Skip to main content

Advertisement

Log in

Synthetic biology for sustainable food ingredients production: recent trends

  • Review
  • Published:
Systems Microbiology and Biomanufacturing Aims and scope Submit manuscript

Abstract

Problems with food security result from increased population, global warming, and decrease in cultivable land. With the advancements in synthetic biology, microbial synthesis of food is considered to be an efficient alternate approach that could permit quick food biosynthesis in an eco-friendly method. Furthermore, synthetic biology can be assumed to the synthesis of healthy or specially designed food components like proteins, lipids, amino acids and vitamins and widen the consumption of feedstocks, thus offering possible resolutions to high-quality food synthesis. This review describes the impact of synthetic biology for the microbial synthesis of various food ingredients production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Myers SS, et al. Climate change and global food systems: potential impacts on food security and undernutrition. Annu Rev Public Health. 2017;38(1):259–77. https://doi.org/10.1146/annurev-publhealth-031816-044356.

    Article  Google Scholar 

  2. Béligon V, Christophe G, Fontanille P, Larroche C. Microbial lipids as potential source to food supplements. Curr Opin Food Sci. 2016;7:35–42. https://doi.org/10.1016/j.cofs.2015.10.002.

    Article  Google Scholar 

  3. Markham KA, Alper HS. Synthetic biology expands the industrial potential of Yarrowia lipolytica. Trends Biotechnol. 2018;36(10):1085–95. https://doi.org/10.1016/j.tibtech.2018.05.004.

    Article  CAS  Google Scholar 

  4. Gleizer S, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell. 2019;179(6):1255-1263.e12. https://doi.org/10.1016/j.cell.2019.11.009.

    Article  CAS  Google Scholar 

  5. Heirendt L, et al. Creation and analysis of biochemical constraint-based models using the COBRA Toolbox vol 3.0. Nat Protoc. 2019;14(3):639–702. https://doi.org/10.1038/s41596-018-0098-2.

    Article  CAS  Google Scholar 

  6. Guiziou S, et al. A part toolbox to tune genetic expression in Bacillus subtilis. Nucleic Acids Res. 2016. https://doi.org/10.1093/nar/gkw624.

    Article  Google Scholar 

  7. Xu N, Liu Y, Jiang H, Liu J, Ma Y. Combining protein and metabolic engineering to construct efficient microbial cell factories. Curr Opin Biotechnol. 2020;66:27–35. https://doi.org/10.1016/j.copbio.2020.06.001.

    Article  CAS  Google Scholar 

  8. Lv X, Cui S, Gu Y, Li J, Du G, Liu L. Enzyme assembly for compartmentalized metabolic flux control. Metabolites. 2020;10(4):125. https://doi.org/10.3390/metabo10040125.

    Article  CAS  Google Scholar 

  9. Wu Y, et al. Design of a programmable biosensor-CRISPRi genetic circuits for dynamic and autonomous dual-control of metabolic flux in Bacillus subtilis. Nucleic Acids Res. 2020;48(2):996–1009. https://doi.org/10.1093/nar/gkz1123.

    Article  CAS  Google Scholar 

  10. Wu Y, Liu Y, Lv X, Li J, Du G, Liu L. Applications of CRISPR in a microbial cell factory: from genome reconstruction to metabolic network reprogramming. ACS Synth Biol. 2020;9(9):2228–38. https://doi.org/10.1021/acssynbio.0c00349.

    Article  CAS  Google Scholar 

  11. Lawson CE, et al. Machine learning for metabolic engineering: a review. Metab Eng. 2021;63:34–60. https://doi.org/10.1016/j.ymben.2020.10.005.

    Article  CAS  Google Scholar 

  12. Wang G, et al. Integrated whole-genome and transcriptome sequence analysis reveals the genetic characteristics of a riboflavin-overproducing Bacillus subtilis. Metab Eng. 2018;48:138–49. https://doi.org/10.1016/j.ymben.2018.05.022.

    Article  CAS  Google Scholar 

  13. Acevedo-Rocha CG, Gronenberg LS, Mack M, Commichau FM, Genee HJ. Microbial cell factories for the sustainable manufacturing of B vitamins. Curr Opin Biotechnol. 2019;56:18–29. https://doi.org/10.1016/j.copbio.2018.07.006.

    Article  CAS  Google Scholar 

  14. Fang H, Li D, Kang J, Jiang P, Sun J, Zhang D. Metabolic engineering of Escherichia coli for de novo biosynthesis of vitamin B12. Nat Commun. 2018;9(1):4917. https://doi.org/10.1038/s41467-018-07412-6.

    Article  CAS  Google Scholar 

  15. Genee HJ, et al. Functional mining of transporters using synthetic selections. Nat Chem Biol. 2016;12(12):1015–22. https://doi.org/10.1038/nchembio.2189.

    Article  CAS  Google Scholar 

  16. Zhou M, Bi Y, Ding M, Yuan Y. One-step biosynthesis of vitamin C in Saccharomyces cerevisiae. Front Microbiol. 2021. https://doi.org/10.3389/fmicb.2021.643472.

    Article  Google Scholar 

  17. Rosa JCC, Colombo LT, Alvim MCT, Avonce N, Van Dijck P, Passos FML. Metabolic engineering of Kluyveromyces lactis for L-ascorbic acid (vitamin C) biosynthesis. Microb Cell Fact. 2013;12(1):59. https://doi.org/10.1186/1475-2859-12-59.

    Article  CAS  Google Scholar 

  18. Yuan P, Cui S, Liu Y, Li J, Du G, Liu L. Metabolic engineering for the production of fat-soluble vitamins: advances and perspectives. Appl Microbiol Biotechnol. 2020;104(3):935–51. https://doi.org/10.1007/s00253-019-10157-x.

    Article  CAS  Google Scholar 

  19. Xiao H, Zhang Y, Wang M. Discovery and engineering of cytochrome P450s for terpenoid biosynthesis. Trends Biotechnol. 2019;37(6):618–31. https://doi.org/10.1016/j.tibtech.2018.11.008.

    Article  CAS  Google Scholar 

  20. Tian ZD. The past and present of vitamin E. Synth Biol J. 2020;1(2):174–86. https://doi.org/10.12211/2096-8280.2020-022.

    Article  Google Scholar 

  21. Shen B, Zhou P, Jiao X, Yao Z, Ye L, Yu H. Fermentative production of Vitamin E tocotrienols in Saccharomyces cerevisiae under cold-shock-triggered temperature control. Nat Commun. 2020;11(1):5155. https://doi.org/10.1038/s41467-020-18958-9.

    Article  CAS  Google Scholar 

  22. Venn BJ. Macronutrients and human health for the 21st century. Nutrients. 2020;12(8):2363. https://doi.org/10.3390/nu12082363.

    Article  Google Scholar 

  23. Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev. 2015;44(5):1172–239. https://doi.org/10.1039/C4CS00351A.

    Article  CAS  Google Scholar 

  24. Stephens N, Di Silvio L, Dunsford I, Ellis M, Glencross A, Sexton A. Bringing cultured meat to market: technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci Technol. 2018;78:155–66. https://doi.org/10.1016/j.tifs.2018.04.010.

    Article  CAS  Google Scholar 

  25. Ben-Arye T, et al. Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nat Food. 2020;1(4):210–20. https://doi.org/10.1038/s43016-020-0046-5.

    Article  CAS  Google Scholar 

  26. Caroli AM, Chessa S, Erhardt GJ. Invited review: milk protein polymorphisms in cattle: effect on animal breeding and human nutrition. J Dairy Sci. 2009;92(11):5335–52. https://doi.org/10.3168/jds.2009-2461.

    Article  CAS  Google Scholar 

  27. Ma T, et al. Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab Eng. 2019;52:134–42. https://doi.org/10.1016/j.ymben.2018.11.009.

    Article  CAS  Google Scholar 

  28. van Berkel PHC, et al. Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat Biotechnol. 2002;20(5):484–7. https://doi.org/10.1038/nbt0502-484.

    Article  CAS  Google Scholar 

  29. Yu A-Q, Pratomo Juwono NK, Leong SSJ, Chang MW. Production of fatty acid-derived valuable chemicals in synthetic microbes. Front Bioeng Biotechnol. 2014. https://doi.org/10.3389/fbioe.2014.00078.

    Article  Google Scholar 

  30. Ageitos JM, Vallejo JA, Veiga-Crespo P, Villa TG. Oily yeasts as oleaginous cell factories. Appl Microbiol Biotechnol. 2011;90(4):1219–27. https://doi.org/10.1007/s00253-011-3200-z.

    Article  CAS  Google Scholar 

  31. Zhu Q, Jackson EN. Metabolic engineering of Yarrowia lipolytica for industrial applications. Curr Opin Biotechnol. 2015;36:65–72. https://doi.org/10.1016/j.copbio.2015.08.010.

    Article  CAS  Google Scholar 

  32. Cordova LT, Alper HS. Production of α-linolenic acid in Yarrowia lipolytica using low-temperature fermentation. Appl Microbiol Biotechnol. 2018;102(20):8809–16. https://doi.org/10.1007/s00253-018-9349-y.

    Article  CAS  Google Scholar 

  33. Ayseli MT, İpek Ayseli Y. Flavors of the future: health benefits of flavor precursors and volatile compounds in plant foods. Trends Food Sci Technol. 2016;48:69–77. https://doi.org/10.1016/j.tifs.2015.11.005.

    Article  CAS  Google Scholar 

  34. Dunkel A, et al. Nature’s chemical signatures in human olfaction: a foodborne perspective for future biotechnology. Angew Chem Int Ed. 2014;53(28):7124–43. https://doi.org/10.1002/anie.201309508.

    Article  CAS  Google Scholar 

  35. Bel-Rhlid R, Berger RG, Blank I. Bio-mediated generation of food flavors—towards sustainable flavor production inspired by nature. Trends Food Sci Technol. 2018;78:134–43. https://doi.org/10.1016/j.tifs.2018.06.004.

    Article  CAS  Google Scholar 

  36. Kim M-C, et al. Development of boiled-type shrimp flavor by Maillard reaction and sensory evaluation. Prev Nutr Food Sci. 2010;15(4):304–8. https://doi.org/10.3746/jfn.2010.15.4.304.

    Article  CAS  Google Scholar 

  37. Lv X, et al. Synthetic biology for future food: research progress and future directions. Futur Foods. 2021;3: 100025. https://doi.org/10.1016/j.fufo.2021.100025.

    Article  CAS  Google Scholar 

  38. Kang L, Alim A, Song H. Identification and characterization of flavor precursor peptide from beef enzymatic hydrolysate by Maillard reaction. J Chromatogr B. 2019;1104:176–81. https://doi.org/10.1016/j.jchromb.2018.10.025.

    Article  CAS  Google Scholar 

  39. Lanfermann I, Krings U, Schopp S, Berger RG. Isotope labelling experiments on the formation pathway of 3-hydroxy-4,5-dimethyl-2(5 H)-furanone from l-isoleucine in cultures of Laetiporus sulphureus. Flavour Fragr J. 2014;29(4):233–9. https://doi.org/10.1002/ffj.3200.

    Article  CAS  Google Scholar 

  40. Schwab W. Natural 4-Hydroxy-2,5-dimethyl-3(2H)-furanone (Furaneol®). Molecules. 2013;18(6):6936–51. https://doi.org/10.3390/molecules18066936.

    Article  CAS  Google Scholar 

  41. Huynh-Ba T, Matthey-Doret W, Fay LB, Be lRhlid R. Generation of thiols by biotransformation of cysteine−aldehyde conjugates with baker’s yeast. J Agric Food Chem. 2003;51(12):3629–35. https://doi.org/10.1021/jf026198j.

    Article  CAS  Google Scholar 

  42. Bel-Rhlid R, Thapa D, Kraehenbuehl K, Hansen C, Fischer L. Biotransformation of caffeoyl quinic acids from green coffee extracts by Lactobacillus johnsonii NCC 533. AMB Expr. 2013;3(1):28. https://doi.org/10.1186/2191-0855-3-28.

    Article  CAS  Google Scholar 

  43. Bel Rhlid R, Matthey-Doret W, Blank I, Fay LB, Juillerat MA. Lipase-assisted generation of 2-methyl-3-furanthiol and 2-furfurylthiol from thioacetates. J Agric Food Chem. 2002;50(14):4087–90. https://doi.org/10.1021/jf0202335.

    Article  CAS  Google Scholar 

  44. Bel-Rhlid R, Fleury Rey Y, Welti D, Fumeaux R, Moine D. Chemo-enzymatic synthesis of α-terpineol thioacetate and thiol derivatives and their use as flavouring compounds. Yeast. 2015;32(1):115–22. https://doi.org/10.1002/yea.3056.

    Article  CAS  Google Scholar 

  45. Wang W, Cha Y-J. Volatile compounds in seasoning sauce produced from soy sauce residue by reaction flavor technology. Prev Nutr food Sci. 2018;23(4):356–63. https://doi.org/10.3746/pnf.2018.23.4.356.

    Article  CAS  Google Scholar 

  46. Wang Z, Jiang M, Guo X, Liu Z, He X. Reconstruction of metabolic module with improved promoter strength increases the productivity of 2-phenylethanol in Saccharomyces cerevisiae. Microb Cell Fact. 2018;17(1):60. https://doi.org/10.1186/s12934-018-0907-x.

    Article  CAS  Google Scholar 

  47. Guo D, Zhang L, Pan H, Li X. Metabolic engineering of Escherichia coli for production of 2-phenylethylacetate from L-phenylalanine. Microbiologyopen. 2017;6(4): e00486. https://doi.org/10.1002/mbo3.486.

    Article  CAS  Google Scholar 

  48. Yin S, Lang T, Xiao X, Liu L, Sun B, Wang C. Significant enhancement of methionol production by co-expression of the aminotransferase gene ARO8 and the decarboxylase gene ARO10 in Saccharomyces cerevisiae. FEMS Microbiol Lett. 2015. https://doi.org/10.1093/femsle/fnu043.

    Article  Google Scholar 

  49. Wu Y, et al. Novel method for l-methionine production catalyzed by the aminotransferase ARO8 from Saccharomyces cerevisiae. J Agric Food Chem. 2018;66(24):6116–22. https://doi.org/10.1021/acs.jafc.8b01451.

    Article  CAS  Google Scholar 

  50. Che Y, et al. Production of methionol from 3-methylthiopropionaldehyde by catalysis of the yeast alcohol dehydrogenase Adh4p. J Agric Food Chem. 2020;68(16):4650–6. https://doi.org/10.1021/acs.jafc.0c00776.

    Article  CAS  Google Scholar 

  51. Kallscheuer N. Engineered microorganisms for the production of food additives approved by the European Union—a systematic analysis. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2018.01746.

    Article  Google Scholar 

  52. Hugenholtz J, Kleerebezem M, Starrenburg M, Delcour J, de Vos W, Hols P. Lactococcus lactis as a cell factory for high-level diacetyl production. Appl Environ Microbiol. 2000;66(9):4112–4. https://doi.org/10.1128/AEM.66.9.4112-4114.2000.

    Article  CAS  Google Scholar 

  53. Gao X, Xu N, Li S, Liu L. Metabolic engineering of Candida glabrata for diacetyl production. PLoS ONE. 2014;9(3): e89854. https://doi.org/10.1371/journal.pone.0089854.

    Article  CAS  Google Scholar 

  54. Converti A, Aliakbarian B, Domínguez JM, Vázquez GB, Perego P. Microbial production of biovanillin. Braz J Microbiol. 2010;41(3):519–30. https://doi.org/10.1590/S1517-83822010000300001.

    Article  CAS  Google Scholar 

  55. Barghini P, Di Gioia D, Fava F, Ruzzi M. Vanillin production using metabolically engineered Escherichia coli under non-growing conditions. Microb Cell Fact. 2007;6(1):13. https://doi.org/10.1186/1475-2859-6-13.

    Article  CAS  Google Scholar 

  56. Willrodt C, David C, Cornelissen S, Bühler B, Julsing MK, Schmid A. Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media. Biotechnol J. 2014;9(8):1000–12. https://doi.org/10.1002/biot.201400023.

    Article  CAS  Google Scholar 

  57. Alonso-Gutierrez J, et al. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng. 2013;19:33–41. https://doi.org/10.1016/j.ymben.2013.05.004.

    Article  CAS  Google Scholar 

  58. Imran M, et al. Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants. 2020;9(8):706. https://doi.org/10.3390/antiox9080706.

    Article  CAS  Google Scholar 

  59. Reshmitha TR, Thomas S, Geethanjali S, Arun KB, Nisha P. DNA and mitochondrial protective effect of lycopene rich tomato (Solanum lycopersicum L.) peel extract prepared by enzyme assisted extraction against H2O2 induced oxidative damage in L6 myoblasts. J Funct Foods. 2017;28:147–56. https://doi.org/10.1016/j.jff.2016.10.031.

    Article  CAS  Google Scholar 

  60. Reshmitha TR, Nisha P. Lycopene mitigates acrylamide and glycidamide induced cellular toxicity via oxidative stress modulation in HepG2 cells. J Funct Foods. 2021;80: 104390. https://doi.org/10.1016/j.jff.2021.104390.

    Article  CAS  Google Scholar 

  61. Vadali RV, Fu Y, Bennett GN, San K-Y. Enhanced lycopene productivity by manipulation of carbon flow to isopentenyl diphosphate in Escherichia coli. Biotechnol Prog. 2005;21(5):1558–61. https://doi.org/10.1021/bp050124l.

    Article  CAS  Google Scholar 

  62. Zhou Y, Nambou K, Wei L, Cao J, Imanaka T, Hua Q. Lycopene production in recombinant strains of Escherichia coli is improved by knockout of the central carbon metabolism gene coding for glucose-6-phosphate dehydrogenase. Biotechnol Lett. 2013;35(12):2137–45. https://doi.org/10.1007/s10529-013-1317-0.

    Article  CAS  Google Scholar 

  63. Sun T, et al. Production of lycopene by metabolically-engineered Escherichia coli. Biotechnol Lett. 2014;36(7):1515–22. https://doi.org/10.1007/s10529-014-1543-0.

    Article  CAS  Google Scholar 

  64. Zhu F, et al. Targeted engineering and scale up of lycopene overproduction in Escherichia coli. Process Biochem. 2015;50(3):341–6. https://doi.org/10.1016/j.procbio.2014.12.008.

    Article  CAS  Google Scholar 

  65. Liu N, et al. Lycopene production from glucose, fatty acid and waste cooking oil by metabolically engineered Escherichia coli. Biochem Eng J. 2020;155: 107488. https://doi.org/10.1016/j.bej.2020.107488.

    Article  CAS  Google Scholar 

  66. Chen Y, Xiao W, Wang Y, Liu H, Li X, Yuan Y. Lycopene overproduction in Saccharomyces cerevisiae through combining pathway engineering with host engineering. Microb Cell Fact. 2016;15(1):113. https://doi.org/10.1186/s12934-016-0509-4.

    Article  CAS  Google Scholar 

  67. Shi B, et al. Systematic metabolic engineering of Saccharomyces cerevisiae for lycopene overproduction. J Agric Food Chem. 2019;67(40):11148–57. https://doi.org/10.1021/acs.jafc.9b04519.

    Article  CAS  Google Scholar 

  68. Hong J, Park S-H, Kim S, Kim S-W, Hahn J-S. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production. Appl Microbiol Biotechnol. 2019;103(1):211–23. https://doi.org/10.1007/s00253-018-9449-8.

    Article  CAS  Google Scholar 

  69. Luo Z, et al. Enhancing isoprenoid synthesis in Yarrowia lipolytica by expressing the isopentenol utilization pathway and modulating intracellular hydrophobicity. Metab Eng. 2020;61:344–51. https://doi.org/10.1016/j.ymben.2020.07.010.

    Article  CAS  Google Scholar 

  70. Schwartz C, Frogue K, Misa J, Wheeldon I. Host and pathway engineering for enhanced lycopene biosynthesis in Yarrowia lipolytica. Front Microbiol. 2017;8:2233. https://doi.org/10.3389/fmicb.2017.02233.

    Article  Google Scholar 

  71. Kang M, Choe D, Kim K, Cho B-K, Cho S. Synthetic biology approaches in the development of engineered therapeutic microbes. Int J Mol Sci. 2020;21(22):8744. https://doi.org/10.3390/ijms21228744.

    Article  CAS  Google Scholar 

  72. Han D, Li Y, Hu Q. Astaxanthin in microalgae: pathways, functions and biotechnological implications. Algae. 2013;28(2):131–47. https://doi.org/10.4490/algae.2013.28.2.131.

    Article  CAS  Google Scholar 

  73. Ambati R, Phang S-M, Ravi S, Aswathanarayana R. Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs. 2014;12(1):128–52. https://doi.org/10.3390/md12010128.

    Article  CAS  Google Scholar 

  74. Zhang C, Chen X, Too H-P. Microbial astaxanthin biosynthesis: recent achievements, challenges, and commercialization outlook. Appl Microbiol Biotechnol. 2020;104(13):5725–37. https://doi.org/10.1007/s00253-020-10648-2.

    Article  CAS  Google Scholar 

  75. Park SY, Binkley RM, Kim WJ, Lee MH, Lee SY. Metabolic engineering of Escherichia coli for high-level astaxanthin production with high productivity. Metab Eng. 2018;49:105–15. https://doi.org/10.1016/j.ymben.2018.08.002.

    Article  CAS  Google Scholar 

  76. Li D, et al. Engineering CrtW and CrtZ for improving biosynthesis of astaxanthin in Escherichia coli. Chin J Nat Med. 2020;18(9):666–76. https://doi.org/10.1016/S1875-5364(20)60005-X.

    Article  CAS  Google Scholar 

  77. Gong Z, Wang H, Tang J, Bi C, Li Q, Zhang X. Coordinated expression of astaxanthin biosynthesis genes for improved astaxanthin production in Escherichia coli. J Agric Food Chem. 2020;68(50):14917–27. https://doi.org/10.1021/acs.jafc.0c05379.

    Article  CAS  Google Scholar 

  78. Zhou P, et al. Alleviation of metabolic bottleneck by combinatorial engineering enhanced astaxanthin synthesis in Saccharomyces cerevisiae. Enzyme Microb Technol. 2017;100:28–36. https://doi.org/10.1016/j.enzmictec.2017.02.006.

    Article  CAS  Google Scholar 

  79. Zhou P, et al. Directed coevolution of β-carotene ketolase and hydroxylase and its application in temperature-regulated biosynthesis of astaxanthin. J Agric Food Chem. 2019;67(4):1072–80. https://doi.org/10.1021/acs.jafc.8b05003.

    Article  CAS  Google Scholar 

  80. Zhou P, Ye L, Xie W, Lv X, Yu H. Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt. Appl Microbiol Biotechnol. 2015;99(20):8419–28. https://doi.org/10.1007/s00253-015-6791-y.

    Article  CAS  Google Scholar 

  81. Jiang G, et al. Enhanced astaxanthin production in yeast via combined mutagenesis and evolution. Biochem Eng J. 2020;156: 107519. https://doi.org/10.1016/j.bej.2020.107519.

    Article  CAS  Google Scholar 

  82. Li N, et al. Production and excretion of astaxanthin by engineered Yarrowia lipolytica using plant oil as both the carbon source and the biocompatible extractant. Appl Microbiol Biotechnol. 2020;104(16):6977–89. https://doi.org/10.1007/s00253-020-10753-2.

    Article  CAS  Google Scholar 

  83. Kildegaard KR, Adiego-Pérez B, Doménech Belda D, Khangura JK, Holkenbrink C, Borodina I. Engineering of Yarrowia lipolytica for production of astaxanthin. Synth Syst Biotechnol. 2017;2(4):287–94. https://doi.org/10.1016/j.synbio.2017.10.002.

    Article  Google Scholar 

  84. Ma Y, Li J, Huang S, Stephanopoulos G. Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica. Metab Eng. 2021;68:152–61. https://doi.org/10.1016/j.ymben.2021.10.004.

    Article  CAS  Google Scholar 

  85. Cui S, et al. Engineering a bifunctional Phr60-Rap60-Spo0A quorum-sensing molecular switch for dynamic fine-tuning of menaquinone-7 synthesis in Bacillus subtilis. ACS Synth Biol. 2019;8(8):1826–37. https://doi.org/10.1021/acssynbio.9b00140.

    Article  CAS  Google Scholar 

  86. Gao Q, et al. Highly efficient production of menaquinone-7 from glucose by metabolically engineered Escherichia coli. ACS Synth Biol. 2021;10(4):756–65. https://doi.org/10.1021/acssynbio.0c00568.

    Article  CAS  Google Scholar 

  87. Kong MK, Lee PC. Metabolic engineering of menaquinone-8 pathway of Escherichia coli as a microbial platform for vitamin K production. Biotechnol Bioeng. 2011;108(8):1997–2002. https://doi.org/10.1002/bit.23142.

    Article  CAS  Google Scholar 

  88. Chen T, et al. Combinatorial methylerythritol phosphate pathway engineering and process optimization for increased menaquinone-7 synthesis in Bacillus subtilis. J Microbiol Biotechnol. 2020;30(5):762–9. https://doi.org/10.4014/jmb.1912.12008.

    Article  CAS  Google Scholar 

  89. Yang S, et al. Modular pathway engineering of Bacillus subtilis to promote de novo biosynthesis of menaquinone-7. ACS Synth Biol. 2019;8(1):70–81. https://doi.org/10.1021/acssynbio.8b00258.

    Article  CAS  Google Scholar 

  90. Yang S, Wang Y, Cai Z, Zhang G, Song H. Metabolic engineering of Bacillus subtilis for high-titer production of menaquinone-7. AIChE J. 2020. https://doi.org/10.1002/aic.16754.

    Article  Google Scholar 

  91. Chi H, et al. Engineering and modification of microbial chassis for systems and synthetic biology. Synth Syst Biotechnol. 2019;4(1):25–33. https://doi.org/10.1016/j.synbio.2018.12.001.

    Article  Google Scholar 

  92. McCarty NS, Ledesma-Amaro R. Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol. 2019;37(2):181–97. https://doi.org/10.1016/j.tibtech.2018.11.002.

    Article  CAS  Google Scholar 

  93. Xu P, Qiao K, Ahn WS, Stephanopoulos G. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci. 2016;113(39):10848–53. https://doi.org/10.1073/pnas.1607295113.

    Article  CAS  Google Scholar 

  94. Zhu Z, Zhou YJ, Krivoruchko A, Grininger M, Zhao ZK, Nielsen J. Expanding the product portfolio of fungal type I fatty acid synthases. Nat Chem Biol. 2017;13(4):360–2. https://doi.org/10.1038/nchembio.2301.

    Article  CAS  Google Scholar 

  95. Liu L, Martínez JL, Liu Z, Petranovic D, Nielsen J. Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae. Metab Eng. 2014;21:9–16. https://doi.org/10.1016/j.ymben.2013.10.010.

    Article  CAS  Google Scholar 

  96. Chaudhuri TK, et al. Effect of the extra N-terminal methionine residue on the stability and folding of recombinant α-lactalbumin expressed in Escherichia coli. J Mol Biol. 1999;285(3):1179–94. https://doi.org/10.1006/jmbi.1998.2362.

    Article  CAS  Google Scholar 

  97. Kim TR, et al. High-level expression of bovine beta-lactoglobulin in Pichia pastoris and characterization of its physical properties. Protein Eng Des Sel. 1997;10(11):1339–45. https://doi.org/10.1093/protein/10.11.1339.

    Article  CAS  Google Scholar 

  98. Olsson K, Carlsen S, Semmler A, Simón E, Mikkelsen MD, Møller BL. Microbial production of next-generation stevia sweeteners. Microb Cell Fact. 2016;15(1):207. https://doi.org/10.1186/s12934-016-0609-1.

    Article  CAS  Google Scholar 

  99. Kang W, et al. Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux. Nat Commun. 2019;10(1):4248. https://doi.org/10.1038/s41467-019-12247-w.

    Article  CAS  Google Scholar 

  100. Yoon S-H, et al. Enhanced lycopene production inEscherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate. Biotechnol Bioeng. 2006;94(6):1025–32. https://doi.org/10.1002/bit.20912.

    Article  CAS  Google Scholar 

  101. Zhang X, Wang D, Duan Y, Zheng X, Lin Y, Liang S. Production of lycopene by metabolically engineered Pichia pastoris. Biosci Biotechnol Biochem. 2020;84(3):463–70. https://doi.org/10.1080/09168451.2019.1693250.

    Article  CAS  Google Scholar 

  102. Gassel S, Schewe H, Schmidt I, Schrader J, Sandmann G. Multiple improvement of astaxanthin biosynthesis in Xanthophyllomyces dendrorhous by a combination of conventional mutagenesis and metabolic pathway engineering. Biotechnol Lett. 2013;35(4):565–9. https://doi.org/10.1007/s10529-012-1103-4.

    Article  CAS  Google Scholar 

  103. Lu Q, Liu J-Z. Enhanced astaxanthin production in Escherichia coli via morphology and oxidative stress engineering. J Agric Food Chem. 2019;67(42):11703–9. https://doi.org/10.1021/acs.jafc.9b05404.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Aravind Madhavan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arun, K.B., Anoopkumar, A.N., Sindhu, R. et al. Synthetic biology for sustainable food ingredients production: recent trends. Syst Microbiol and Biomanuf 3, 137–149 (2023). https://doi.org/10.1007/s43393-022-00150-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43393-022-00150-3

Keywords

Navigation