Skip to main content
Log in

Molecular structure, spectroscopic properties and DFT calculations of 2-(methylthio)nicotinic acid

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The analyses of possible conformations, molecular structures, vibrational and electronic properties of 2-(methylthio)nicotinic acid molecule, C7H7NO2S, with the synonym 2-(methylsulfanyl)nicotinic acid have been first presented theoretically. At the same time, FT-IR and micro-Raman spectra of 2-(methylthio)nicotinic acid were recorded in the regions 400–4000 cm−1 and 100–4000 cm−1, respectively. In our calculations, the DFTB3LYP method with 6–311G(d, p) basis set was used to have the structural and spectroscopic data about the mentioned molecule in the ground state and the results obtained were compared with experimental values. Furthermore, gauge invariant atomic orbital (GIAO) 1H and 13C NMR chemical shifts in different solvents, UV-vis TD-DFT calculations, the highest occupied molecular orbitals (HOMO-2, HOMO-1, HOMO), lowest unoccupied molecular orbital (LUMO), molecular electrostatic potantial (MEP) surface, atomic charges and thermodynamic properties of molecule have been theoretically verified and simulated at the mentioned level. The energetic behavior of title molecule in different solvent media was investigated by using DFT/B3LYP method with 6–311G(d, p) basis set in terms of integral equation formalism polarizable continuum model (IEFPCM). In addition, the calculated infrared intensities, Raman activities, reduce masses and force constants of the compound under study have been also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Miklos, P. Segl’a, M. Palicova, M. Kopcova, M. Melnik, M. Valko, T. Glowiak, M. Korabik, and J. Mrozinski, Polyhedron 20, 1867 (2001).

    Article  Google Scholar 

  2. P. Segl’a, J. Miklovic, D. Miklos, V. Mrazova, L. Krupkova, D. Hudecova, Z. Ondrusova, J. Svorec, J. Moncol, and M. Melnik, Transition Met. Chem. 34, 15 (2009).

    Article  Google Scholar 

  3. S. Gao, J. Liu, J. Huo, Z. Sun, J. Gao, and S. Weng Ng, Acta Cryst. C 60, m363 (2004).

    Article  Google Scholar 

  4. M. Karabacak, M. Čınar, and M. Kurt, J. Mol. Struct. 885, 28 (2008).

    Article  ADS  Google Scholar 

  5. P. Koczon, T. Hrynaszkiewicz, R. Swislocka, M. Samsonowicz, and W. Lewandowski, Vibrational Spectrosc. 33, 215 (2003).

    Article  Google Scholar 

  6. R. Swislocka, E. Regulska, M. Samsonowicz, and W. Lewandowski, Polyhedron 28, 2556 (2009).

    Article  Google Scholar 

  7. N. K. Singh and D. K. Singh, Synth. React. Inorg. Met.-Org. Chem. 32, 203 (2002).

    Article  Google Scholar 

  8. P. Segl’a, J. Miklovic, D. Miklos, J. Titis, R. Herchel, J. Moncol, B Kalinakova, D. Hudecova, V. Mrazova, T. Lis, and M. Melnik, Transition Met. Chem. 33, 967 (2008).

    Article  Google Scholar 

  9. B. Dudova, D. Hudecova, R. Pokorny, M. Mikulasova, M. Palicova, P. Segl’a, and M. Melnik, Folia Microbiol. 46, 379 (2001).

    Article  Google Scholar 

  10. S. Basavoju, C. M. Reddy, and G. R. Desiraju, Acta Cryst. E 61, 822 (2005).

    Article  Google Scholar 

  11. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, i J.V.Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03. Revision D. 01 (Gaussian Inc. Wallingford, 2004).

    Google Scholar 

  12. A. Frisch, A. B. Nielson, and A. J. Holder, GAUSS-VIEW User Manual (Gaussian Inc. Wallingford, 2003).

    Google Scholar 

  13. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  14. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  15. J. B. Foresman and E. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc. Pittsburgh, 1993).

    Google Scholar 

  16. J. P. Merrick, D. Moran, and L. Radom, J. Phys. Chem. A 111, 11683 (2007).

    Article  Google Scholar 

  17. M. H. Jamr’oz, Vibrational Energy Distribition Analysis (VEDA4, Warsaw, 2004).

    Google Scholar 

  18. R. Ditchfield, Mol. Phys. 27, 789 (1974).

    Article  ADS  Google Scholar 

  19. F. London, J. Phys. Radium 8, 397 (1937).

    Article  Google Scholar 

  20. K. Wolinski, J. F. Himton, and P. Pulay, J. Am. Chem. Soc. 112, 8251 (1990).

    Article  Google Scholar 

  21. A. Vlcek, Jr. and S. Zalis, Coord. Chem. Rev. 251, 258 (2007).

    Article  Google Scholar 

  22. B. H. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, England, 2004).

    Book  Google Scholar 

  23. R. M. Silverstein and F. X. Webster, Spectroscopic Identification of Organic Compounds (Wiley, New York, 1998).

    Google Scholar 

  24. G. Varsanyi, Vibrational Spectra of Benzene Derivatives (Academic, New York, 1969).

    Google Scholar 

  25. D. L. Pavia, G. M. Lampman, G. S. Kriz, and J. R. Vyvyan, Introduction to Spectroscopy (BROOKS/COLE CENGAGE, Learing, 2009).

    Google Scholar 

  26. L. J. Bellamy, The Infrared Spectra of Complex Molecules (Wiley, New York, 1975).

    Book  Google Scholar 

  27. N. B. Colthup, L. H. Daly, and E. Wiberley, Introduction to Infrared and Raman Spectroscopy (Academic, New York, 1964).

    Google Scholar 

  28. L. G. Wade, Jr., Organic Chemistry (Prentice Hall, New Jersey, 2006).

    Google Scholar 

  29. M. K. Rofouei, E. Fereyduni, N. Sohrabi, M. Shamsipur, J. A. Gharamaleki, and N. Sundaraganesan, Spectrochim. Acta Part A 78, 88 (2011).

    Article  ADS  Google Scholar 

  30. V. Krishnakumar, G. Keresztury, T. Sundius, and R. Ramasamy, J. Mol. Struct. 702, 9 (2004).

    Article  ADS  Google Scholar 

  31. R. J. Anderson, D. J. Bendell, and P. W. Groundwater, Organic Spectroscopic Analysis (The Royal Society of Chemistry, Sanderland, UK, 2004).

    Google Scholar 

  32. K. Fukui, Science 218, 747 (1982).

    Article  ADS  Google Scholar 

  33. A. Pirnau, V. Chi, O. Oniga, N. Leopold, L. Szabo, M. Baias, and O. Cozar, Vibrational Spectrosc. 48, 289 (2008).

    Article  Google Scholar 

  34. J. S. Murray and K. Sen, Molecular Electrostatic Potentials Concepts and Applications (Elsevier, Amsterdam, 1996).

    Google Scholar 

  35. R. S. Mulliken, J. Chem. Phys. 23, 1833 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Semiha Bahçeli.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gökce, H., Bahçeli, S. Molecular structure, spectroscopic properties and DFT calculations of 2-(methylthio)nicotinic acid. Opt. Spectrosc. 115, 469–483 (2013). https://doi.org/10.1134/S0030400X13100044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X13100044

Keywords

Navigation