and Gorshkova, T., Transcriptome portrait of cellulose-enriched flax fibers at advanced stage of specialization, Plant Mol. Biol., 2017, vol. 93, pp. 431–449.

    Article  CAS  PubMed  Google Scholar 

  21. Hennig, M., Jansonius, J.N., Terwisscha van Scheltinga, A.C., Dijkstra, B.W., and Schlesier, B. Crystal structure of concanavalin B at 1.65°A resolution. An “inactivated” chitinase from seeds of Canavalia ensiformis, J. Mol. Biol., 1995, vol. 2541, pp. 237–246.

    Article  Google Scholar 

  22. Patil, D.N., Datta, M., Dev, A., Dhindwal, S., Singh, N., Dasauni, P., Kundu, S., Sharma, A.K., Tomar, S., and Kumar, P., Structural investigation of a novel N-acetyl glucosamine binding chi-lectin which reveals evolutionary relationship with class III chitinases, PLoS One, 2013, vol. 8, p. e63779. doi 10.1371/journal.pone.0063779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Terwisscha van Scheltinga, A.C., Hennig, M., and Dijkstra, B.W., The 1.8°A resolution structure of hevamine, a plant chitinase/lysozyme, and analysis of the conserved sequence and structure motifs of glycosyl hydrolase family 18, J. Mol. Biol., 1996, vol. 262, pp. 243–257.

    CAS  PubMed  Google Scholar 

  24. Bernasconi, P., Locher, R., Pilet, P.E., Jolles, J., and Jolles, P., Purification and N-terminal amino-acid sequence of a basic lysozyme from Parthenocissus quinquifolia cultured in vitro, Biochim. Biophys. Acta, 1987, vol. 915, pp. 254–260.

    Article  CAS  Google Scholar 

  25. Heitz, T., Segond, S., Kauffmann, S., Geoffroy, P., Prasad, V., Brunner, F., Fritig, B., and Legrand, M., Molecular characterization of a novel tobacco pathogenesis-related (PR) protein: a new plant chitinase/lysozyme, Mol. Gen. Genet., 1994, vol. 245, pp. 246–254.

    Article  CAS  PubMed  Google Scholar 

  26. Huet, J., Rucktooa, P., Clantin, B., Azarkan, M., Looze, Y., Villeret, V., and Wintjens, R., X-Ray structure of papaya chitinase reveals the substrate binding mode of glycosyl hydrolase family 19 chitinases, Biochemistry, 2008, vol. 47, pp. 8283–8291.

    Article  CAS  PubMed  Google Scholar 

  27. Payan, F., Leone, P., Porciero, S., Furniss, C., Tahir, T., Williamson, G., Durand, A., Manzanares, P., Gilbert, H.J., Juge, N., and Roussel, A., The dual nature of the wheat xylanase protein inhibitor XIP-I structural basis for the inhibition of family 10 and family 11 xylanases, J. Biol. Chem., 2004, vol. 279, pp. 36029–36037.

    Article  CAS  PubMed  Google Scholar 

  28. Durand, A., Hughes, R., Roussel, A., Flatman, R., Henrissat, B., and Juge, N., Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18, FEBS J., 2005, vol. 272, pp. 1745–1755.

    Article  CAS  PubMed  Google Scholar 

  29. Vasconcelos, E.A., Santana, C.G., Godoy, C.V., Seixas, C.D.S., Silva, M.S., Moreira, L.R.S., Oliveira-Neto, O.B., Price, D., Fitches, E., Filho, E.X.F., Mehta, A., Gatehouse, J.A., and Drossi-De-Sa, M.F., A new chitinase-like xylanase inhibitor protein (XIP) from coffee (Coffea arabica) affects soybean Asian rust (Phakopsora pachyrhizi) spore germination, BMC Biotechnol., 2011, vol. 11, p. 14. doi 10.1186/1472-6750-11-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yeoh, K.A., Othman, A., Meon, S., Abdullah, F., and Ho, C.L., Sequence analysis and gene expression of putative oilpalm chitinase and chitinase-like proteins in response to colonization of Ganoderma boninense and Trichoderma harzianum, Mol. Biol. Rep., 2013, vol. 40, pp. 147–158.

    Article  CAS  PubMed  Google Scholar 

  31. Martínez-Caballero, S.L., Cano-Sánchez, P., Mares-Mejía, I., Díaz-Sánchez, A.G., Macías-Rubalcava, M.L., Hermoso, J.A., and Rodríguez-Romero, A., Comparative study of two gh19chitinase like proteins from Hevea brasiliensis, one exhibiting a novel carbohydrate-binding domain, FEBS J., 2014, vol. 281, pp. 4535–4554.

    PubMed  Google Scholar 

  32. Broekaert, W.F., van Parijs, J., Leyns, F., Joos, H., and Peumans, W.J., A chitin-binding lectin from stinging nettle rhizomes with antifungal properties, Science, 1989, vol. 245, pp. 1100–1102.

    Article  CAS  PubMed  Google Scholar 

  33. Cavada, B.S., Moreno, F.B., da Rocha, B.A., de Azevedo, W.F., Jr., Castellon, R.E.R., Goersch, G.V., Nagano, C.S., de Souza, E.P., Nascimento, K.S., Radis-Baptista, G., Delatorre, P., Leroy, Y., Toyama,M.H., Pinto, V.P., Sampaio, A.H., et al., cDNA cloning and 1.75°A crystal structure determination of PPL2, an endochitinase and N-acetylglucosamine-binding hemagglutinin from Parkia platycephala seeds, FEBS J., 2006, vol. 273, pp. 3962–3974.

    CAS  PubMed  Google Scholar 

  34. Wasano, N., Konno, K., Nakamura, M., Hirayama, C., Hattori, M., and Tateishi, K., A unique latex protein, MLX56, defends mulberry trees from insects, Phytochemistry, 2009, vol. 70, pp. 880–888.

    CAS  PubMed  Google Scholar 

  35. Kitajima, S., Kamei, K., Taketani, S., Yamaguchi, M., Kawai, F., Komatsu, A., and Inukai, Y., Two chitinase-like proteins abundantly accumulated in latex of mulberry show insecticidal activity, BMC Biochem., 2010, vol. 11, p. 6. doi 10.1186/1471-2091-11-6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Huang, T. and Duman, J.G., Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade Solanum dulcamara, Plant Mol. Biol., 2002, vol. 48, pp. 339–350.

    Article  CAS  PubMed  Google Scholar 

  37. Guo, X.L., Bai, L.R., Su, C.Q., Shi, L.R., and Wang, D.W., Molecular cloning and expression of drought-induced protein 3 (DIP3) encoding a class III chitinase in upland rice, Genet. Mol. Res., 2013, vol. 12, pp. 6860–6870.

    Article  CAS  PubMed  Google Scholar 

  38. Kim, M., Cho, H.S., Kim, D.M., Lee, J.H., and Pai, H.S., CHRK1, a chitinase-related receptor-like kinase, interacts with NtPUB4, an armadillo repeat protein, in tobacco, Biochim. Biophys. Acta, 2003, vol. 1651, pp. 50–59.

    CAS  PubMed  Google Scholar 

  39. Masuda, T., Zhao, G., and Mikami, B., Crystal structure of class III chitinase from pomegranate provides the insight into its metal storage capacity, Biosci. Biotechnol. Biochem., 2015, vol. 79, pp. 45–50.

    Article  CAS  PubMed  Google Scholar 

  40. Peumans, W.J., Proost, P., Swennen, R.L., and van Damme, E.J.M., The abundant class III chitinase homolog in young developing banana fruits behaves as a transient vegetative storage protein and most probably serves as an important supply of amino acids for the synthesis of ripening-associated proteins, Plant Physiol., 2002, vol. 130, pp. 1063–1072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Blee, K.A., Wheatley, E.R., Bonham, V.A., Mitchell, G.P., Robertson, D., Slabas, A.R., Burrell, M.M., Wojtaszek, P., and Bolwell, G.P., Proteomic analysis reveals a novel set of cell wall proteins in a transformed tobacco cell culture that synthesises secondary walls as determined by biochemical and morphological parameters, Planta, 2001, vol. 212, pp. 404–415.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, D., Hrmova, M., Wan, C.H., Wu, C., Balzen, J., Cai, W., Wang, J., Densmore, L.D., Fincher, G.B., Zhang, H., and Haigler, C.H., Members of a new group of chitinase-like genes are expressed preferentially in cotton cells with secondary walls, Plant Mol. Biol., 2004, vol. 54, pp. 353–372.

    Article  CAS  PubMed  Google Scholar 

  43. Sánchez-Rodríguez, C., Bauer, S., Hématy, K., Saxe, F., Ibáñez, A.B., Vodermaier, V., Konlechner, C., Sampathkumar, A., Rüggeberg, M., Aichinger, E., Neumetzler, L., Burgert, I., Somerville, C., Hauser, M.T., and Persson, S., Chitinase-like1/pom-pom1 and its homolog CTL2 are glucan-interacting proteins important for cellulose biosynthesis in Arabidopsis, Plant Cell, 2012, vol. 24, pp. 589–607.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tian, Y., Liu, W., Cai, J., Zhang, L.Y., Wong, K.B., Feddermann, N., Boller, T., Xie, Z.P., and Staehelin, C., The nodulation factor hydrolase of Medicago truncatula: characterization of an enzyme specifically cleaving rhizobial nodulation signals, Plant Physiol., 2013, vol. 163, pp. 1179–1190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goormachtig, S., van de Velde, W., Lievens, S., Verplancke, C., Herman, S., de Keyser, A., and Holsters, M., Srchi24, a chitinase homolog lacking an essential glutamic acid residue for hydrolytic activity, is induced during nodule development on Sesbania rostrata, Plant Physiol., 2001, vol. 127, pp. 78–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Domon, J.M., Neutelings, G., Roger, D., David, A., and David, H., A basic chitinase-like protein secreted by embryogenic tissues of Pinus caribaea acts on arabinogalactan proteins extracted from the same cell lines, J. Plant Physiol., 2000, vol. 156, pp. 33–39.

    Article  CAS  Google Scholar 

  47. Passarinho, P.A. and de Vries, S.C., Arabidopsis chitinases: a genomic survey, in The Arabidopsis Book, Somerville, C.R. and Meyerowitz, E.M., Eds., Rockville: Am. Soc. Plant Physiol., 2002, vol. 1, p. e0023. doi 10.1199/tab.002310.1199/tab.0023

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sancho, A.I., Faulds, C.B., Svensson, B., Bartolomé, B., Williamson, G., and Juge, N., Crossinhibitory activity of cereal protein inhibitors against a-amylases and xylanases, Biochim. Biophys. Acta, 2003, vol. 1650, pp. 136–144.

    Article  CAS  PubMed  Google Scholar 

  49. Juge, N., Payan, F., and Williamson, G., XIP-I, a xylanase inhibitor protein from wheat: a novel function, Biochim. Biophys. Acta, 2004, vol. 1696, pp. 203–211.

    CAS  Google Scholar 

  50. Hermans, C., Porco, S., Verbruggen, N., and Bush, D.R., Chitinase-like protein CTL1 plays a role in altering root system architecture in response to multiple environmental conditions, Plant Physiol., 2010, vol. 152, pp. 904–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hossain, M.A., Noh, H.N., Kim, K.I., Koh, E.J., Wi, S.G., Bae, H.J., Lee, H., and Hong, S.W., Mutation of the chitinase-like protein-encoding AtCTL2 gene enhances lignin accumulation in dark-grown Arabidopsis seedlings, J. Plant Physiol., 2010, vol. 167, pp. 650–658.

    Article  CAS  PubMed  Google Scholar 

  52. Lagaert, S., Pollet, A., Courtin, C.M., and Volckaert, G., ß-Xylosidases and a-L-arabinofurano sidases: accessory enzymes for arabinoxylan degradation, Biotechnol. Adv., 2014, vol. 32, pp. 316–332.

    Article  CAS  PubMed  Google Scholar 

  53. Koutaniemi, S. and Tenkanen, M., Action of three GH51 and one GH54 a-arabinofuranosidases on internally and terminally located arabinofuranosyl branches, J. Biotechnol., 2016, vol. 229, pp. 22–30.

    Article  CAS  PubMed  Google Scholar 

  54. Hövel, K., Shallom, D., Niefind, K., Belakhov, V., Shoham, G., Baasov, T., Shoham, Y., and Schomburg, D., Crystal structure and snapshots along the reaction pathway of a family 51 a-L-arabinofuranosidase, EMBO J., 2003, vol. 22, pp. 4922–4932.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Paës, G., Skov, L.K., O’Donohue, M.J., Rémond, C., Kastrup, J.S., Gajhede, M., and Mirza, O., The structure of the complex between a branched pentasaccharide and Thermobacillus xylanilyticus GH-51 arabinofuranosidase reveals xylan-binding determinants and induced fit, Biochemistry, 2008, vol. 47, pp. 7441–7451.

    Article  PubMed  Google Scholar 

  56. Souza, T.A., Santos, C.R., Souza, A.R., Oldiges, D.P., Ruller, R., Prade, R., Squina, F.M., and Murakami, M.T., Structure of a novel thermostable GH51 a-L-arabinofuranosidase from Thermotoga petrophila RKU-1, Protein Sci., 2011, vol. 20, pp. 1632–1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Im, D.H., Kimura, K., Hayasaka, F., Tanaka, T., Noguchi, M., Kobayashi, A., Shoda, S., Miyazaki, K., Wakagi, T., and Fushinobu, S., Crystal structures of glycoside hydrolase family 51 a-L-arabinofuranosidase from Thermotoga maritima, Biosci. Biotechnol. Biochem., 2012, vol. 76, pp. 423–428.

    Article  CAS  PubMed  Google Scholar 

  58. Minic, Z., Rihouey, C., Do, C.T., Lerouge, P., and Jouanin, L., Purification and characterization of enzymes exhibiting ß-D-xylosidase activities in stem tissues of Arabidopsis, Plant Physiol., 2004, vol. 135, pp. 867–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Montes, R.A.C., Ranocha, P., Martinez, Y., Minic, Z., Jouanin, L., Marquis, M., Saulnier, L., Fulton, L.M., Cobbett, C.S., Bitton, F., Renou, J.P., Jauneau, A., and Goffner, D., Cell wall modifications in arabidopsis plants with altered a-L-arabinofuranosidase activity, Plant Physiol., 2008, vol. 147, pp. 63–77.

    Article  CAS  Google Scholar 

  60. Ichinose, H., Nishikubo, N., Demura, T., and Kaneko, S., Characterization of a-L-arabinofuranosidase related to the secondary cell walls formation in Arabidopsis thaliana, Plant Biotechnol., 2010, vol. 27, pp. 259–266.

    Article  CAS  Google Scholar 

  61. Lee, R.C., Burton, R.A., Hrmova, M., and Fincher, G.B., Barley arabinoxylan arabinofuranohydrolases: purification, characterization and determination of primary structures from cDNA clones, Biochem. J., 2001, vol. 356, pp. 181–189.

    CAS  PubMed  Google Scholar 

  62. Ferré, H., Broberg, A., Duus, J.O., and Thomsen, K.K., A novel type of arabinoxylan arabinofuranohydrolase isolated from germinated barley. Analysis of substrate preference and specificity by nano-probe NMR, Eur. J. Biochem., 2000, vol. 267, pp. 6633–6641.

    Article  PubMed  Google Scholar 

  63. Laidlaw, H.K., Lahnstein, J., Burton, R.A., Fincher, G.B., and Jobling, S.A., Analysis of the arabinoxylan arabinofuranohydrolase gene family in barley does not support their involvement in the remodelling of endosperm cell walls during development, J. Exp. Bot., 2012, vol. 63, pp. 3031–3045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Andriotis, V.M.E., Rejzek, M., Barclay, E., Rugen, M.D., Field, R.A., and Smith, A.M., Cell wall degradation is required for normal starch mobilisation in barley endosperm, Sci. Rep., 2016, vol. 6, p. 33215. doi 10.1038/srep33215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Davidson, R.M., Gowda, M., Moghe, G., Lin, H., Vaillancourt, B., Shiu, S.H., Jiang, N., and Buell, R.C., Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution, Plant J. Cell Mol. Biol., 2012, vol. 71, pp. 492–502.

    CAS  Google Scholar 

  66. Zhang, Y.C., Liao, J.Y., Li, Z.Y., Yu, Y., Zhang, J.P., Li, Q.F., Qu, L.H., Shu, W.S., and Chen, Y.Q., Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice, Genome Biol., 2014, vol. 15, p. 512. doi 10.1186/s13059-014-0512-1

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sumiyoshi, M., Nakamura, A., Nakamura, H., Hakata, M., Ichikawa, H., Hirochika, H., Ishii, T., Satoh, S., and Iwai, H., Increase in cellulose accumulation and improvement of saccharification by overexpression of arabinofuranosidase in rice, PLoS One, vol. 8, p. e78269. doi 10.1371/journal.pone.0078269

  68. Gramene Orthologous Group 16076. http://pogs.uoregon. edu/

  69. Tomcal, M., Stiffler, N., and Barkan, A., POGs 2: a web portal to facilitate cross-species inferences about protein architecture and function in plants, PLoS One, vol. 8, p. e82569. doi 10.1371/journal.pone.0082569

  70. Kozlova, L.V., Mikshina, P.V., and Gorshkova, T.A., Glucuronoarabinoxylan extracted by treatment with endoxylanase from different zones of growing maize root, Biochemistry (Moscow), 2012, vol. 77, no. 4, pp. 395–403.

    Article  CAS  Google Scholar 

  71. https://www.maizegdb.org/

  72. Sekhon, R.S., Lin, H., Childs, K.L., Hansey, C.N., Buell, C.R., de Leon, N., and Kaeppler, S.M., Genome-wide atlas of transcription during maize development, Plant J., 2011, vol. 66, pp. 553–563.

    Article  CAS  PubMed  Google Scholar 

  73. Stelpflug, S.C., Sekhon, R.S., Vaillancourt, B., Hirsch, C.N., Buell, C.R., de Leon, N., and Kaeppler, S.M., An expanded maize gene expression atlas based on RNA-sequencing and its use to explore root development, Plant Genome, 2015. doi 10.3835/plantgenome2015.3804.0025

    Google Scholar 

  74. Walley, J.W., Sartor, R.C., Shen, Z., Schmitz, R.J., Wu, K.J., Urich, M.A., Nery J.R., Smith, L.G., Schnable, J.C., Ecker, J.R., and Briggs, S.P., Integration of omic networks in a developmental atlas of maize, Science, 2016, vol. 353, pp. 814–818.

    Article  CAS  PubMed  Google Scholar 

  75. https://phytozome.jgi.doe.gov/pz/portal.html

  76. Mutter, M., Colquhoun, I.J., Beldman, G., Schols,H.A., Bakx, E.J., and Voragen, A.G.J., Characterization of recombinant rhamnogalacturonan a-Lrhamnopyranosyl-(1,4)-a-D-galactopyranosyl uronide lyase from Aspergillus aculeatus. An enzyme that fragments rhamnogalacturaonan I regions of pectin, Plant Physiol., 1998, vol. 117, pp. 141–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pagès, S., Valette, O., Abdou, L., Bélaïch, A., and Bélaïch, J.P., A rhamnogalacturonan lyase in the Clostridium cellulolyticum cellulosome, J. Bacteriol., 2003, vol. 185, pp. 4727–4733.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fry, S.C., Primary cell wall metabolism: tracking the careers of wall polymers in living plant cells, New Phytol., 2004, vol. 161, pp. 641–675.

    Article  CAS  Google Scholar 

  79. Molina-Hidalgo, F.J., Franco, A.R., Villatoro, C., Medina-Puche, L., Mercado, J.A., Hidalgo, M.A., Monfort, A., Caballero, J.L., Muñoz-Blanco, J., and Blanco-Portales, R., The strawberry (Fragaria × ananassa) fruit-specific rhamnogalacturonate lyase 1 (FaRGLyase1) gene encodes an enzyme involved in the degradation of cell-wall middle lamellae, J. Exp. Bot., 2013, vol. 64, pp. 1471–1483.

    Article  CAS  PubMed  Google Scholar 

  80. Iqbal, A., Miller, J.G., Murray, L., Sadler, I.H., and Fry, S.C., The pectic disaccharides lepidimoic acid and ß-D-xylopyranosyl-(1 → 3)-D-galacturonic acid occur in cress-seed exudate but lack allelochemical activity, Ann. Bot., 2016, vol. 117, pp. 607–623.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hasegawa, K., Mizutani, J., Kosemura, S., and Yamamura, S., Isolation and identification of lepidimoide, a new allelopathic substance from mucilage of germinated cress seeds, Plant Physiol., 1992, vol. 100, pp. 1059–1061.

    CAS  PubMed  Google Scholar 

  82. Yamada, K., Anai, T., and Hasegawa, K., Lepidimoide, an allelopathic substance in the exudates from germinated seeds, Phytochemistry, 1995, vol. 39, pp. 1031–1032.

    CAS  Google Scholar 

  83. Yamada, K., Kosemura, S., Yamamura, S., and Hasegawa, K., Exudation of an allelopathic substance lepidimoide from seeds during germination, Plant Growth Regul., 1997, vol. 22, pp. 189–192.

    Article  CAS  Google Scholar 

  84. Naran, R., Pierce, M.L., and Mort, A.J., Detection and identification of rhamnogalacturonan lyase activity in intercellular spaces of expanding cotton cotyledons, Plant J., 2007, vol. 50, pp. 95–107.

    Article  CAS  PubMed  Google Scholar 

  85. Haudry, A., Platts, A.E., Vello, E., Hoen, D.R., Leclercq, M., Williamson, R.J., Forczek, E., Joly-Lopez, Z., Steffen, J.G., Hazzouri, K.M., Dewar, K., Stinchcombe, J.R., Schoen, D.J., Wang, X., Schmutz, J., et al., An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions, Nat. Genet., 2013, vol. 45, pp. 891–898.

    Article  CAS  PubMed  Google Scholar 

  86. Pearce, S., Huttly, A.K., Prosser, I.M., Li, Y.D., Vaughan, S.P., Gallova, B., Patil, A., Coghill, J.A., Dubcovsky, J., Hedden, P., and Phillips, A.L., Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family, BMC Plant Biol., 2015, vol. 15, p. 130. doi 10.1186/s12870-015-0520-7

    Article  PubMed  PubMed Central  Google Scholar 

  87. Shin, J.H., Vaughn, J.N., Abdel-Haleem, H., Chavarro, C., Abernathy, B., Kim, K.D., Jackson, S.A., and Li, Z., Transcriptomic changes due to water deficit define a general soybean response and accession-specific pathways for drought avoidance, BMC Plant Biol., 2015, vol. 15, p. 26. doi 10.1186/s12870-015-0422-8

    Article  PubMed  PubMed Central  Google Scholar 

  88. Voiniciuc, C., Schmidt, M.H., Berger, A., Yang, B., Ebert, B., Scheller, H.V., North, H.M., Usadel, B., and Gunl, M., MUCILAGE-RELATED10 produces galactoglucomannan that maintains pectin and cellulose architecture in Arabidopsis seed mucilage, Plant Physiol., 2015, vol. 169, pp. 403–420.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Goda, H., Sawa, S., Asami, T., Fujioka, S., Shimada, Y., and Yoshida, S., Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis, Plant Physiol., 2004, vol. 134, pp. 1555–1573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Böhmer, M. and Schroeder, J.I., Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells, Plant J. Cell Mol. Biol., 2011, vol. 67, pp. 105–118.

    Article  Google Scholar 

  91. Buuck, R., Mapping genomes: a novel gene family in plants may encode pectin-modifying proteins, J. Purdue Undergraduate Res., 2012, vol. 2, no. 1, pp. 93–93. doi 10.5703/1288284314713

    Google Scholar 

  92. Brusslan, J.A., Bonora, G., Rus-Canterbury, A.M., Tariq, F., Jaroszewicz, A., and Pellegrini, M., A genome-wide chronological study of gene expression and two histone modifications, H3K4me3 and H3K9ac, during developmental leaf senescence, Plant Physiol., 2015, vol. 168, pp. 1246–1261.

    CAS  PubMed  Google Scholar 

  93. Kim, J., Sundaresan, S., Philosoph-Hadas, S., Yang, R., Meir, S., and Tucker, M.L., Examination of the abscission-associated transcriptomes for soybean, tomato, and Arabidopsis highlights the conserved biosynthesis of an extensible extracellular matrix and boundary layer, Front. Plant Sci., 2015, vol. 6, p. 1109. doi 10.3389/fpls.2015.01109

    PubMed  Google Scholar 

  94. Aghamirzaie, D., Nabiyouni, M., Fang, Y., Klumas, C., Heath, L.S., Grene, R., and Collakova, E., Changes in RNA splicing in developing soybean (Glycine max) embryos, Biology, 2013, vol. 2, pp. 1311–1337.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Roach, M.J. and Deyholos, M.K., Microarray analysis of developing flax hypocotyls identifies novel transcripts correlated with specific stages of phloem fiber differentiation, Ann. Bot., 2008, vol. 102, pp. 317–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Roach, M.J. and Deyholos, M.K., Microarray analysis of flax (Linum usitatissimum L.) stems identifies transcripts enriched in fibre-bearing phloem tissues, Mol. Genet. Genomics, 2007, vol. 278, pp. 149–165.

    Article  CAS  PubMed  Google Scholar 

  97. Hobson, N., Roach, M.J., and Deyholos, M.K., Gene expression in tension wood and phloem fibres, Russ. J. Plant Physiol., 2010, vol. 57, pp. 321–327.

    Article  CAS  Google Scholar 

  98. Jensen, M.H., Otten, H., Christensen, U., Borchert, T.V., Christensen, L.L.H., Larsen, S., and Leggio, L.L., Structural and biochemical studies elucidate the mechanism of rhamnogalacturonan lyase from Aspergillus aculeatus, J. Mol. Biol., 2010, vol. 404, pp. 100–111.

    Article  CAS  PubMed  Google Scholar 

  99. Gorshkova, T.A., Kletochnaya stenka kak dinamichnaya struktura (Plant Cell Wall as a Dynamic Structure), Moscow: Nauka, 2007.

    Google Scholar 

  100. Panchy, N., Lehti-Shiu, M., and Shiu, S.H., Evolution of gene duplication in plants, Plant Physiol., 2016, vol. 171, pp. 2294–2316.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Bishop, J.G., Dean, A.M., and Mitchell-Olds, T., Rapid evolution in plant chitinases: molecular targets of selection in plant-pathogen coevolution, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 5322–5327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kierzkowski, D., Nakayama, N., Routier-Kierzkowska, A-L., Weber, A., Bayer, E., Schorderet, M., Reinhardt, D., Kuhlemeier, C., and Smith, R.S., Elastic domains regulate growth and organogenesis in the plant shoot apical meristem, Science, 2012, vol. 335, pp. 1096–1099.

    Article  CAS  PubMed  Google Scholar 

  103. Yakubov, G.E., Bonilla, M.R., Chen, H., Doblin,M.S., Bacic, A., Gidley, M.J., and Stokes, J.R., Mapping nano-scale mechanical heterogeneity of primary plant cell walls, J. Exp. Bot., 2016, vol. 67, pp. 2799–2816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, T., Park, Y.B., Caporini, M.A., Rosay, M., Zhong, L., Cosgrove, D.J., and Hong, M., Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. 16444–16449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Gorshkova.

Additional information

Original Russian Text © L.V. Kozlova, N.E. Mokshina, A.R. Nazipova, T.A. Gorshkova, 2017, published in Fiziologiya Rastenii, 2017, Vol. 64, No. 6, pp. 418–432.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozlova, L.V., Mokshina, N.E., Nazipova, A.R. et al. Systemic use of “limping” enzymes in plant cell walls. Russ J Plant Physiol 64, 808–821 (2017). https://doi.org/10.1134/S102144371706005X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144371706005X

Keywords

Navigation