Skip to main content
Log in

Marcus model-based analysis of the photo-quenching mechanism of a boronic acid fluorophore: water concentration dependence of electron transfer rate

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The photo-quenching mechanism of 2-(4-phenylboronic acid)-1-pyrenemethamide (C1-APB), which has potential application as a saccharide-recognition sensor, was investigated. By performing temperature-dependent time-resolved photoluminescence measurements, we determined the mechanism responsible for the photo-quenching properties of C1-APB to be a photoinduced electron transfer (PET). Moreover, the dependence of the electron transfer rate (kPET) on the solvent water concentration was explored in detail, and it was found that kPET increased by many orders of magnitude with increasing water concentrations. This phenomenon was analyzed using the Marcus model, in which the electron transfer can be represented by a potential diagram involving the potential barrier (ΔGa) and frequency factor (A). With the aid of temperature-dependent measurements, the contribution of ΔGa and A to the increase in kPET was successfully analyzed independently, which allowed us to discuss the effect of water molecule orientation and change in molecular structure of C1-APB. The temperature-dependence measurements performed in this study offer a powerful research tool for investigating the PET process, and will contribute to the development of molecular recognition fluorescent sensors.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

PL decay curves at different water concentrations, obtained relaxation times and the temperature dependence of kPET are available in Supplemenary Information.

References

  1. T.D. James, K.R.A.S. Sandanayake, S. Shinkai, Angew. Chem. Int. Ed. Engl. 1996, 35 (1910)

    Google Scholar 

  2. J.P. Lorand, J.O. Edwards, J. Org. Chem. 24, 769 (1959)

    Article  CAS  Google Scholar 

  3. Z. Bian, A. Liu, Y. Li, G. Fang, Q. Yao, G. Zhang, Z. Wu, Analyst 145, 719 (2020)

    Article  CAS  Google Scholar 

  4. T. Kubo, K. Kanemori, R. Kusumoto, T. Kawai, K. Sueyoshi, T. Naito, K. Otsuka, Anal. Chem. 87, 5068 (2015)

    Article  CAS  Google Scholar 

  5. K. Sato, M. Takahashi, M. Ito, E. Abe, J. Anzai, J. Mater. Chem. B 3, 7796 (2015)

    Article  CAS  Google Scholar 

  6. K. Sugita, Y. Tsuchido, C. Kasahara, M.A. Casulli, S. Fujiwara, T. Hashimoto, T. Hayashita, Front. Chem. 7, 806 (2019)

    Article  CAS  Google Scholar 

  7. Y. Tsuchido, R. Sato, N. Nodomi, T. Hashimoto, K. Akiyoshi, T. Hayashita, Langmuir 32, 10761 (2016)

    Article  CAS  Google Scholar 

  8. Y. Tsuchido, S. Fujiwara, T. Hashimoto, T. Hayashita, Chem. Pharm. Bull. 65, 318 (2017)

    Article  CAS  Google Scholar 

  9. Y. Suzuki, A. Ikeda, K. Ohno, T. Fujihara, T. Sugaya, K. Ishihara, J. Org. Chem. 85, 9680 (2020)

    Article  CAS  Google Scholar 

  10. X. Wu, X.-X. Chen, Y.-B. Jiang, Analyst 142, 1403 (2017)

    Article  CAS  Google Scholar 

  11. X. Sun, T.D. James, Chem. Rev. 115, 8001 (2015)

    Article  CAS  Google Scholar 

  12. Y. Tsuchido, R. Horiuchi, T. Hashimoto, K. Ishihara, N. Kanzawa, T. Hayashita, Anal. Chem. 91, 3929 (2019)

    Article  CAS  Google Scholar 

  13. A. Mikagi, K. Manita, A. Yoyasu, Y. Tsuchido, N. Kanzawa, T. Hashimoto, T. Hayashita, Molecules 27, 256 (2022)

    Article  CAS  Google Scholar 

  14. A.-J. Tong, A. Yamauchi, T. Hayashita, Z.-Y. Zhang, B.D. Smith, N. Teramae, Anal. Chem. 73, 1530 (2001)

    Article  CAS  Google Scholar 

  15. A. Yamauchi, I. Suzuki, T. Hayashita, in Glucose Sensing, Topics in Fluorescence Spectroscopy, vol. 11, ed. by C.D. Geddes, J.R. Lakowicz (Springer, New York, 2006), p.237

    Google Scholar 

  16. Y. Tsuchido, S. Kojima, K. Sugita, S. Fujiwara, T. Hashimoto, T. Hayashita, Anal. Sci. 37, 721 (2021)

    Article  CAS  Google Scholar 

  17. H. Kano, D. Tanoue, H. Shimaoka, K. Katano, T. Hashimoto, H. Kunugita, S. Nanbu, T. Hayashita, K. Ema, Anal. Sci. 30, 643 (2014)

    Article  CAS  Google Scholar 

  18. C. Shimpuku, R. Ozawa, A. Sasaki, F. Sato, T. Hashimoto, A. Yamauchi, I. Suzuki, T. Hayashita, Chem. Commun. 2009, 1709 (2009)

    Article  Google Scholar 

  19. T. Hashimoto, M. Kumai, M. Maeda, K. Miyoshi, Y. Tsuchido, S. Fujiwara, T. Hayashita, Front. Chem. Sci. Eng. 14, 53 (2020)

    Article  CAS  Google Scholar 

  20. K. Sugita, Y. Suzuki, Y. Tsuchido, S. Fujiwara, T. Hashimoto, T. Hayashita, RSC Adv. 12, 20259 (2022)

    Article  CAS  Google Scholar 

  21. H. Cao, T. McGill, M.D. Heagy, J. Org. Chem. 69, 2959 (2004)

    Article  CAS  Google Scholar 

  22. W. Ni, G. Kaur, G. Springsteen, B. Wang, S. Franzen, Bioorg. Chem. 32, 571 (2004)

    Article  CAS  Google Scholar 

  23. G. Kaur, N. Lin, H. Fang, B. Wang, in Glucose Sensing, Topics in Fluorescence Spectroscopy, vol. 11, ed. by C.D. Geddes, J.R. Lakowicz (Springer, New York, 2006), p.377

    Google Scholar 

  24. R.A. Marcus, J. Chem. Phys. 24, 966 (1956)

    Article  CAS  Google Scholar 

  25. G.L. Closs, J.R. Miller, Science 240, 440 (1988)

    Article  CAS  Google Scholar 

  26. P.F. Barbara, T.J. Meyer, M.A. Ratner, J. Phys. Chem. 100, 13148 (1996)

    Article  CAS  Google Scholar 

  27. E.J. Piechota, G.J. Meyer, J. Chem. Educ. 96, 2450 (2019)

    Article  CAS  Google Scholar 

  28. S. Fukuzumi, Electron Transfer: Mechanisms and Applications, 1st edn. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2020)

    Book  Google Scholar 

  29. M. Tanaka, K. Ohkubo, C.P. Gros, R. Guilard, S. Fukuzumi, J. Am. Chem. Soc. 128, 14625 (2006)

    Article  CAS  Google Scholar 

  30. L.F. Cotter, B.P. Rimgard, G.A. Parada, J.M. Mayer, L. Hammarstrom, J. Phys. Chem. A 125, 7670 (2021)

    Article  CAS  Google Scholar 

  31. M. Kumai, S. Kozuka, M. Samizo, T. Hashimoto, I. Suzuki, T. Hayashita, Anal. Sci. 28, 121 (2012)

    Article  CAS  Google Scholar 

  32. K. Hara, W.R. Ware, Chem. Phys. 51, 61 (1980)

    Article  CAS  Google Scholar 

  33. D.S. Karpovich, G.J. Blanchard, J. Phys. Chem. 99, 3951 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ms. Mizuna Kawashima, Mr. Akito Suganuma, Mr. Riku Higa and Mr. Hiroya Kano for supporting our experiments. This work was supported by Sophia University Special Grant for Academic Research “Research in Priority Areas”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Ema.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 261 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshinaga, R., Kojima, F., Sugiyama, K. et al. Marcus model-based analysis of the photo-quenching mechanism of a boronic acid fluorophore: water concentration dependence of electron transfer rate. ANAL. SCI. 39, 213–220 (2023). https://doi.org/10.1007/s44211-022-00222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s44211-022-00222-3

Keywords

Navigation