Skip to main content
Log in

Influence of auxins in direct in vitro morphogenesis of Euphorbia nivulia, a lectinaceous medicinal plant

  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Summary

Somatic embryo (bipolar) or shoot (monopolar) morphogenesis in mesophyll cells of Euphorbia nivulia Buch.-Ham in vitro was dependent on the type of auxin supplementing Murashige and Skoog (MS) medium containing benzyladenine. Direct in vitro morphogenesis, i.e., organogenesis, and somatic embryogenesis were significantly influenced by seasonal growth of the donor plant, explant position (proximal, mid, and distal), and light. Explants collected in march/April were superior to July/August material. Proximal explants underwent morphogenesis more readily than mid- and tip-derived explants. Incubation in the light favored morphogenesis while darkness was inhibitory. Kinetin (Kn) was also inhibitory to morphogenesis. MS medium enriched with different levels of N6-benzyladenine (BA) alone, or in combination with α-naphthaleneacetic acid (NAA) or indole-3-acetic acid (IAA), induced adventitious shoots directly. Explants collected in March/April cultured on medium with 13.3 μM BA and 2.69 μM NAA developed the highest number of shoots, a mean of 15.2 shoots per proximal explant. Developed shoots rooted the best on half-strength MS medium with 2.46 μM indole-3-butyric acid, which developed a mean of 5.2 roots per shoot. Rooted healthy shoots could be transplanted to small pots, with an 80% survival rate. Addition of 2,4-dichlorophenoxyacetic acid (2.4-D) to BA-supplemented medium was obligatory to develop somatic embryos. MS medium containing 2.26 μM 2,4-D and 4.44 μM BA induced a mean of 44.8 somatic embryos per proximal explant. The embryos passed through distinct stages of embryogenesis, namely globular, heart, torpedo, and early cotyledonary. The embryos (88%) underwent maturation on half-strength MS medium with 2.89 μM gibberellic acid (GA3), and its subsequent transfer on half-strength MS basal medium in light conditions facilitated 80% conversion of embryos to plantlets. Direct shoots or embryos were originated from the mesophyll cells. Somatic embryo development was concurrent with the independent origin of vasculature in the bulbous basal portion. The survival rate of embryo-derived plants was 90%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ammirato, P. V.; Steward, F. C. Some effects of environment on the development of embryos from cultured free cells. Bot. Gaz. 132:149–158; 1971.

    Article  Google Scholar 

  • Anthony, J. M.; Senaratna, T.; Dixon, K. W.; Sivasithamparam, K. Somatic embryogenesis for mass propagation of Ericaccac—a case study with Leucopogon verticillatus. Plant Cell Tiss. Organ Cult. 76:175–178; 2004.

    Article  Google Scholar 

  • Charriere, F.; Hahne, G. Induction of embryogenesis versus caulogenesis on in vitro cultured sunflower (Helianthus annuum L.) immature zygotic embryo: role of plant growth regulators. Plant Sci. 137:63–71; 1998.

    Article  CAS  Google Scholar 

  • Choi, J. Y.; Kim, H. J.; Lee, C. H.; Bae, J. M.; Chung, Y. S.; Shin, J. S.; Hyung, N. I. Efficient and simple plant regeneration via organogenesis from leaf segment cultures of persimmon (Diospyros kaki Thumb.). In Vitro Cell. Dev. Biol. Plant 37:274–279; 2001.

    Article  CAS  Google Scholar 

  • Choi, Y. E.; Ko, S. K.; Lee, K. S.; Yoon, E. S. Production of plantlets of Eleutherococcus sessiliflorus via somatic embryogenesis and successful transfer to soil. Plant Cell Tiss. Organ Cult. 69:35–40; 2002.

    Article  Google Scholar 

  • D'Onofrio, C.; Morini, S.; Bellocchi, G. Effect of light quality on somatic embryogenesis of quince leaves. Plant Cell Tiss. Organ Cult. 53:91–98; 1998.

    Article  Google Scholar 

  • Das, G.; Rout, G. R. Direct plant regeneration from leaf explants of Plumbago species. Plant Cell Tiss. Organ Cult. 68:311–314; 2002.

    Article  CAS  Google Scholar 

  • de Klerk, G.-J.; Arnholdt-Schmitt, B.; Lieberei, R.; Neumann, K. H. Regeneration of roots, shoots and embryos: physiological, biochemical and molecular aspects. Biol. Plant. 39:53–66; 1997.

    Article  Google Scholar 

  • Duncan, D. B. Multiple range and multiple F-tests. Biometrics 11:1–42; 1955.

    Article  Google Scholar 

  • Gaspar, T.; Kevers, C.; Penel, C.; Greppin, H.; Reid, D. M.; Thorpe, T. A. Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell. Dev. Biol. Plant 32:272–289; 1996.

    CAS  Google Scholar 

  • Haccius, B.; Lakshman, K. K. Adventiv-embryonen aus Nicotiana kallus, der bei hohen Lichtintensitaten kultiviert wurde. Planta 65:102–104; 1965.

    Article  Google Scholar 

  • Hamama, L.; Baaziz, M.; Letouze, R. Somatic embryogenesis and plant regeneration from leaf tissue of jojoba. Plant Cell Tiss. Organ Cult. 65:109–113; 2001.

    Article  CAS  Google Scholar 

  • Inamdar, S. R.; Madaiah, M. Biochemical activities in the latex of Euphorbia nivulia Buch.-Ham. Indian J. Plant Physiol. 33:58–60; 1990.

    CAS  Google Scholar 

  • Kirtikar, K. R.; Basu, B. D. Indian medicinal plants, vol. III. New Delhi: M/s Bishen Singh Mahendrapal Singh; 1975:2203–2204.

    Google Scholar 

  • Larkin, P. J.; Scowcroft, W. somaclonal variation—a novel source of variability from cell cultures for plant improvement. Theor. Appl. Genet. 60:197–214; 1981.

    Article  Google Scholar 

  • Li, W.; Gao, H.-H.; Lu, R.; Guo, G.-Q.; Zheng, G.-C. Direct plantlet regeneration from tuber of Stachys sieboldii. Plant Cell Tiss. Organ Cult. 71:259–262; 2002.

    Article  CAS  Google Scholar 

  • Liao, Z.; Chen, M.; Tan, F.; Sun, X.; Tang, K. Micropropagation of endangered Chinese aloe. Plant Cell Tiss. Organ Cult. 76:83–86; 2004.

    Article  CAS  Google Scholar 

  • Litz, R. E. Somatic embryogenesis from cultured leaf explants of the tropical tree Euphorbia longan Stend. J. Plant Physiol. 132:90–193; 1988.

    Google Scholar 

  • Lo, K. H.; Giles, K.; Sawhney, V. K. Histological changes associated with acquisition of competence for shoot regeneration in leaf discs of Saintpaulia ionantha x confusa hybrid (African violet) cultured in vitro. Plant Cell Rep. 16:421–425; 1997.

    CAS  Google Scholar 

  • Ma, G.; Xu, Q. Induction of somatic embryogenesis and adventitious shoots from immature leaves of casava. Plant Cell Tiss. Organ. Cult. 70:281–288; 2002.

    Article  CAS  Google Scholar 

  • Manrique, S.-L.; Roca, W. Effect of photoperiod and culture medium in somatic embryogenesis and the histological analysis of the process in cassava, Manihot esculenta Crantz. Acta Agro. 37:7–18; 1987.

    Google Scholar 

  • Martin, K. P.; Joseph, D.; Madassery, M.; Philip, V. J. Direct shoot regeneration from lamina explants of two commercial cut flower cultivars of Anthurium andracanum Hort. In Vitro Cell. Dev. Biol. Plant 39:500–504; 2003.

    Article  Google Scholar 

  • Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

    Article  CAS  Google Scholar 

  • Paek, K. Y.; Murthy, H. N. High frequency of bulblet regeneration from bulb scale section of Fritillaria thunbergi. Plant Cell Tiss. Organ Cult. 68:247–252; 2002.

    Article  CAS  Google Scholar 

  • Pawar, P. K.; Pawar, C. S.; Narkhede, B. A.; Teli, N. P.; Bhalsing, S. R.; Maheswari, V. L. A technique for rapid micropropagation of Solanum surattense Burn. f. Indian J. Biotechnol. 1:201–204; 2002.

    CAS  Google Scholar 

  • Pedroso, M. C.; Pais, M. S. Direct embryo formation in leaves of Camellia japonica L. Plant Cell Rep. 12:639–643; 1993.

    Article  Google Scholar 

  • Rai, V. R.; McComb, J. Direct somatic embryogenesis from mature embryos of sandalwood. Plant Cell Tiss. Organ Cult. 69:65–70; 2002.

    Article  CAS  Google Scholar 

  • Siril, E. A.; Dhar, U. Micropropagation of mature Chinese tallow tree (Sapium sebiferum Roxb.). Plant Cell Rep. 16:637–640; 1997.

    CAS  Google Scholar 

  • Skoog, F.; Miller, C. O. Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symp. Soc. Exp. Biol. 11:118–130; 1957.

    Google Scholar 

  • Stajner, N.; Bohanec, B.; Jakse, M. In vitro propagation of Asparagus maritimus—a rare Mediterranean salt-resistant species. Plant Cell Tiss. Organ Cult. 70:269–274; 2002.

    Article  CAS  Google Scholar 

  • Tiwari, S. K.; Tiwari, K. P.; Siril, E. A. An improved micropropagation protocol for teak. Plant Cell Tiss. Organ Cult. 71:1–6; 2002.

    Article  CAS  Google Scholar 

  • van Eck, J. M.; Kitto, S. L. Regeneration of peppermint and orangemint from leaf disks. Plant Cell Tiss. Organ Cult. 30:41–49; 1992.

    Article  Google Scholar 

  • Verhagen, S. A.; Wann, S. R. Norway spruce somatic embryogenesis: high-frequency initiation from light-cultured mature embryos. Plant Cell Tiss. Organ Cult 16:103–111; 1989.

    Article  Google Scholar 

  • Welander, M. Plant regeneration from leaf and stem segments of shoots raised in vitro from mature apple trees. J. Plant Physiol. 132:738–744; 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, K.P., Sunandakumari, C., Chithra, M. et al. Influence of auxins in direct in vitro morphogenesis of Euphorbia nivulia, a lectinaceous medicinal plant. In Vitro Cell.Dev.Biol.-Plant 41, 314–319 (2005). https://doi.org/10.1079/IVP2004615

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1079/IVP2004615

Key words

Navigation