Skip to main content
Log in

Microstructure evolution and dynamic recrystallization mechanisms of 316L stainless steel during hot deformation

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

Through isothermal compression testing at various temperatures and strain rates, the thermal deformation behavior of 316L stainless steel was investigated. Utilizing corrected true stress–strain data, an Arrhenius constitutive model with strain compensation was developed. Electron backscatter diffraction and transmission electron microscopy were employed to study the microstructure of the compressed specimens, revealing substantial impacts of temperature and strain rate. Higher temperatures boosted the transition from low-angle to high-angle grain boundaries (HAGB), while also increasing the volume percentage of dynamic recrystallization (DRX) and grain size. The impacts of Dynamic Grain Growth/Dynamic Abnormal Grain Growth restricted DRX at higher deformation temperatures and lower strain rates, but at lower temperatures, HAGB reduced with increasing strain rate. As a result, the proportion of HAGB and the volume fraction of recrystallization both decreased. The percentage of ∑3n (1 ≤ n ≤ 3) twin boundaries also rose with temperature and followed a similar pattern to HAGB with strain rate. High temperature and high strain rate were the ideal formation conditions. Discontinuous dynamic recrystallization (DDRX) was the predominant DRX mechanism in the steel during thermal deformation, with continuous dynamic recrystallization (CDRX) acting as an auxiliary mechanism largely occurring in the low-temperature and high-strain-rate processing conditions like 1273–1323 K, 0.1–1 s−1. Additionally, when the temperature rose, CDRX was suppressed while DDRX was encouraged.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author, [Li], upon reasonable request.

References

  1. Li S, Withers PJ, Kabra S, Yan K. The behaviour and deformation mechanisms for 316L stainless steel deformed at cryogenic temperatures. Mater Sci Eng A. 2023;880: 145279. https://doi.org/10.1016/j.msea.2023.145279.

    Article  Google Scholar 

  2. Donadille C, Valle R, Dervin P, Penelle R. Development of texture and microstructure during cold-rolling and annealing of F.C.C. alloys: example of an austenitic stainless steel. Acta Metall. 1989;37:15–47. https://doi.org/10.1016/0001-6160(89)90123-5.

    Article  Google Scholar 

  3. Nezakat M, Akhiani H, Hoseini M, Szpunar J. Effect of thermo-mechanical processing on texture evolution in austenitic stainless steel 316L. Mater Charact. 2014;98:10. https://doi.org/10.1016/j.matchar.2014.10.006.

    Article  Google Scholar 

  4. Li Y, Zhang Y, Chen Z, Ji Z, Zhu H, Sun C, et al. Hot deformation behavior and dynamic recrystallization of GH690 nickel-based superalloy. J Alloys Compd. 2020;847: 156507. https://doi.org/10.1016/j.jallcom.2020.156507.

    Article  Google Scholar 

  5. Lin YC, Chen XM. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater Des. 2011;32:1733–59. https://doi.org/10.1016/j.matdes.2010.11.048.

    Article  Google Scholar 

  6. Li J, Zhao G, Ma L, Chen H, Li H, Huang Q, Zhang W. Hot Deformation behavior and microstructural evolution of antibacterial austenitic stainless steel containing 3.60% Cu. J Mater Eng Perform. 2018;27:1847–53. https://doi.org/10.1007/s11665-018-3274-1.

    Article  Google Scholar 

  7. Song Y, Wang S, Zhao G, Li Y, Li J, Zhang J. Hot deformation behavior and microstructural evolution of 2205 duplex stainless steel. Mater Res Express. 2020;7: 046510. https://doi.org/10.1088/2053-1591/ab8529.

    Article  Google Scholar 

  8. Ouyang L, Luo R, Gui Y, Cao Y, Chen L, Cui Y, et al. Hot deformation characteristics and dynamic recrystallization mechanisms of a Co-Ni-based superalloy. Mater Sci Eng A. 2020;788: 139638. https://doi.org/10.1016/j.msea.2020.139638.

    Article  Google Scholar 

  9. Song Y, Li Y, Li H, Zhao G, Cai Z, Sun M. Hot deformation and recrystallization behavior of a new nickel-base superalloy for ultra-supercritical applications. J Mater Res Technol. 2022;19:4308–24. https://doi.org/10.1016/j.jmrt.2022.06.141.

    Article  Google Scholar 

  10. Qu J, Xie X, Bi Z, Du J, Zhang M. Hot deformation characteristics and dynamic recrystallization mechanism of GH4730 Ni-based superalloy. J Alloys Compd. 2019;785:918–24. https://doi.org/10.1016/j.jallcom.2019.01.237.

    Article  Google Scholar 

  11. Wen H, Tang X, Jin J, Cai C, Yang H, Teng Q, et al. Effect of extrusion ratios on microstructure evolution and strengthening mechanisms of a novel P/M nickel-based superalloy. Mater Sci Eng A. 2022;847: 143356. https://doi.org/10.1016/j.msea.2022.143356.

    Article  Google Scholar 

  12. Song Y, Li Y, Zhao G, Liu H, Li H, Li J, Liu E. Electron backscatter diffraction investigation of heat deformation behavior of 2205 duplex stainless steel. Steel Res Int. 2021;92:2000587. https://doi.org/10.1002/srin.202000587.

    Article  Google Scholar 

  13. Qin DH, Wang MJ, Sun CY, Su ZX, Qian LY, Sun ZH. Interaction between texture evolution and dynamic recrystallization of extruded AZ80 magnesium alloy during hot deformation. Mater Sci Eng A. 2020;788: 139537. https://doi.org/10.1016/j.msea.2020.139537.

    Article  Google Scholar 

  14. Zhong XT, Wang L, Huang LK, Liu F. Transition of dynamic recrystallization mechanism during hot deformation of Incoloy 028 alloy. J Mater Sci Technol. 2020;42:241–53. https://doi.org/10.1016/j.jmst.2019.08.058.

    Article  Google Scholar 

  15. Cao Y, Di H, Misra RDK, Yi X, Zhang J, Ma T. On the hot deformation behavior of AISI 420 stainless steel based on constitutive analysis and CSL model. Mater Sci Eng A. 2014;593:111–9. https://doi.org/10.1016/j.msea.2013.11.030.

    Article  Google Scholar 

  16. Field DP, Bradford LT, Nowell MM, Lillo TM. The role of annealing twins during recrystallization of Cu. Acta Mater. 2007;55(12):4233–41. https://doi.org/10.1016/j.actamat.2007.03.021.

    Article  Google Scholar 

  17. Haasen P. How are new orientations generated during primary recrystallization? Metall Trans B. 1993;24:225–39. https://doi.org/10.1007/BF02659125.

    Article  Google Scholar 

  18. Liu J, Zhang W, Xin X, Wang L, Zhu C, Zhu X, Sun W. Microstructure evolution and dynamic recrystallisation behaviour in hot deformation of Haynes 214 superalloy. J Alloys Compd. 2022;919: 165755. https://doi.org/10.1016/j.jallcom.2022.165755.

    Article  Google Scholar 

  19. Wan Z, Hu L, Sun Y, Wang T, Li Z. Hot deformation behavior and processing workability of a Ni-based alloy. J Alloys Compd. 2018;769:367–75. https://doi.org/10.1016/j.jallcom.2018.08.010.

    Article  Google Scholar 

  20. Li Y, Song Y, Xu H, Li H, Tian Y, Yao L, Sun H. Hot deformation and constitutive model of as-cast Ni-Cr-Co nickel-base alloy. Int J Mater Res. 2022;113:992–1011. https://doi.org/10.1515/ijmr-2021-8716.

    Article  Google Scholar 

  21. Evans RW, Scharning PJ. The θ projection method applied to small strain creep of commercial aluminium alloy. Mater Sci Technol. 2001;17:487–93. https://doi.org/10.1179/026708301101510276.

    Article  Google Scholar 

  22. Goetz RL, Semiatin SL. The adiabatic correction factor for deformation heating during the uniaxial compression test. J Mater Eng Perform. 2001;10:710–7. https://doi.org/10.1361/105994901770344593.

    Article  Google Scholar 

  23. Sakai T. Dynamic recrystallization microstructures under hot working conditions. J Mater Process Technol. 1995;53:349–61. https://doi.org/10.1016/0924-0136(95)01992-N.

    Article  Google Scholar 

  24. Allain-Bonasso N, Wagner F, Berbenni S, Field DP. A study of the heterogeneity of plastic deformation in IF steel by EBSD. Mater Sci Eng A. 2012;548:56–63. https://doi.org/10.1016/j.msea.2012.03.068.

    Article  Google Scholar 

  25. Wu Z, Liu S, Hasan MN, Li E, An X. The hot deformation behavior in austenite-ferrite heterostructured low density Fe-Mn-Al-C steel. Mater Today Commun. 2023;37: 107184. https://doi.org/10.1016/j.mtcomm.2023.107184.

    Article  Google Scholar 

  26. Jia Z, Gao ZX, Ji JJ, Liu DX, Guo TB, Ding YT. High-temperature deformation behavior and processing map of the as-cast Inconel 625 alloy. Rare Met. 2021;40:2083–91. https://doi.org/10.1007/s12598-020-01474-6.

    Article  Google Scholar 

  27. Setia P, Mukherjee S, Singh SS. Deformation characteristics and microstructure evolution during hot deformation of 18Cr-12Ni-4Si stainless steel. J Mater Sci. 2023;58:4987–5009. https://doi.org/10.1007/s10853-023-08308-7.

    Article  Google Scholar 

  28. Sun H, Sun Y, Zhang R, Wang M, Tang R, Zhang Z. Hot deformation behavior and microstructural evolution of a modified 310 austenitic steel. Mater Des. 2014;64:374–80. https://doi.org/10.1016/j.matdes.2014.08.001.

    Article  Google Scholar 

  29. Xu S, He J, Zhang R, Zhang F, Wang X. Hot deformation behaviors and dynamic softening mechanisms of 7Mo super-austenitic stainless steel with high stacking fault energy. J Mater Res Technol. 2023;23:1738–52. https://doi.org/10.1016/j.jmrt.2023.01.108.

    Article  Google Scholar 

  30. Mirzadeh H, Najafizadeh A, Moazeny M. Flow curve analysis of 17–4 PH stainless steel under hot compression test. Metall Mater Trans A. 2009;40:2950–8. https://doi.org/10.1007/s11661-009-0029-5.

    Article  Google Scholar 

  31. Mirzadeh H, Cabrera JM, Najafizadeh A. Constitutive relationships for hot deformation of austenite. Acta Mater. 2011;59:6441–8. https://doi.org/10.1016/j.actamat.2011.07.008.

    Article  Google Scholar 

  32. Jonas JJ, Sellars CM, Tegart WJM. Strength and structure under hot-working conditions. Metall Rev. 1969;14:1–24. https://doi.org/10.1179/mtlr.1969.14.1.1.

    Article  Google Scholar 

  33. Sellars CM, Tegart WJM. On the mechanism of hot deformation. Acta Metall. 1966;14:1136–8. https://doi.org/10.1016/0001-6160(66)90207-0.

    Article  Google Scholar 

  34. Zhao G, Tian Y, Song Y, Li J, Li H, Zhang J. A comparative study of three constitutive models concerning thermo-mechanical behavior of Q345 steel during hot deformation. Crystals. 2022;12:1262. https://doi.org/10.3390/cryst12091262.

    Article  Google Scholar 

  35. Zener C, Hollomon JH. Effect of strain rate upon plastic flow of steel. J Appl Phys. 1944;15:22–32. https://doi.org/10.1063/1.1707363.

    Article  Google Scholar 

  36. Zhang J, Wu C, Peng Y, Xia X, Li J, Ding J, Liu C, Chen X, Dong J, Liu Y. Hot compression deformation behavior and processing maps of ATI 718Plus superalloy. J Alloys Compd. 2020;835: 155195. https://doi.org/10.1016/j.jallcom.2020.155195.

    Article  Google Scholar 

  37. Ahmadi H, Ashtiani HRR, Heidari M. A comparative study of phenomenological, physically-based and artificial neural network models to predict the Hot flow behavior of API 5CT-L80 steel. Mater Today Commun. 2020;25: 101528. https://doi.org/10.1016/j.mtcomm.2020.101528.

    Article  Google Scholar 

  38. Wu Z, Tang Y, Chen W, Lu L, Li E, Li Z, Ding H. Exploring the influence of Al content on the hot deformation behavior of Fe-Mn-Al-C steels through 3D processing map. Vacuum. 2019;159:447–55. https://doi.org/10.1016/j.vacuum.2018.10.079.

    Article  Google Scholar 

  39. Gao Q, Zhang H, Li H, Zhang X, Qu F, Jiang Y, Liu Z, Jiang C. Hot deformation of alumina-forming austenitic steel: EBSD study and flow behavior. J Mater Sci. 2019;54:8760–77. https://doi.org/10.1007/s10853-019-03513-9.

    Article  Google Scholar 

  40. Wang K, Wen DX, Li JJ, Zheng ZZ, Xiong YB. Hot deformation behaviors of low-alloyed ultrahigh strength steel 30CrMnSiNi2A: microstructure evolution and constitutive modeling. Mater Today Commun. 2021;26: 102009. https://doi.org/10.1016/j.mtcomm.2021.102009.

    Article  Google Scholar 

  41. Wang KM, Jing HY, Xu LY, Zhao L, Han YD, Li HZ, Song K. Microstructure evolution of 55Ni-23Cr-13Co nickel-based superalloy during high-temperature cyclic deformation. Trans Nonferr Met Soc China. 2021;31:3452–68. https://doi.org/10.1016/S1003-6326(21)65742-4.

    Article  Google Scholar 

  42. Cao Y, Di HS, Zhang JQ, Zhang JC, Ma TJ, Misra RDK. An electron backscattered diffraction study on the dynamic recrystallization behavior of a nickel-chromium alloy (800H) during hot deformation. Mater Sci Eng A. 2013;585:71–85. https://doi.org/10.1016/j.msea.2013.07.037.

    Article  Google Scholar 

  43. Randle V. Twinning-related grain boundary engineering. Acta Mater. 2004;52:4067–81. https://doi.org/10.1016/j.actamat.2004.05.031.

    Article  Google Scholar 

  44. Kumar SSS, Raghu T, Bhattacharjee PP, Rao GA, Borah U. Evolution of microstructure and microtexture during hot deformation in an advanced P/M nickel base superalloy. Mater Charact. 2018;146:217–36. https://doi.org/10.1016/j.matchar.2018.10.008.

    Article  Google Scholar 

  45. Liu XC, Sun YF, Nagira T, Ushioda K, Fujii H. Microstructure evolution of Cu-30Zn during friction stir welding. J Mater Sci. 2018;53:10423–41. https://doi.org/10.1007/s10853-018-2313-5.

    Article  Google Scholar 

  46. Lin YC, Wu XY, Chen XM, Chen J, Wen DX, Zhang JL, Li LT. EBSD study of a hot deformed nickel-based superalloy. J Alloy Compd. 2015;640:101–13. https://doi.org/10.1016/j.jallcom.2015.04.008.

    Article  Google Scholar 

  47. Yang J, Luo J, Li X, Li M. Evolution mechanisms of recrystallized grains and twins during isothermal compression and subsequent solution treatment of GH4586 superalloy. J Alloy Compd. 2021;850: 156732. https://doi.org/10.1016/j.jallcom.2020.156732.

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (No.52305401), the Fundamental Research Program of Shanxi Province (20210302123207 and 20210302124009), Taiyuan University of Science and Technology Scientific Research Initial Funding (20212026), the Shanxi Outstanding Doctorate Award Funding Fund (20222042), Shanxi Province Scientific Research Practice Innovation Project (2023KY651), Taiyuan University of Science and Technology Graduate Innovation Project (BY2022004 and SY2022088) and the Coordinative Innovation Center of Taiyuan Heavy Machinery Equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Li.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants and/or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Tian, Y., Li, H. et al. Microstructure evolution and dynamic recrystallization mechanisms of 316L stainless steel during hot deformation. Archiv.Civ.Mech.Eng 24, 35 (2024). https://doi.org/10.1007/s43452-023-00844-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-023-00844-y

Keywords

Navigation