Skip to main content
Log in

Hot deformation of alumina-forming austenitic steel: EBSD study and flow behavior

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The flow behavior of alumina-forming austenitic steel was studied using axisymmetric hot compression on a Gleeble-3500 thermomechanical simulator. The temperature range was 900–1200 °C, and strain rate range was 0.1–100 s−1. The microstructures after deformation were investigated by electron backscattering diffraction (EBSD) and transmission electron microscopy (TEM). The deformation temperature and strain rate have a significant influence on the flow stress. A constitutive equation, describing the flow stress as a function of deformation temperature and strain rate, has been developed, and the hot deformation activation energy was confirmed as 579.4 kJ/mol. Dynamic recrystallization (DRX) progress had been finished after increasing hot deformation temperature to 1100 °C at a strain rate of 100 s−1, leading to the obvious transformation from low-angle grain boundaries (LAGBs) to high-angle grain boundaries (HAGBs), and a relatively stable fraction of HAGBs was obtained. At a strain rate of 100 s−1, the β-fiber at {011}<211> transited to {112}<111> (C orientation), and finally a recrystallized orientation of {100}<100> formed after absolute DRX. GDRX is the primary DRX mechanism, but DDRX mechanism is dominant with the increase in deformation temperature at a high strain rate of 100 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. Yamamoto Y, Brady MP, Lu Z et al (2007) Creep-resistant, Al2O3-forming austenitic stainless steels. Science 316:433–436

    Article  Google Scholar 

  2. Yamamoto Y, Brady MP, Lu Z, Liu CT, Takeyama M, Maziasz PJ, Pint BA (2007) Alumina-forming austenitic stainless steels strengthened by laves phase and MC carbide precipitates. Metall Mater Trans A 38:2737–2746

    Article  Google Scholar 

  3. Gao Q, Qu F, Zhang H, Huo Q (2016) Austenite grain growth in alumina-forming austenitic steel. J Mater Res 31:1732–1740

    Article  Google Scholar 

  4. Brady MP, Magee J, Yamamoto Y, Helmick D, Wang L (2014) Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance. Mater Sci Eng A 590:101–115

    Article  Google Scholar 

  5. Moon J, Lee T, Heo Y, Han Y, Kang J, Ha H, Suh D (2015) Precipitation sequence and its effect on age hardening of alumina-forming austenitic stainless steel. Mater Sci Eng A 645:72–81

    Article  Google Scholar 

  6. Brady MP, Muralidharan G, Yamamoto Y, Pint BA (2016) Development of 1100 °C capable alumina-forming austenitic alloys. Oxid Met 87:1–10

    Article  Google Scholar 

  7. Gao Q, Liu Y, Di X, Dong Z, Yan Z (2011) The isochronal δ → γ transformation of high Cr ferritic heat-resistant steel during cooling. J Mater Sci 46:6910–6915. https://doi.org/10.1007/s10853-011-5656-8

    Article  Google Scholar 

  8. McQueen HJ, Yue S, Ryan ND, Fry E (1995) Hot working characteristics of steels in austenitic state. J Mater Process Tech 53:293–310

    Article  Google Scholar 

  9. Gao Q, Wang Y, Gong M, Qu F, Lin X (2016) Non-isothermal austenitic transformation kinetics in Fe–10Cr–1Co alloy. Appl Phys A 122:1–10

    Google Scholar 

  10. Yamamoto Y, Muralidharan G, Brady MP (2013) Development of L12-ordered Ni3(Al, Ti)-strengthened alumina-forming austenitic stainless steel alloys. Scripta Mater 69:816–819

    Article  Google Scholar 

  11. Trotter G, Rayner G, Baker I, Munroe PR (2014) Accelerated precipitation in the AFA stainless steel Fe–20Cr–30Ni–2Nb–5Al via cold working. Intermetallics 53:120–128

    Article  Google Scholar 

  12. Wang D, Kahn H, Ernst F, Heuer AH (2015) NiAl precipitation in delta ferrite grains of 17-7 precipitation-hardening stainless steel during low-temperature interstitial hardening. Scripta Mater 108:136–140

    Article  Google Scholar 

  13. Jang M-H, Kang J-Y, Jang JH, Lee T-H, Lee C (2017) Hot deformation behavior and microstructural evolution of alumina-forming austenitic heat-resistant steels during hot compression. Mater Charact 123:207–217

    Article  Google Scholar 

  14. Zhou D, Xu X, Mao H, Yan Y, Nieh TG, Lu Z (2014) Plastic flow behaviour in an alumina-forming austenitic stainless steel at elevated temperatures. Mater Sci Eng A 594:246–252

    Article  Google Scholar 

  15. Hu B, Baker I (2016) The effect of thermo-mechanical treatment on the high temperature tensile behavior of an alumina-forming austenitic steel. Mater Sci Eng A 651:795–804

    Article  Google Scholar 

  16. Li D, Feng Y, Yin Z, Shangguan F, Wang K, Liu Q, Hu F (2012) Hot deformation behavior of an austenitic Fe–20Mn–3Si–3Al transformation induced plasticity steel. Mater Des 34:713–718

    Article  Google Scholar 

  17. Hamada AS, Somani MC, Karjalainen LP (2007) High temperature flow stress and recrystallization behavior of high-Mn TWIP steels. ISIJ Int 47:907–912

    Article  Google Scholar 

  18. Sellars CM, Tegart WJM (1972) Hot workability. Int Metall Rev 17:1–24

    Article  Google Scholar 

  19. Dehghan-Manshadi A, Barnett MR, Hodgson PD (2008) Hot deformation and recrystallization of austenitic stainless steel: part I. Dynamic recrystallization. Metall Mater Trans A 39:1359–1370

    Article  Google Scholar 

  20. Banerjee S, Robi PS, Srinivasan A, Praveen Kumar L (2010) High temperature deformation behavior of Al–Cu–Mg alloys micro-alloyed with Sn. Mater Sci Eng A 527:2498–2503

    Article  Google Scholar 

  21. McQueen HJ (2002) Elevated-temperature deformation at forming rates of 10−2 to 102 s−1. Metall Mater Trans A 33:345–362

    Article  Google Scholar 

  22. Mirzadeh H, Najafizadeh A, Moazeny M (2009) Flow curve analysis of 17-4 PH stainless steel under hot compression test. Metall Mater Trans A 40:2950–2958

    Article  Google Scholar 

  23. Mehtonen SV, Karjalainen LP, Porter DA (2013) Hot deformation behavior and microstructure evolution of a stabilized high-Cr ferritic stainless steel. Mater Sci Eng A 571:1–12

    Article  Google Scholar 

  24. Pu E, Zheng W, Xiang J, Song Z, Li J (2014) Hot deformation characteristic and processing map of superaustenitic stainless steel S32654. Mater Sci Eng A 598:174–182

    Article  Google Scholar 

  25. Momeni A, Dehghani K (2011) Hot working behavior of 2205 austenite–ferrite duplex stainless steel characterized by constitutive equations and processing maps. Mater Sci Eng A 528:1448–1454

    Article  Google Scholar 

  26. Hamada AS, Karjalainen LP, Somani MC (2007) The influence of aluminum on hot deformation behavior and tensile properties of high-Mn TWIP steels. Mater Sci Eng A 467:114–124

    Article  Google Scholar 

  27. Ponge D, Gottstein G (1998) Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior. Acta Mater 46:69–80

    Article  Google Scholar 

  28. Belyakov A, Tsuzaki K, Miura H, Sakai T (2003) Effect of initial microstructures on grain refinement in a stainless steel by large strain deformation. Acta Mater 51:847–861

    Article  Google Scholar 

  29. Mandal S, Bhaduri AK, Subramanya Sarma V (2010) A study on microstructural evolution and dynamic recrystallization during isothermal deformation of a Ti-modified austenitic stainless steel. Metall Mater Trans A 42:1062–1072

    Article  Google Scholar 

  30. Lin YC, Wu X-Y, Chen X-M, Chen J, Wen D-X, Zhang J-L, Li L-T (2015) EBSD study of a hot deformed nickel-based superalloy. J Alloy Compd 640:101–113

    Article  Google Scholar 

  31. Raabe D (1995) Microstructure and crystallographic texture of strip-cast and hot-rolled austenitic stainless steel. Metall Mater Trans A 26:991–998

    Article  Google Scholar 

  32. El Wahabi M, Gavard L, Cabrera JM, Prado JM, Montheillet F (2005) EBSD study of purity effects during hot working in austenitic stainless steels. Mater Sci Eng A 393:83–90

    Article  Google Scholar 

  33. Dehghan-Manshadi A, Barnett MR, Hodgson PD (2008) Hot deformation and recrystallization of austenitic stainless steel: part II. Post-deformation recrystallization. Metall Mater Trans A 39:1371–1381

    Article  Google Scholar 

  34. Tian Y, Huang H, Yuan G, Ding W (2015) Microstructure evolution and mechanical properties of quasicrystal-reinforced Mg–Zn–Gd alloy processed by cyclic extrusion and compression. J Alloy Compd 626:42–48

    Article  Google Scholar 

  35. Gourdet S, Montheillet F (2000) An experimental study of the recrystallization mechanism during hot deformation of aluminium. Mater Sci Eng A 283:274–288

    Article  Google Scholar 

  36. Belyakov A, Sakai T, Kaibyshev R (1998) New grain formation during warm deformation of ferritic stainless steel. Metall Mater Trans A 29:161–167

    Article  Google Scholar 

  37. Gurao NP, Adesola AO, Odeshi AG, Szpunar JA (2013) On the evolution of heterogeneous microstructure and microtexture in impacted aluminum–lithium alloy. J Alloy Compd 578:183–187

    Article  Google Scholar 

  38. Fan XH, Li M, Li DY, Shao YC, Zhang SR, Peng YH (2014) Dynamic recrystallisation and dynamic precipitation in AA6061 aluminium alloy during hot deformation. Mater Sci Tech 30:1263–1272

    Article  Google Scholar 

  39. McQueen HJ (2004) Development of dynamic recrystallization theory. Mater Sci Eng A 387–389:203–208

    Article  Google Scholar 

  40. Pari LD, Misiolek WZ (2008) Theoretical predictions and experimental verification of surface grain structure evolution for AA6061 during hot rolling. Acta Mater 56:6174–6185

    Article  Google Scholar 

  41. McQueen HJ, Blum W (2000) Dynamic recovery: sufficient mechanism in the hot deformation of Al (< 99.99). Mater Sci Eng A 290:95–107

    Article  Google Scholar 

  42. Wang Y, Shao WZ, Zhen L, Yang L, Zhang XM (2008) Flow behavior and microstructures of superalloy 718 during high temperature deformation. Mater Sci Eng A 497:479–486

    Article  Google Scholar 

  43. Wusatowska-Sarnek AM, Miura H, Sakai T (2002) Nucleation and microtexture development under dynamic recrystallization of copper. Mater Sci Eng A 323:177–186

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Numbers: 51871042, 51501034) and the Fundamental Research Funds for the Central Universities (Grant Number: N172304041).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiuzhi Gao or Huijun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Zhang, H., Li, H. et al. Hot deformation of alumina-forming austenitic steel: EBSD study and flow behavior. J Mater Sci 54, 8760–8777 (2019). https://doi.org/10.1007/s10853-019-03513-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03513-9

Navigation