Skip to main content
Log in

Achieving high titer and yield in the bioconversion of l-threonine to 2-hydroxybutyric acid with Escherichia coli BL21

  • Original Article
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

The study investigated the enhanced production of 2-hydroxybutyric acid (2-HBA) from threonine using a two-step whole-cell bioconversion by recombinant Escherichia coli BL21 (DE3) overexpressing threonine dehydratase and keto-reductase. To address the rate-limiting step posed by NADH regeneration for the keto-reductase reaction converting 2-ketobutyric acid (2-KBA) to 2-HBA, formate dehydrogenase from Candida boidinii was overexpressed under the T7 promoter, resulting in a high titer of 1015 mM and a yield of 0.70 mol/mol. Furthermore, the yield was improved by disrupting three enzymes responsible for the degradation of the intermediate (2-KBA), pyruvate-formate lyase (PflB), pyruvate oxidase (PoxB), and pyruvate dehydrogenase complex (PDHc), leading to an impressive yield of 0.99 mol/mol, closely approaching the theoretical maximum of 1.00 mol/mol. The triple mutant, designed to prevent 2-KBA degradation, achieved a remarkable titer of 1,400 mM and volumetric productivity of 58 mmol/L/h. To the best of our knowledge, this achievement represents the highest reported titer and yield for 2-HBA production to date.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.

Similar content being viewed by others

References

  1. Yamazaki Y, Araki T, Koura M, Shibuya K. Enantioselective synthesis of the PPARa Agonist (R)-K-13675 via (S)-2-hydroxybutyrolactone. Synthesis. 2008;7:1017–22.

    Article  Google Scholar 

  2. Matsumoto K, Terai S, Ishiyama A, Sun J, Kabe T, Song Y, et al. One-pot microbial production, mechanical properties, and enzymatic degradation of isotactic P[( R )-2-hydroxybutyrate] and its copolymer with ( R )-lactate. Biomacromol. 2013;14:1913–8. https://doi.org/10.1021/bm400278j.

    Article  CAS  Google Scholar 

  3. Park SJ, Lee TW, Lim S-C, Kim TW, Lee H, Kim MK, et al. Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Appl Microbiol Biotechnol. 2012;93:273–83. https://doi.org/10.1007/s00253-011-3530-x.

    Article  CAS  PubMed  Google Scholar 

  4. Sudo M, Hori C, Ooi T, Mizuno S, Tsuge T, Matsumoto K. Synergy of valine and threonine supplementation on poly(2-hydroxybutyrate-block-3-hydroxybutyrate) synthesis in engineered Escherichia coli expressing chimeric polyhydroxyalkanoate synthase. J Biosci Bioeng. 2020;129:302–6. https://doi.org/10.1016/j.jbiosc.2019.09.018.

    Article  CAS  PubMed  Google Scholar 

  5. Ferrannini E, Natali A, Camastra S, Nannipieri M, Mari A, Adam K-P, et al. Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes. 2013;62:1730–7. https://doi.org/10.2337/db12-0707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gall WE, Beebe K, Lawton KA, Adam K-P, Mitchell MW, Nakhle PJ, et al. α-Hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS ONE. 2010;5: e10883. https://doi.org/10.1371/journal.pone.0010883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sousa AP, Cunha DM, Franco C, Teixeira C, Gojon F, Baylina P, et al. Which role plays 2-hydroxybutyric acid on insulin resistance? Metabolites. 2021;11:835. https://doi.org/10.3390/metabo11120835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kondo S, Hotta K. Semisynthetic aminoglycoside antibiotics: development and enzymatic modifications. J Infect Chemother. 1999;5:1–9. https://doi.org/10.1007/s101560050001.

    Article  CAS  PubMed  Google Scholar 

  9. Zheng N, Gu Y, Hong Y, Sheng L, Chen L, Zhang F, et al. Vancomycin pretreatment attenuates acetaminophen-induced liver injury through 2-hydroxybutyric acid. J Pharm Anal. 2020;10:560–70. https://doi.org/10.1016/j.jpha.2019.11.003.

    Article  PubMed  Google Scholar 

  10. Tsuji H, Okumura A. Stereocomplex formation between enantiomeric substituted poly(lactide)s: blends of poly[(S)-2-hydroxybutyrate] and poly[(R)-2-hydroxybutyrate]. Macromolecules. 2009;42:7263–6. https://doi.org/10.1021/ma9015483.

    Article  CAS  Google Scholar 

  11. Chen X, Wu Q, Zhu D. Enzymatic synthesis of chiral 2-hydroxy carboxylic acids. Process Biochem. 2015;50:759–70. https://doi.org/10.1016/j.procbio.2015.01.027.

    Article  CAS  Google Scholar 

  12. Gao C, Zhang W, Ma C, Liu P, Xu P. Kinetic resolution of 2-hydroxybutanoate racemic mixtures by NAD-independent l-lactate dehydrogenase. Bioresour Technol. 2011;102:4595–9. https://doi.org/10.1016/j.biortech.2011.01.003.

    Article  CAS  PubMed  Google Scholar 

  13. Le T, Park S. Development of efficient microbial cell factory for whole-cell bioconversion of l-threonine to 2-hydroxybutyric acid. Bioresour Technol. 2022;344: 126090. https://doi.org/10.1016/j.biortech.2021.126090.

    Article  CAS  PubMed  Google Scholar 

  14. Tian L, Zhou J, Yang T, Zhang X, Xu M, Rao Z. Cascade biocatalysis for production of enantiopure (S)-2-hydroxybutyric acid using recombinant Escherichia coli with a tunable multi-enzyme-coordinate expression system. Syst Microbiol Biomanuf. 2021;1:234–44. https://doi.org/10.1007/s43393-020-00021-9.

    Article  CAS  Google Scholar 

  15. Yao P, Cui Y, Yu S, Du Y, Feng J, Wu Q, et al. Efficient biosynthesis of (R)- or (S)-2-hydroxybutyrate from l-threonine through a synthetic biology approach. Adv Synth Catal. 2016;358:2923–8. https://doi.org/10.1002/adsc.201600468.

    Article  CAS  Google Scholar 

  16. Link AJ, Phillips D, Church GM. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: application to open reading frame characterization. J Bacteriol. 1997;179:6228–37. https://doi.org/10.1128/jb.179.20.6228-6237.1997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stephens PE, Lewis HM, Darlison MG, Guest JR. Nucleotide sequence of the lipoamide dehydrogenase gene of Escherichia coli K12. Eur J Biochem. 1983;135:519–27. https://doi.org/10.1111/j.1432-1033.1983.tb07683.x.

    Article  CAS  PubMed  Google Scholar 

  18. Sumantran VN, Schweizer HP, Datta P. A novel membrane-associated threonine permease encoded by the tdcC gene of Escherichia coli. J Bacteriol. 1990;172:4288–94. https://doi.org/10.1128/jb.172.8.4288-4294.1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khozov AA, Bubnov DM, Plisov ED, Vybornaya TV, Yuzbashev TV, Agrimi G, et al. A study on l-threonine and l-serine uptake in Escherichia coli K-12. Front Microbiol. 2023;14:1151716. https://doi.org/10.3389/fmicb.2023.1151716.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Simic P, Sahm H, Eggeling L. l -Threonine Export: Use of Peptides To Identify a New Translocator from Corynebacterium glutamicum. J Bacteriol. 2001;183:5317–24. https://doi.org/10.1128/JB.183.18.5317-5324.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Huang Y, Wang J, Cheng C, Huang W, Lu P, et al. Structure of the formate transporter FocA reveals a pentameric aquaporin-like channel. Nature. 2009;462:467–72. https://doi.org/10.1038/nature08610.

    Article  CAS  PubMed  Google Scholar 

  22. Wang S, Fang Y, Wang Z, Zhang S, Wang L, Guo Y, et al. Improving l-threonine production in Escherichia coli by elimination of transporters ProP and ProVWX. Microb Cell Factories. 2021;20:58. https://doi.org/10.1186/s12934-021-01546-x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. NRF-2020R1A5A1019631).

Author information

Authors and Affiliations

Authors

Contributions

Thai Le: conceptualization, experimentation, data curation. Bassey Friday Bassey: conceptualization, experimentation, data curation and visualization, writing—original draft. Thuan Phu Nguyen-Vo: conceptualization, experimentation, data curation and visualization. Sunghoon Park: conceptualization, funding acquisition, supervision, validation, writing—review and editing.

Corresponding author

Correspondence to Sunghoon Park.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could appear to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 536 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T., Bassey, B.F., Nguyen-Vo, T.P. et al. Achieving high titer and yield in the bioconversion of l-threonine to 2-hydroxybutyric acid with Escherichia coli BL21. Syst Microbiol and Biomanuf 4, 708–715 (2024). https://doi.org/10.1007/s43393-023-00224-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-023-00224-w

Keywords

Navigation